hdlg_machdep.c revision 1.5.10.3 1 1.5.10.3 yamt /* $NetBSD: hdlg_machdep.c,v 1.5.10.3 2009/08/19 18:46:07 yamt Exp $ */
2 1.1 nonaka
3 1.1 nonaka /*
4 1.1 nonaka * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
5 1.1 nonaka * All rights reserved.
6 1.1 nonaka *
7 1.1 nonaka * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
8 1.1 nonaka *
9 1.1 nonaka * Redistribution and use in source and binary forms, with or without
10 1.1 nonaka * modification, are permitted provided that the following conditions
11 1.1 nonaka * are met:
12 1.1 nonaka * 1. Redistributions of source code must retain the above copyright
13 1.1 nonaka * notice, this list of conditions and the following disclaimer.
14 1.1 nonaka * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 nonaka * notice, this list of conditions and the following disclaimer in the
16 1.1 nonaka * documentation and/or other materials provided with the distribution.
17 1.1 nonaka * 3. All advertising materials mentioning features or use of this software
18 1.1 nonaka * must display the following acknowledgement:
19 1.1 nonaka * This product includes software developed for the NetBSD Project by
20 1.1 nonaka * Wasabi Systems, Inc.
21 1.1 nonaka * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.1 nonaka * or promote products derived from this software without specific prior
23 1.1 nonaka * written permission.
24 1.1 nonaka *
25 1.1 nonaka * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.1 nonaka * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 nonaka * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 nonaka * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.1 nonaka * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 nonaka * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 nonaka * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 nonaka * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 nonaka * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 nonaka * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 nonaka * POSSIBILITY OF SUCH DAMAGE.
36 1.1 nonaka */
37 1.1 nonaka
38 1.1 nonaka /*
39 1.1 nonaka * Copyright (c) 1997,1998 Mark Brinicombe.
40 1.1 nonaka * Copyright (c) 1997,1998 Causality Limited.
41 1.1 nonaka * All rights reserved.
42 1.1 nonaka *
43 1.1 nonaka * Redistribution and use in source and binary forms, with or without
44 1.1 nonaka * modification, are permitted provided that the following conditions
45 1.1 nonaka * are met:
46 1.1 nonaka * 1. Redistributions of source code must retain the above copyright
47 1.1 nonaka * notice, this list of conditions and the following disclaimer.
48 1.1 nonaka * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 nonaka * notice, this list of conditions and the following disclaimer in the
50 1.1 nonaka * documentation and/or other materials provided with the distribution.
51 1.1 nonaka * 3. All advertising materials mentioning features or use of this software
52 1.1 nonaka * must display the following acknowledgement:
53 1.1 nonaka * This product includes software developed by Mark Brinicombe
54 1.1 nonaka * for the NetBSD Project.
55 1.1 nonaka * 4. The name of the company nor the name of the author may be used to
56 1.1 nonaka * endorse or promote products derived from this software without specific
57 1.1 nonaka * prior written permission.
58 1.1 nonaka *
59 1.1 nonaka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 1.1 nonaka * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 1.1 nonaka * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 1.1 nonaka * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 1.1 nonaka * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 1.1 nonaka * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 1.1 nonaka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 nonaka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 nonaka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 nonaka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 nonaka * SUCH DAMAGE.
70 1.1 nonaka *
71 1.1 nonaka * Machine dependant functions for kernel setup for GigaLANDISK
72 1.1 nonaka * using RedBoot firmware.
73 1.1 nonaka */
74 1.1 nonaka
75 1.1 nonaka #include <sys/cdefs.h>
76 1.5.10.3 yamt __KERNEL_RCSID(0, "$NetBSD: hdlg_machdep.c,v 1.5.10.3 2009/08/19 18:46:07 yamt Exp $");
77 1.1 nonaka
78 1.1 nonaka #include "opt_ddb.h"
79 1.1 nonaka #include "opt_kgdb.h"
80 1.1 nonaka #include "opt_pmap_debug.h"
81 1.1 nonaka
82 1.1 nonaka #include <sys/param.h>
83 1.1 nonaka #include <sys/device.h>
84 1.1 nonaka #include <sys/systm.h>
85 1.1 nonaka #include <sys/kernel.h>
86 1.1 nonaka #include <sys/exec.h>
87 1.1 nonaka #include <sys/proc.h>
88 1.1 nonaka #include <sys/msgbuf.h>
89 1.1 nonaka #include <sys/reboot.h>
90 1.1 nonaka #include <sys/termios.h>
91 1.1 nonaka #include <sys/ksyms.h>
92 1.1 nonaka
93 1.1 nonaka #include <uvm/uvm_extern.h>
94 1.1 nonaka
95 1.1 nonaka #include <dev/cons.h>
96 1.1 nonaka
97 1.1 nonaka #include <machine/db_machdep.h>
98 1.1 nonaka #include <ddb/db_sym.h>
99 1.1 nonaka #include <ddb/db_extern.h>
100 1.1 nonaka
101 1.1 nonaka #include <machine/bootconfig.h>
102 1.1 nonaka #include <machine/bus.h>
103 1.1 nonaka #include <machine/cpu.h>
104 1.1 nonaka #include <machine/frame.h>
105 1.1 nonaka #include <arm/undefined.h>
106 1.1 nonaka
107 1.1 nonaka #include <arm/arm32/machdep.h>
108 1.1 nonaka
109 1.1 nonaka #include <arm/xscale/i80321reg.h>
110 1.1 nonaka #include <arm/xscale/i80321var.h>
111 1.1 nonaka
112 1.1 nonaka #include <dev/pci/ppbreg.h>
113 1.1 nonaka
114 1.1 nonaka #include <evbarm/hdl_g/hdlgreg.h>
115 1.1 nonaka #include <evbarm/hdl_g/hdlgvar.h>
116 1.1 nonaka #include <evbarm/hdl_g/obiovar.h>
117 1.1 nonaka
118 1.1 nonaka #include "ksyms.h"
119 1.1 nonaka
120 1.1 nonaka /* Kernel text starts 2MB in from the bottom of the kernel address space. */
121 1.1 nonaka #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
122 1.1 nonaka #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
123 1.1 nonaka
124 1.1 nonaka /*
125 1.1 nonaka * The range 0xc1000000 - 0xccffffff is available for kernel VM space
126 1.1 nonaka * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
127 1.1 nonaka */
128 1.1 nonaka #define KERNEL_VM_SIZE 0x0C000000
129 1.1 nonaka
130 1.1 nonaka /*
131 1.1 nonaka * Address to call from cpu_reset() to reset the machine.
132 1.1 nonaka * This is machine architecture dependant as it varies depending
133 1.1 nonaka * on where the ROM appears when you turn the MMU off.
134 1.1 nonaka *
135 1.1 nonaka * XXX Not actually used on hdlg -- clean up the generic
136 1.1 nonaka * ARM code.
137 1.1 nonaka */
138 1.1 nonaka u_int cpu_reset_address = 0x00000000;
139 1.1 nonaka
140 1.1 nonaka /* Define various stack sizes in pages */
141 1.1 nonaka #define IRQ_STACK_SIZE 1
142 1.1 nonaka #define ABT_STACK_SIZE 1
143 1.1 nonaka #define UND_STACK_SIZE 1
144 1.1 nonaka
145 1.1 nonaka BootConfig bootconfig; /* Boot config storage */
146 1.1 nonaka char *boot_args = NULL;
147 1.1 nonaka char *boot_file = NULL;
148 1.1 nonaka
149 1.1 nonaka vm_offset_t physical_start;
150 1.1 nonaka vm_offset_t physical_freestart;
151 1.1 nonaka vm_offset_t physical_freeend;
152 1.1 nonaka vm_offset_t physical_end;
153 1.1 nonaka u_int free_pages;
154 1.1 nonaka vm_offset_t pagetables_start;
155 1.1 nonaka
156 1.1 nonaka /*int debug_flags;*/
157 1.1 nonaka #ifndef PMAP_STATIC_L1S
158 1.1 nonaka int max_processes = 64; /* Default number */
159 1.1 nonaka #endif /* !PMAP_STATIC_L1S */
160 1.1 nonaka
161 1.1 nonaka /* Physical and virtual addresses for some global pages */
162 1.1 nonaka pv_addr_t irqstack;
163 1.1 nonaka pv_addr_t undstack;
164 1.1 nonaka pv_addr_t abtstack;
165 1.1 nonaka pv_addr_t kernelstack;
166 1.1 nonaka pv_addr_t minidataclean;
167 1.1 nonaka
168 1.1 nonaka vm_offset_t msgbufphys;
169 1.1 nonaka
170 1.1 nonaka extern u_int data_abort_handler_address;
171 1.1 nonaka extern u_int prefetch_abort_handler_address;
172 1.1 nonaka extern u_int undefined_handler_address;
173 1.1 nonaka
174 1.1 nonaka #ifdef PMAP_DEBUG
175 1.1 nonaka extern int pmap_debug_level;
176 1.1 nonaka #endif
177 1.1 nonaka
178 1.1 nonaka #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
179 1.1 nonaka
180 1.1 nonaka #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
181 1.1 nonaka #define KERNEL_PT_KERNEL_NUM 4
182 1.1 nonaka
183 1.1 nonaka /* L2 table for mapping i80321 */
184 1.1 nonaka #define KERNEL_PT_IOPXS (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
185 1.1 nonaka
186 1.1 nonaka /* L2 tables for mapping kernel VM */
187 1.1 nonaka #define KERNEL_PT_VMDATA (KERNEL_PT_IOPXS + 1)
188 1.1 nonaka #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
189 1.1 nonaka #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
190 1.1 nonaka
191 1.1 nonaka pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
192 1.1 nonaka
193 1.1 nonaka struct user *proc0paddr;
194 1.1 nonaka
195 1.1 nonaka /* Prototypes */
196 1.1 nonaka void consinit(void);
197 1.1 nonaka
198 1.1 nonaka /* Static device mappings. */
199 1.1 nonaka static const struct pmap_devmap hdlg_devmap[] = {
200 1.1 nonaka /*
201 1.1 nonaka * Map the on-board devices VA == PA so that we can access them
202 1.1 nonaka * with the MMU on or off.
203 1.1 nonaka */
204 1.1 nonaka {
205 1.1 nonaka HDLG_OBIO_BASE,
206 1.1 nonaka HDLG_OBIO_BASE,
207 1.1 nonaka HDLG_OBIO_SIZE,
208 1.1 nonaka VM_PROT_READ|VM_PROT_WRITE,
209 1.1 nonaka PTE_NOCACHE,
210 1.1 nonaka },
211 1.1 nonaka
212 1.1 nonaka {
213 1.1 nonaka HDLG_IOW_VBASE,
214 1.1 nonaka VERDE_OUT_XLATE_IO_WIN0_BASE,
215 1.1 nonaka VERDE_OUT_XLATE_IO_WIN_SIZE,
216 1.1 nonaka VM_PROT_READ|VM_PROT_WRITE,
217 1.1 nonaka PTE_NOCACHE,
218 1.1 nonaka },
219 1.1 nonaka
220 1.1 nonaka {
221 1.1 nonaka HDLG_80321_VBASE,
222 1.1 nonaka VERDE_PMMR_BASE,
223 1.1 nonaka VERDE_PMMR_SIZE,
224 1.1 nonaka VM_PROT_READ|VM_PROT_WRITE,
225 1.1 nonaka PTE_NOCACHE,
226 1.1 nonaka },
227 1.1 nonaka
228 1.1 nonaka {
229 1.1 nonaka 0,
230 1.1 nonaka 0,
231 1.1 nonaka 0,
232 1.1 nonaka 0,
233 1.1 nonaka 0,
234 1.1 nonaka }
235 1.1 nonaka };
236 1.1 nonaka
237 1.1 nonaka static void
238 1.1 nonaka hardclock_hook(void)
239 1.1 nonaka {
240 1.1 nonaka
241 1.1 nonaka /* Nothing to do */
242 1.1 nonaka }
243 1.1 nonaka
244 1.1 nonaka /*
245 1.1 nonaka * u_int initarm(...)
246 1.1 nonaka *
247 1.1 nonaka * Initial entry point on startup. This gets called before main() is
248 1.1 nonaka * entered.
249 1.1 nonaka * It should be responsible for setting up everything that must be
250 1.1 nonaka * in place when main is called.
251 1.1 nonaka * This includes
252 1.1 nonaka * Taking a copy of the boot configuration structure.
253 1.1 nonaka * Initialising the physical console so characters can be printed.
254 1.1 nonaka * Setting up page tables for the kernel
255 1.1 nonaka * Relocating the kernel to the bottom of physical memory
256 1.1 nonaka */
257 1.1 nonaka u_int
258 1.1 nonaka initarm(void *arg)
259 1.1 nonaka {
260 1.1 nonaka extern vaddr_t xscale_cache_clean_addr;
261 1.1 nonaka #ifdef DIAGNOSTIC
262 1.1 nonaka extern vsize_t xscale_minidata_clean_size;
263 1.1 nonaka #endif
264 1.1 nonaka int loop;
265 1.1 nonaka int loop1;
266 1.1 nonaka u_int l1pagetable;
267 1.1 nonaka paddr_t memstart;
268 1.1 nonaka psize_t memsize;
269 1.1 nonaka
270 1.1 nonaka /* Calibrate the delay loop. */
271 1.1 nonaka i80321_calibrate_delay();
272 1.1 nonaka i80321_hardclock_hook = hardclock_hook;
273 1.1 nonaka
274 1.1 nonaka /*
275 1.1 nonaka * Since we map the on-board devices VA==PA, and the kernel
276 1.1 nonaka * is running VA==PA, it's possible for us to initialize
277 1.1 nonaka * the console now.
278 1.1 nonaka */
279 1.1 nonaka consinit();
280 1.1 nonaka
281 1.1 nonaka #ifdef VERBOSE_INIT_ARM
282 1.1 nonaka /* Talk to the user */
283 1.4 nonaka printf("\nNetBSD/evbarm (HDL-G) booting ...\n");
284 1.1 nonaka #endif
285 1.1 nonaka
286 1.1 nonaka /*
287 1.1 nonaka * Heads up ... Setup the CPU / MMU / TLB functions
288 1.1 nonaka */
289 1.1 nonaka if (set_cpufuncs())
290 1.1 nonaka panic("CPU not recognized!");
291 1.1 nonaka
292 1.1 nonaka /*
293 1.1 nonaka * We are currently running with the MMU enabled and the
294 1.1 nonaka * entire address space mapped VA==PA, except for the
295 1.1 nonaka * first 64M of RAM is also double-mapped at 0xc0000000.
296 1.1 nonaka * There is an L1 page table at 0xa0004000.
297 1.1 nonaka */
298 1.1 nonaka
299 1.1 nonaka /*
300 1.1 nonaka * Fetch the SDRAM start/size from the i80321 SDRAM configuration
301 1.1 nonaka * registers.
302 1.1 nonaka */
303 1.1 nonaka i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE,
304 1.1 nonaka &memstart, &memsize);
305 1.1 nonaka
306 1.1 nonaka #ifdef VERBOSE_INIT_ARM
307 1.1 nonaka printf("initarm: Configuring system ...\n");
308 1.1 nonaka #endif
309 1.1 nonaka
310 1.1 nonaka /* Fake bootconfig structure for the benefit of pmap.c */
311 1.3 wiz /* XXX must make the memory description h/w independent */
312 1.1 nonaka bootconfig.dramblocks = 1;
313 1.1 nonaka bootconfig.dram[0].address = memstart;
314 1.1 nonaka bootconfig.dram[0].pages = memsize / PAGE_SIZE;
315 1.1 nonaka
316 1.1 nonaka /*
317 1.1 nonaka * Set up the variables that define the availablilty of
318 1.1 nonaka * physical memory. For now, we're going to set
319 1.1 nonaka * physical_freestart to 0xa0200000 (where the kernel
320 1.1 nonaka * was loaded), and allocate the memory we need downwards.
321 1.1 nonaka * If we get too close to the L1 table that we set up, we
322 1.1 nonaka * will panic. We will update physical_freestart and
323 1.1 nonaka * physical_freeend later to reflect what pmap_bootstrap()
324 1.1 nonaka * wants to see.
325 1.1 nonaka *
326 1.1 nonaka * XXX pmap_bootstrap() needs an enema.
327 1.1 nonaka */
328 1.1 nonaka physical_start = bootconfig.dram[0].address;
329 1.1 nonaka physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
330 1.1 nonaka
331 1.1 nonaka physical_freestart = 0xa0009000UL;
332 1.1 nonaka physical_freeend = 0xa0200000UL;
333 1.1 nonaka
334 1.1 nonaka physmem = (physical_end - physical_start) / PAGE_SIZE;
335 1.1 nonaka
336 1.1 nonaka #ifdef VERBOSE_INIT_ARM
337 1.1 nonaka /* Tell the user about the memory */
338 1.1 nonaka printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
339 1.1 nonaka physical_start, physical_end - 1);
340 1.1 nonaka #endif
341 1.1 nonaka
342 1.1 nonaka /*
343 1.1 nonaka * Okay, the kernel starts 2MB in from the bottom of physical
344 1.1 nonaka * memory. We are going to allocate our bootstrap pages downwards
345 1.1 nonaka * from there.
346 1.1 nonaka *
347 1.1 nonaka * We need to allocate some fixed page tables to get the kernel
348 1.1 nonaka * going. We allocate one page directory and a number of page
349 1.1 nonaka * tables and store the physical addresses in the kernel_pt_table
350 1.1 nonaka * array.
351 1.1 nonaka *
352 1.1 nonaka * The kernel page directory must be on a 16K boundary. The page
353 1.1 nonaka * tables must be on 4K boundaries. What we do is allocate the
354 1.1 nonaka * page directory on the first 16K boundary that we encounter, and
355 1.1 nonaka * the page tables on 4K boundaries otherwise. Since we allocate
356 1.1 nonaka * at least 3 L2 page tables, we are guaranteed to encounter at
357 1.1 nonaka * least one 16K aligned region.
358 1.1 nonaka */
359 1.1 nonaka
360 1.1 nonaka #ifdef VERBOSE_INIT_ARM
361 1.1 nonaka printf("Allocating page tables\n");
362 1.1 nonaka #endif
363 1.1 nonaka
364 1.1 nonaka free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
365 1.1 nonaka
366 1.1 nonaka #ifdef VERBOSE_INIT_ARM
367 1.1 nonaka printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
368 1.1 nonaka physical_freestart, free_pages, free_pages);
369 1.1 nonaka #endif
370 1.1 nonaka
371 1.1 nonaka /* Define a macro to simplify memory allocation */
372 1.1 nonaka #define valloc_pages(var, np) \
373 1.1 nonaka alloc_pages((var).pv_pa, (np)); \
374 1.1 nonaka (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
375 1.1 nonaka
376 1.1 nonaka #define alloc_pages(var, np) \
377 1.1 nonaka physical_freeend -= ((np) * PAGE_SIZE); \
378 1.1 nonaka if (physical_freeend < physical_freestart) \
379 1.1 nonaka panic("initarm: out of memory"); \
380 1.1 nonaka (var) = physical_freeend; \
381 1.1 nonaka free_pages -= (np); \
382 1.1 nonaka memset((char *)(var), 0, ((np) * PAGE_SIZE));
383 1.1 nonaka
384 1.1 nonaka loop1 = 0;
385 1.1 nonaka for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
386 1.1 nonaka /* Are we 16KB aligned for an L1 ? */
387 1.1 nonaka if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
388 1.1 nonaka && kernel_l1pt.pv_pa == 0) {
389 1.1 nonaka valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
390 1.1 nonaka } else {
391 1.1 nonaka valloc_pages(kernel_pt_table[loop1],
392 1.1 nonaka L2_TABLE_SIZE / PAGE_SIZE);
393 1.1 nonaka ++loop1;
394 1.1 nonaka }
395 1.1 nonaka }
396 1.1 nonaka
397 1.1 nonaka /* This should never be able to happen but better confirm that. */
398 1.1 nonaka if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
399 1.1 nonaka panic("initarm: Failed to align the kernel page directory");
400 1.1 nonaka
401 1.1 nonaka /*
402 1.1 nonaka * Allocate a page for the system page mapped to V0x00000000
403 1.1 nonaka * This page will just contain the system vectors and can be
404 1.1 nonaka * shared by all processes.
405 1.1 nonaka */
406 1.1 nonaka alloc_pages(systempage.pv_pa, 1);
407 1.1 nonaka
408 1.1 nonaka /* Allocate stacks for all modes */
409 1.1 nonaka valloc_pages(irqstack, IRQ_STACK_SIZE);
410 1.1 nonaka valloc_pages(abtstack, ABT_STACK_SIZE);
411 1.1 nonaka valloc_pages(undstack, UND_STACK_SIZE);
412 1.1 nonaka valloc_pages(kernelstack, UPAGES);
413 1.1 nonaka
414 1.1 nonaka /* Allocate enough pages for cleaning the Mini-Data cache. */
415 1.1 nonaka KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
416 1.1 nonaka valloc_pages(minidataclean, 1);
417 1.1 nonaka
418 1.1 nonaka #ifdef VERBOSE_INIT_ARM
419 1.1 nonaka printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
420 1.1 nonaka irqstack.pv_va);
421 1.1 nonaka printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
422 1.1 nonaka abtstack.pv_va);
423 1.1 nonaka printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
424 1.1 nonaka undstack.pv_va);
425 1.1 nonaka printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
426 1.1 nonaka kernelstack.pv_va);
427 1.1 nonaka #endif
428 1.1 nonaka
429 1.1 nonaka /*
430 1.1 nonaka * XXX Defer this to later so that we can reclaim the memory
431 1.1 nonaka * XXX used by the RedBoot page tables.
432 1.1 nonaka */
433 1.1 nonaka alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
434 1.1 nonaka
435 1.1 nonaka /*
436 1.1 nonaka * Ok we have allocated physical pages for the primary kernel
437 1.1 nonaka * page tables
438 1.1 nonaka */
439 1.1 nonaka
440 1.1 nonaka #ifdef VERBOSE_INIT_ARM
441 1.1 nonaka printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
442 1.1 nonaka #endif
443 1.1 nonaka
444 1.1 nonaka /*
445 1.1 nonaka * Now we start construction of the L1 page table
446 1.1 nonaka * We start by mapping the L2 page tables into the L1.
447 1.1 nonaka * This means that we can replace L1 mappings later on if necessary
448 1.1 nonaka */
449 1.1 nonaka l1pagetable = kernel_l1pt.pv_pa;
450 1.1 nonaka
451 1.1 nonaka /* Map the L2 pages tables in the L1 page table */
452 1.1 nonaka pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
453 1.1 nonaka &kernel_pt_table[KERNEL_PT_SYS]);
454 1.1 nonaka for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
455 1.1 nonaka pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
456 1.1 nonaka &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
457 1.1 nonaka pmap_link_l2pt(l1pagetable, HDLG_IOPXS_VBASE,
458 1.1 nonaka &kernel_pt_table[KERNEL_PT_IOPXS]);
459 1.1 nonaka for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
460 1.1 nonaka pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
461 1.1 nonaka &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
462 1.1 nonaka
463 1.1 nonaka /* update the top of the kernel VM */
464 1.1 nonaka pmap_curmaxkvaddr =
465 1.1 nonaka KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
466 1.1 nonaka
467 1.1 nonaka #ifdef VERBOSE_INIT_ARM
468 1.1 nonaka printf("Mapping kernel\n");
469 1.1 nonaka #endif
470 1.1 nonaka
471 1.1 nonaka /* Now we fill in the L2 pagetable for the kernel static code/data */
472 1.1 nonaka {
473 1.1 nonaka extern char etext[], _end[];
474 1.1 nonaka size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
475 1.1 nonaka size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
476 1.1 nonaka u_int logical;
477 1.1 nonaka
478 1.1 nonaka textsize = (textsize + PGOFSET) & ~PGOFSET;
479 1.1 nonaka totalsize = (totalsize + PGOFSET) & ~PGOFSET;
480 1.1 nonaka
481 1.1 nonaka logical = 0x00200000; /* offset of kernel in RAM */
482 1.1 nonaka
483 1.1 nonaka logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
484 1.1 nonaka physical_start + logical, textsize,
485 1.1 nonaka VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
486 1.1 nonaka logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
487 1.1 nonaka physical_start + logical, totalsize - textsize,
488 1.1 nonaka VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
489 1.1 nonaka }
490 1.1 nonaka
491 1.1 nonaka #ifdef VERBOSE_INIT_ARM
492 1.1 nonaka printf("Constructing L2 page tables\n");
493 1.1 nonaka #endif
494 1.1 nonaka
495 1.1 nonaka /* Map the stack pages */
496 1.1 nonaka pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
497 1.1 nonaka IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
498 1.1 nonaka pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
499 1.1 nonaka ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
500 1.1 nonaka pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
501 1.1 nonaka UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
502 1.1 nonaka pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
503 1.1 nonaka UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
504 1.1 nonaka
505 1.1 nonaka pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
506 1.1 nonaka L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
507 1.1 nonaka
508 1.1 nonaka for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
509 1.1 nonaka pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
510 1.1 nonaka kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
511 1.1 nonaka VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
512 1.1 nonaka }
513 1.1 nonaka
514 1.1 nonaka /* Map the Mini-Data cache clean area. */
515 1.1 nonaka xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
516 1.1 nonaka minidataclean.pv_pa);
517 1.1 nonaka
518 1.1 nonaka /* Map the vector page. */
519 1.1 nonaka pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
520 1.1 nonaka VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
521 1.1 nonaka
522 1.1 nonaka /* Map the statically mapped devices. */
523 1.1 nonaka pmap_devmap_bootstrap(l1pagetable, hdlg_devmap);
524 1.1 nonaka
525 1.1 nonaka /*
526 1.1 nonaka * Give the XScale global cache clean code an appropriately
527 1.1 nonaka * sized chunk of unmapped VA space starting at 0xff000000
528 1.1 nonaka * (our device mappings end before this address).
529 1.1 nonaka */
530 1.1 nonaka xscale_cache_clean_addr = 0xff000000U;
531 1.1 nonaka
532 1.1 nonaka /*
533 1.1 nonaka * Now we have the real page tables in place so we can switch to them.
534 1.1 nonaka * Once this is done we will be running with the REAL kernel page
535 1.1 nonaka * tables.
536 1.1 nonaka */
537 1.1 nonaka
538 1.1 nonaka /*
539 1.1 nonaka * Update the physical_freestart/physical_freeend/free_pages
540 1.1 nonaka * variables.
541 1.1 nonaka */
542 1.1 nonaka {
543 1.1 nonaka extern char _end[];
544 1.1 nonaka
545 1.1 nonaka physical_freestart = physical_start +
546 1.1 nonaka (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
547 1.1 nonaka KERNEL_BASE);
548 1.1 nonaka physical_freeend = physical_end;
549 1.1 nonaka free_pages =
550 1.1 nonaka (physical_freeend - physical_freestart) / PAGE_SIZE;
551 1.1 nonaka }
552 1.1 nonaka
553 1.1 nonaka /* Switch tables */
554 1.1 nonaka #ifdef VERBOSE_INIT_ARM
555 1.1 nonaka printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
556 1.1 nonaka physical_freestart, free_pages, free_pages);
557 1.1 nonaka printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
558 1.1 nonaka #endif
559 1.1 nonaka cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
560 1.1 nonaka setttb(kernel_l1pt.pv_pa);
561 1.1 nonaka cpu_tlb_flushID();
562 1.1 nonaka cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
563 1.1 nonaka
564 1.1 nonaka /*
565 1.1 nonaka * Moved from cpu_startup() as data_abort_handler() references
566 1.1 nonaka * this during uvm init
567 1.1 nonaka */
568 1.1 nonaka proc0paddr = (struct user *)kernelstack.pv_va;
569 1.1 nonaka lwp0.l_addr = proc0paddr;
570 1.1 nonaka
571 1.1 nonaka #ifdef VERBOSE_INIT_ARM
572 1.1 nonaka printf("done!\n");
573 1.1 nonaka #endif
574 1.1 nonaka
575 1.1 nonaka #ifdef VERBOSE_INIT_ARM
576 1.1 nonaka printf("bootstrap done.\n");
577 1.1 nonaka #endif
578 1.1 nonaka
579 1.1 nonaka arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
580 1.1 nonaka
581 1.1 nonaka /*
582 1.1 nonaka * Pages were allocated during the secondary bootstrap for the
583 1.1 nonaka * stacks for different CPU modes.
584 1.1 nonaka * We must now set the r13 registers in the different CPU modes to
585 1.1 nonaka * point to these stacks.
586 1.1 nonaka * Since the ARM stacks use STMFD etc. we must set r13 to the top end
587 1.1 nonaka * of the stack memory.
588 1.1 nonaka */
589 1.1 nonaka #ifdef VERBOSE_INIT_ARM
590 1.1 nonaka printf("init subsystems: stacks ");
591 1.1 nonaka #endif
592 1.1 nonaka
593 1.1 nonaka set_stackptr(PSR_IRQ32_MODE,
594 1.1 nonaka irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
595 1.1 nonaka set_stackptr(PSR_ABT32_MODE,
596 1.1 nonaka abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
597 1.1 nonaka set_stackptr(PSR_UND32_MODE,
598 1.1 nonaka undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
599 1.1 nonaka
600 1.1 nonaka /*
601 1.1 nonaka * Well we should set a data abort handler.
602 1.1 nonaka * Once things get going this will change as we will need a proper
603 1.1 nonaka * handler.
604 1.1 nonaka * Until then we will use a handler that just panics but tells us
605 1.1 nonaka * why.
606 1.1 nonaka * Initialisation of the vectors will just panic on a data abort.
607 1.1 nonaka * This just fills in a slightly better one.
608 1.1 nonaka */
609 1.1 nonaka #ifdef VERBOSE_INIT_ARM
610 1.1 nonaka printf("vectors ");
611 1.1 nonaka #endif
612 1.1 nonaka data_abort_handler_address = (u_int)data_abort_handler;
613 1.1 nonaka prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
614 1.1 nonaka undefined_handler_address = (u_int)undefinedinstruction_bounce;
615 1.1 nonaka
616 1.1 nonaka /* Initialise the undefined instruction handlers */
617 1.1 nonaka #ifdef VERBOSE_INIT_ARM
618 1.1 nonaka printf("undefined ");
619 1.1 nonaka #endif
620 1.1 nonaka undefined_init();
621 1.1 nonaka
622 1.1 nonaka /* Load memory into UVM. */
623 1.1 nonaka #ifdef VERBOSE_INIT_ARM
624 1.1 nonaka printf("page ");
625 1.1 nonaka #endif
626 1.1 nonaka uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
627 1.1 nonaka uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
628 1.1 nonaka atop(physical_freestart), atop(physical_freeend),
629 1.1 nonaka VM_FREELIST_DEFAULT);
630 1.1 nonaka
631 1.1 nonaka /* Boot strap pmap telling it where the kernel page table is */
632 1.1 nonaka #ifdef VERBOSE_INIT_ARM
633 1.1 nonaka printf("pmap ");
634 1.1 nonaka #endif
635 1.5.10.1 yamt pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
636 1.1 nonaka
637 1.1 nonaka /* Setup the IRQ system */
638 1.1 nonaka #ifdef VERBOSE_INIT_ARM
639 1.1 nonaka printf("irq ");
640 1.1 nonaka #endif
641 1.1 nonaka i80321_intr_init();
642 1.1 nonaka
643 1.1 nonaka #ifdef VERBOSE_INIT_ARM
644 1.1 nonaka printf("done.\n");
645 1.1 nonaka #endif
646 1.1 nonaka
647 1.1 nonaka #ifdef BOOTHOWTO
648 1.1 nonaka boothowto = BOOTHOWTO;
649 1.1 nonaka #endif
650 1.1 nonaka
651 1.1 nonaka #ifdef DDB
652 1.1 nonaka db_machine_init();
653 1.1 nonaka if (boothowto & RB_KDB)
654 1.1 nonaka Debugger();
655 1.1 nonaka #endif
656 1.1 nonaka
657 1.1 nonaka /* We return the new stack pointer address */
658 1.1 nonaka return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
659 1.1 nonaka }
660 1.1 nonaka
661 1.1 nonaka /*
662 1.1 nonaka * void cpu_reboot(int howto, char *bootstr)
663 1.1 nonaka *
664 1.1 nonaka * Reboots the system
665 1.1 nonaka *
666 1.1 nonaka * Deal with any syncing, unmounting, dumping and shutdown hooks,
667 1.1 nonaka * then reset the CPU.
668 1.1 nonaka */
669 1.1 nonaka void
670 1.1 nonaka cpu_reboot(int howto, char *bootstr)
671 1.1 nonaka {
672 1.1 nonaka
673 1.1 nonaka /*
674 1.1 nonaka * If we are still cold then hit the air brakes
675 1.1 nonaka * and crash to earth fast
676 1.1 nonaka */
677 1.1 nonaka if (cold) {
678 1.1 nonaka *(volatile uint8_t *)HDLG_LEDCTRL |= LEDCTRL_STAT_RED;
679 1.1 nonaka howto |= RB_HALT;
680 1.1 nonaka goto haltsys;
681 1.1 nonaka }
682 1.1 nonaka
683 1.1 nonaka /* Disable console buffering */
684 1.1 nonaka
685 1.1 nonaka /*
686 1.1 nonaka * If RB_NOSYNC was not specified sync the discs.
687 1.1 nonaka * Note: Unless cold is set to 1 here, syslogd will die during the
688 1.1 nonaka * unmount. It looks like syslogd is getting woken up only to find
689 1.1 nonaka * that it cannot page part of the binary in as the filesystem has
690 1.1 nonaka * been unmounted.
691 1.1 nonaka */
692 1.1 nonaka if ((howto & RB_NOSYNC) == 0) {
693 1.1 nonaka bootsync();
694 1.1 nonaka /*resettodr();*/
695 1.1 nonaka }
696 1.1 nonaka
697 1.1 nonaka /* wait 1s */
698 1.1 nonaka delay(1 * 1000 * 1000);
699 1.1 nonaka
700 1.1 nonaka /* Say NO to interrupts */
701 1.1 nonaka splhigh();
702 1.1 nonaka
703 1.1 nonaka /* Do a dump if requested. */
704 1.1 nonaka if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
705 1.1 nonaka dumpsys();
706 1.1 nonaka }
707 1.1 nonaka
708 1.1 nonaka haltsys:
709 1.1 nonaka /* Run any shutdown hooks */
710 1.1 nonaka doshutdownhooks();
711 1.1 nonaka
712 1.5.10.2 yamt pmf_system_shutdown(boothowto);
713 1.5.10.2 yamt
714 1.1 nonaka /* Make sure IRQ's are disabled */
715 1.1 nonaka IRQdisable;
716 1.1 nonaka
717 1.1 nonaka if (howto & RB_HALT) {
718 1.1 nonaka *(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_POWOFF;
719 1.1 nonaka delay(3 * 1000 * 1000); /* wait 3s */
720 1.1 nonaka
721 1.1 nonaka printf("SHUTDOWN FAILED!\n");
722 1.1 nonaka printf("The operating system has halted.\n");
723 1.1 nonaka printf("Please press any key to reboot.\n\n");
724 1.1 nonaka cngetc();
725 1.1 nonaka }
726 1.1 nonaka
727 1.1 nonaka printf("rebooting...\n\r");
728 1.1 nonaka
729 1.1 nonaka (void)disable_interrupts(I32_bit|F32_bit);
730 1.1 nonaka cpu_idcache_wbinv_all();
731 1.1 nonaka cpu_drain_writebuf();
732 1.1 nonaka
733 1.1 nonaka *(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_RESET;
734 1.1 nonaka delay(1 * 1000 * 1000); /* wait 1s */
735 1.1 nonaka
736 1.1 nonaka /* ...and if that didn't work, just croak. */
737 1.1 nonaka printf("RESET FAILED!\n");
738 1.1 nonaka for (;;) {
739 1.1 nonaka continue;
740 1.1 nonaka }
741 1.1 nonaka }
742 1.1 nonaka
743 1.1 nonaka /*
744 1.1 nonaka * console
745 1.1 nonaka */
746 1.1 nonaka #include "com.h"
747 1.1 nonaka #if NCOM > 0
748 1.1 nonaka #include <dev/ic/comreg.h>
749 1.1 nonaka #include <dev/ic/comvar.h>
750 1.1 nonaka #endif
751 1.1 nonaka
752 1.1 nonaka /*
753 1.1 nonaka * Define the default console speed for the board. This is generally
754 1.1 nonaka * what the firmware provided with the board defaults to.
755 1.1 nonaka */
756 1.1 nonaka #ifndef CONSPEED
757 1.1 nonaka #define CONSPEED B115200
758 1.1 nonaka #endif /* ! CONSPEED */
759 1.1 nonaka
760 1.1 nonaka #ifndef CONUNIT
761 1.1 nonaka #define CONUNIT 0
762 1.1 nonaka #endif
763 1.1 nonaka
764 1.1 nonaka #ifndef CONMODE
765 1.1 nonaka #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
766 1.1 nonaka #endif
767 1.1 nonaka
768 1.1 nonaka int comcnspeed = CONSPEED;
769 1.1 nonaka int comcnmode = CONMODE;
770 1.1 nonaka int comcnunit = CONUNIT;
771 1.1 nonaka
772 1.1 nonaka #if KGDB
773 1.1 nonaka #ifndef KGDB_DEVNAME
774 1.1 nonaka #error Must define KGDB_DEVNAME
775 1.1 nonaka #endif
776 1.1 nonaka const char kgdb_devname[] = KGDB_DEVNAME;
777 1.1 nonaka
778 1.1 nonaka #ifndef KGDB_DEVADDR
779 1.1 nonaka #error Must define KGDB_DEVADDR
780 1.1 nonaka #endif
781 1.1 nonaka unsigned long kgdb_devaddr = KGDB_DEVADDR;
782 1.1 nonaka
783 1.1 nonaka #ifndef KGDB_DEVRATE
784 1.1 nonaka #define KGDB_DEVRATE CONSPEED
785 1.1 nonaka #endif
786 1.1 nonaka int kgdb_devrate = KGDB_DEVRATE;
787 1.1 nonaka
788 1.1 nonaka #ifndef KGDB_DEVMODE
789 1.1 nonaka #define KGDB_DEVMODE CONMODE
790 1.1 nonaka #endif
791 1.1 nonaka int kgdb_devmode = KGDB_DEVMODE;
792 1.1 nonaka #endif /* KGDB */
793 1.1 nonaka
794 1.1 nonaka void
795 1.1 nonaka consinit(void)
796 1.1 nonaka {
797 1.1 nonaka static const bus_addr_t comcnaddrs[] = {
798 1.1 nonaka HDLG_UART1, /* com0 */
799 1.1 nonaka };
800 1.1 nonaka static int consinit_called;
801 1.1 nonaka
802 1.1 nonaka if (consinit_called)
803 1.1 nonaka return;
804 1.1 nonaka consinit_called = 1;
805 1.1 nonaka
806 1.1 nonaka /*
807 1.1 nonaka * Console devices are mapped VA==PA. Our devmap reflects
808 1.1 nonaka * this, so register it now so drivers can map the console
809 1.1 nonaka * device.
810 1.1 nonaka */
811 1.1 nonaka pmap_devmap_register(hdlg_devmap);
812 1.1 nonaka
813 1.1 nonaka #if NCOM > 0
814 1.1 nonaka if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
815 1.1 nonaka COM_FREQ, COM_TYPE_NORMAL, comcnmode))
816 1.1 nonaka panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
817 1.1 nonaka #else
818 1.1 nonaka panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
819 1.1 nonaka #endif
820 1.1 nonaka #if KGDB
821 1.1 nonaka #if NCOM > 0
822 1.1 nonaka if (strcmp(kgdb_devname, "com") == 0) {
823 1.1 nonaka com_kgdb_attach(&obio_bs_tag, kgdb_devaddr, kgdb_devrate,
824 1.1 nonaka COM_FREQ, COM_TYPE_NORMAL, kgdb_devmode);
825 1.1 nonaka }
826 1.1 nonaka #endif /* NCOM > 0 */
827 1.1 nonaka #endif /* KGDB */
828 1.1 nonaka }
829