Home | History | Annotate | Line # | Download | only in hdl_g
hdlg_machdep.c revision 1.5.6.2
      1  1.5.6.1     mjf /*	$NetBSD: hdlg_machdep.c,v 1.5.6.2 2009/01/17 13:27:58 mjf Exp $	*/
      2      1.1  nonaka 
      3      1.1  nonaka /*
      4      1.1  nonaka  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
      5      1.1  nonaka  * All rights reserved.
      6      1.1  nonaka  *
      7      1.1  nonaka  * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
      8      1.1  nonaka  *
      9      1.1  nonaka  * Redistribution and use in source and binary forms, with or without
     10      1.1  nonaka  * modification, are permitted provided that the following conditions
     11      1.1  nonaka  * are met:
     12      1.1  nonaka  * 1. Redistributions of source code must retain the above copyright
     13      1.1  nonaka  *    notice, this list of conditions and the following disclaimer.
     14      1.1  nonaka  * 2. Redistributions in binary form must reproduce the above copyright
     15      1.1  nonaka  *    notice, this list of conditions and the following disclaimer in the
     16      1.1  nonaka  *    documentation and/or other materials provided with the distribution.
     17      1.1  nonaka  * 3. All advertising materials mentioning features or use of this software
     18      1.1  nonaka  *    must display the following acknowledgement:
     19      1.1  nonaka  *	This product includes software developed for the NetBSD Project by
     20      1.1  nonaka  *	Wasabi Systems, Inc.
     21      1.1  nonaka  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22      1.1  nonaka  *    or promote products derived from this software without specific prior
     23      1.1  nonaka  *    written permission.
     24      1.1  nonaka  *
     25      1.1  nonaka  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26      1.1  nonaka  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27      1.1  nonaka  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28      1.1  nonaka  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29      1.1  nonaka  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30      1.1  nonaka  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31      1.1  nonaka  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32      1.1  nonaka  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33      1.1  nonaka  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34      1.1  nonaka  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35      1.1  nonaka  * POSSIBILITY OF SUCH DAMAGE.
     36      1.1  nonaka  */
     37      1.1  nonaka 
     38      1.1  nonaka /*
     39      1.1  nonaka  * Copyright (c) 1997,1998 Mark Brinicombe.
     40      1.1  nonaka  * Copyright (c) 1997,1998 Causality Limited.
     41      1.1  nonaka  * All rights reserved.
     42      1.1  nonaka  *
     43      1.1  nonaka  * Redistribution and use in source and binary forms, with or without
     44      1.1  nonaka  * modification, are permitted provided that the following conditions
     45      1.1  nonaka  * are met:
     46      1.1  nonaka  * 1. Redistributions of source code must retain the above copyright
     47      1.1  nonaka  *    notice, this list of conditions and the following disclaimer.
     48      1.1  nonaka  * 2. Redistributions in binary form must reproduce the above copyright
     49      1.1  nonaka  *    notice, this list of conditions and the following disclaimer in the
     50      1.1  nonaka  *    documentation and/or other materials provided with the distribution.
     51      1.1  nonaka  * 3. All advertising materials mentioning features or use of this software
     52      1.1  nonaka  *    must display the following acknowledgement:
     53      1.1  nonaka  *	This product includes software developed by Mark Brinicombe
     54      1.1  nonaka  *	for the NetBSD Project.
     55      1.1  nonaka  * 4. The name of the company nor the name of the author may be used to
     56      1.1  nonaka  *    endorse or promote products derived from this software without specific
     57      1.1  nonaka  *    prior written permission.
     58      1.1  nonaka  *
     59      1.1  nonaka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60      1.1  nonaka  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61      1.1  nonaka  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62      1.1  nonaka  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63      1.1  nonaka  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64      1.1  nonaka  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65      1.1  nonaka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66      1.1  nonaka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67      1.1  nonaka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68      1.1  nonaka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69      1.1  nonaka  * SUCH DAMAGE.
     70      1.1  nonaka  *
     71      1.1  nonaka  * Machine dependant functions for kernel setup for GigaLANDISK
     72      1.1  nonaka  * using RedBoot firmware.
     73      1.1  nonaka  */
     74      1.1  nonaka 
     75      1.1  nonaka #include <sys/cdefs.h>
     76  1.5.6.1     mjf __KERNEL_RCSID(0, "$NetBSD: hdlg_machdep.c,v 1.5.6.2 2009/01/17 13:27:58 mjf Exp $");
     77      1.1  nonaka 
     78      1.1  nonaka #include "opt_ddb.h"
     79      1.1  nonaka #include "opt_kgdb.h"
     80      1.1  nonaka #include "opt_pmap_debug.h"
     81      1.1  nonaka 
     82      1.1  nonaka #include <sys/param.h>
     83      1.1  nonaka #include <sys/device.h>
     84      1.1  nonaka #include <sys/systm.h>
     85      1.1  nonaka #include <sys/kernel.h>
     86      1.1  nonaka #include <sys/exec.h>
     87      1.1  nonaka #include <sys/proc.h>
     88      1.1  nonaka #include <sys/msgbuf.h>
     89      1.1  nonaka #include <sys/reboot.h>
     90      1.1  nonaka #include <sys/termios.h>
     91      1.1  nonaka #include <sys/ksyms.h>
     92      1.1  nonaka 
     93      1.1  nonaka #include <uvm/uvm_extern.h>
     94      1.1  nonaka 
     95      1.1  nonaka #include <dev/cons.h>
     96      1.1  nonaka 
     97      1.1  nonaka #include <machine/db_machdep.h>
     98      1.1  nonaka #include <ddb/db_sym.h>
     99      1.1  nonaka #include <ddb/db_extern.h>
    100      1.1  nonaka 
    101      1.1  nonaka #include <machine/bootconfig.h>
    102      1.1  nonaka #include <machine/bus.h>
    103      1.1  nonaka #include <machine/cpu.h>
    104      1.1  nonaka #include <machine/frame.h>
    105      1.1  nonaka #include <arm/undefined.h>
    106      1.1  nonaka 
    107      1.1  nonaka #include <arm/arm32/machdep.h>
    108      1.1  nonaka 
    109      1.1  nonaka #include <arm/xscale/i80321reg.h>
    110      1.1  nonaka #include <arm/xscale/i80321var.h>
    111      1.1  nonaka 
    112      1.1  nonaka #include <dev/pci/ppbreg.h>
    113      1.1  nonaka 
    114      1.1  nonaka #include <evbarm/hdl_g/hdlgreg.h>
    115      1.1  nonaka #include <evbarm/hdl_g/hdlgvar.h>
    116      1.1  nonaka #include <evbarm/hdl_g/obiovar.h>
    117      1.1  nonaka 
    118      1.1  nonaka #include "ksyms.h"
    119      1.1  nonaka 
    120      1.1  nonaka /* Kernel text starts 2MB in from the bottom of the kernel address space. */
    121      1.1  nonaka #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
    122      1.1  nonaka #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    123      1.1  nonaka 
    124      1.1  nonaka /*
    125      1.1  nonaka  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
    126      1.1  nonaka  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
    127      1.1  nonaka  */
    128      1.1  nonaka #define KERNEL_VM_SIZE		0x0C000000
    129      1.1  nonaka 
    130      1.1  nonaka /*
    131      1.1  nonaka  * Address to call from cpu_reset() to reset the machine.
    132      1.1  nonaka  * This is machine architecture dependant as it varies depending
    133      1.1  nonaka  * on where the ROM appears when you turn the MMU off.
    134      1.1  nonaka  *
    135      1.1  nonaka  * XXX Not actually used on hdlg -- clean up the generic
    136      1.1  nonaka  * ARM code.
    137      1.1  nonaka  */
    138      1.1  nonaka u_int cpu_reset_address = 0x00000000;
    139      1.1  nonaka 
    140      1.1  nonaka /* Define various stack sizes in pages */
    141      1.1  nonaka #define IRQ_STACK_SIZE	1
    142      1.1  nonaka #define ABT_STACK_SIZE	1
    143      1.1  nonaka #define UND_STACK_SIZE	1
    144      1.1  nonaka 
    145      1.1  nonaka BootConfig bootconfig;		/* Boot config storage */
    146      1.1  nonaka char *boot_args = NULL;
    147      1.1  nonaka char *boot_file = NULL;
    148      1.1  nonaka 
    149      1.1  nonaka vm_offset_t physical_start;
    150      1.1  nonaka vm_offset_t physical_freestart;
    151      1.1  nonaka vm_offset_t physical_freeend;
    152      1.1  nonaka vm_offset_t physical_end;
    153      1.1  nonaka u_int free_pages;
    154      1.1  nonaka vm_offset_t pagetables_start;
    155      1.1  nonaka int physmem = 0;
    156      1.1  nonaka 
    157      1.1  nonaka /*int debug_flags;*/
    158      1.1  nonaka #ifndef PMAP_STATIC_L1S
    159      1.1  nonaka int max_processes = 64;			/* Default number */
    160      1.1  nonaka #endif	/* !PMAP_STATIC_L1S */
    161      1.1  nonaka 
    162      1.1  nonaka /* Physical and virtual addresses for some global pages */
    163      1.1  nonaka pv_addr_t irqstack;
    164      1.1  nonaka pv_addr_t undstack;
    165      1.1  nonaka pv_addr_t abtstack;
    166      1.1  nonaka pv_addr_t kernelstack;
    167      1.1  nonaka pv_addr_t minidataclean;
    168      1.1  nonaka 
    169      1.1  nonaka vm_offset_t msgbufphys;
    170      1.1  nonaka 
    171      1.1  nonaka extern u_int data_abort_handler_address;
    172      1.1  nonaka extern u_int prefetch_abort_handler_address;
    173      1.1  nonaka extern u_int undefined_handler_address;
    174      1.1  nonaka 
    175      1.1  nonaka #ifdef PMAP_DEBUG
    176      1.1  nonaka extern int pmap_debug_level;
    177      1.1  nonaka #endif
    178      1.1  nonaka 
    179      1.1  nonaka #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
    180      1.1  nonaka 
    181      1.1  nonaka #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
    182      1.1  nonaka #define	KERNEL_PT_KERNEL_NUM	4
    183      1.1  nonaka 
    184      1.1  nonaka 					/* L2 table for mapping i80321 */
    185      1.1  nonaka #define	KERNEL_PT_IOPXS		(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
    186      1.1  nonaka 
    187      1.1  nonaka 					/* L2 tables for mapping kernel VM */
    188      1.1  nonaka #define KERNEL_PT_VMDATA	(KERNEL_PT_IOPXS + 1)
    189      1.1  nonaka #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    190      1.1  nonaka #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    191      1.1  nonaka 
    192      1.1  nonaka pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    193      1.1  nonaka 
    194      1.1  nonaka struct user *proc0paddr;
    195      1.1  nonaka 
    196      1.1  nonaka /* Prototypes */
    197      1.1  nonaka void consinit(void);
    198      1.1  nonaka 
    199      1.1  nonaka /* Static device mappings. */
    200      1.1  nonaka static const struct pmap_devmap hdlg_devmap[] = {
    201      1.1  nonaka     /*
    202      1.1  nonaka      * Map the on-board devices VA == PA so that we can access them
    203      1.1  nonaka      * with the MMU on or off.
    204      1.1  nonaka      */
    205      1.1  nonaka     {
    206      1.1  nonaka 	HDLG_OBIO_BASE,
    207      1.1  nonaka 	HDLG_OBIO_BASE,
    208      1.1  nonaka 	HDLG_OBIO_SIZE,
    209      1.1  nonaka 	VM_PROT_READ|VM_PROT_WRITE,
    210      1.1  nonaka 	PTE_NOCACHE,
    211      1.1  nonaka     },
    212      1.1  nonaka 
    213      1.1  nonaka     {
    214      1.1  nonaka 	HDLG_IOW_VBASE,
    215      1.1  nonaka 	VERDE_OUT_XLATE_IO_WIN0_BASE,
    216      1.1  nonaka 	VERDE_OUT_XLATE_IO_WIN_SIZE,
    217      1.1  nonaka 	VM_PROT_READ|VM_PROT_WRITE,
    218      1.1  nonaka 	PTE_NOCACHE,
    219      1.1  nonaka    },
    220      1.1  nonaka 
    221      1.1  nonaka    {
    222      1.1  nonaka 	HDLG_80321_VBASE,
    223      1.1  nonaka 	VERDE_PMMR_BASE,
    224      1.1  nonaka 	VERDE_PMMR_SIZE,
    225      1.1  nonaka 	VM_PROT_READ|VM_PROT_WRITE,
    226      1.1  nonaka 	PTE_NOCACHE,
    227      1.1  nonaka    },
    228      1.1  nonaka 
    229      1.1  nonaka    {
    230      1.1  nonaka 	0,
    231      1.1  nonaka 	0,
    232      1.1  nonaka 	0,
    233      1.1  nonaka 	0,
    234      1.1  nonaka 	0,
    235      1.1  nonaka     }
    236      1.1  nonaka };
    237      1.1  nonaka 
    238      1.1  nonaka static void
    239      1.1  nonaka hardclock_hook(void)
    240      1.1  nonaka {
    241      1.1  nonaka 
    242      1.1  nonaka 	/* Nothing to do */
    243      1.1  nonaka }
    244      1.1  nonaka 
    245      1.1  nonaka /*
    246      1.1  nonaka  * u_int initarm(...)
    247      1.1  nonaka  *
    248      1.1  nonaka  * Initial entry point on startup. This gets called before main() is
    249      1.1  nonaka  * entered.
    250      1.1  nonaka  * It should be responsible for setting up everything that must be
    251      1.1  nonaka  * in place when main is called.
    252      1.1  nonaka  * This includes
    253      1.1  nonaka  *   Taking a copy of the boot configuration structure.
    254      1.1  nonaka  *   Initialising the physical console so characters can be printed.
    255      1.1  nonaka  *   Setting up page tables for the kernel
    256      1.1  nonaka  *   Relocating the kernel to the bottom of physical memory
    257      1.1  nonaka  */
    258      1.1  nonaka u_int
    259      1.1  nonaka initarm(void *arg)
    260      1.1  nonaka {
    261      1.1  nonaka 	extern vaddr_t xscale_cache_clean_addr;
    262      1.1  nonaka #ifdef DIAGNOSTIC
    263      1.1  nonaka 	extern vsize_t xscale_minidata_clean_size;
    264      1.1  nonaka #endif
    265      1.1  nonaka 	int loop;
    266      1.1  nonaka 	int loop1;
    267      1.1  nonaka 	u_int l1pagetable;
    268      1.1  nonaka 	paddr_t memstart;
    269      1.1  nonaka 	psize_t memsize;
    270      1.1  nonaka 
    271      1.1  nonaka 	/* Calibrate the delay loop. */
    272      1.1  nonaka 	i80321_calibrate_delay();
    273      1.1  nonaka 	i80321_hardclock_hook = hardclock_hook;
    274      1.1  nonaka 
    275      1.1  nonaka 	/*
    276      1.1  nonaka 	 * Since we map the on-board devices VA==PA, and the kernel
    277      1.1  nonaka 	 * is running VA==PA, it's possible for us to initialize
    278      1.1  nonaka 	 * the console now.
    279      1.1  nonaka 	 */
    280      1.1  nonaka 	consinit();
    281      1.1  nonaka 
    282      1.1  nonaka #ifdef VERBOSE_INIT_ARM
    283      1.1  nonaka 	/* Talk to the user */
    284      1.4  nonaka 	printf("\nNetBSD/evbarm (HDL-G) booting ...\n");
    285      1.1  nonaka #endif
    286      1.1  nonaka 
    287      1.1  nonaka 	/*
    288      1.1  nonaka 	 * Heads up ... Setup the CPU / MMU / TLB functions
    289      1.1  nonaka 	 */
    290      1.1  nonaka 	if (set_cpufuncs())
    291      1.1  nonaka 		panic("CPU not recognized!");
    292      1.1  nonaka 
    293      1.1  nonaka 	/*
    294      1.1  nonaka 	 * We are currently running with the MMU enabled and the
    295      1.1  nonaka 	 * entire address space mapped VA==PA, except for the
    296      1.1  nonaka 	 * first 64M of RAM is also double-mapped at 0xc0000000.
    297      1.1  nonaka 	 * There is an L1 page table at 0xa0004000.
    298      1.1  nonaka 	 */
    299      1.1  nonaka 
    300      1.1  nonaka 	/*
    301      1.1  nonaka 	 * Fetch the SDRAM start/size from the i80321 SDRAM configuration
    302      1.1  nonaka 	 * registers.
    303      1.1  nonaka 	 */
    304      1.1  nonaka 	i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE,
    305      1.1  nonaka 	    &memstart, &memsize);
    306      1.1  nonaka 
    307      1.1  nonaka #ifdef VERBOSE_INIT_ARM
    308      1.1  nonaka 	printf("initarm: Configuring system ...\n");
    309      1.1  nonaka #endif
    310      1.1  nonaka 
    311      1.1  nonaka 	/* Fake bootconfig structure for the benefit of pmap.c */
    312      1.3     wiz 	/* XXX must make the memory description h/w independent */
    313      1.1  nonaka 	bootconfig.dramblocks = 1;
    314      1.1  nonaka 	bootconfig.dram[0].address = memstart;
    315      1.1  nonaka 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    316      1.1  nonaka 
    317      1.1  nonaka 	/*
    318      1.1  nonaka 	 * Set up the variables that define the availablilty of
    319      1.1  nonaka 	 * physical memory.  For now, we're going to set
    320      1.1  nonaka 	 * physical_freestart to 0xa0200000 (where the kernel
    321      1.1  nonaka 	 * was loaded), and allocate the memory we need downwards.
    322      1.1  nonaka 	 * If we get too close to the L1 table that we set up, we
    323      1.1  nonaka 	 * will panic.  We will update physical_freestart and
    324      1.1  nonaka 	 * physical_freeend later to reflect what pmap_bootstrap()
    325      1.1  nonaka 	 * wants to see.
    326      1.1  nonaka 	 *
    327      1.1  nonaka 	 * XXX pmap_bootstrap() needs an enema.
    328      1.1  nonaka 	 */
    329      1.1  nonaka 	physical_start = bootconfig.dram[0].address;
    330      1.1  nonaka 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
    331      1.1  nonaka 
    332      1.1  nonaka 	physical_freestart = 0xa0009000UL;
    333      1.1  nonaka 	physical_freeend = 0xa0200000UL;
    334      1.1  nonaka 
    335      1.1  nonaka 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    336      1.1  nonaka 
    337      1.1  nonaka #ifdef VERBOSE_INIT_ARM
    338      1.1  nonaka 	/* Tell the user about the memory */
    339      1.1  nonaka 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    340      1.1  nonaka 	    physical_start, physical_end - 1);
    341      1.1  nonaka #endif
    342      1.1  nonaka 
    343      1.1  nonaka 	/*
    344      1.1  nonaka 	 * Okay, the kernel starts 2MB in from the bottom of physical
    345      1.1  nonaka 	 * memory.  We are going to allocate our bootstrap pages downwards
    346      1.1  nonaka 	 * from there.
    347      1.1  nonaka 	 *
    348      1.1  nonaka 	 * We need to allocate some fixed page tables to get the kernel
    349      1.1  nonaka 	 * going.  We allocate one page directory and a number of page
    350      1.1  nonaka 	 * tables and store the physical addresses in the kernel_pt_table
    351      1.1  nonaka 	 * array.
    352      1.1  nonaka 	 *
    353      1.1  nonaka 	 * The kernel page directory must be on a 16K boundary.  The page
    354      1.1  nonaka 	 * tables must be on 4K boundaries.  What we do is allocate the
    355      1.1  nonaka 	 * page directory on the first 16K boundary that we encounter, and
    356      1.1  nonaka 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    357      1.1  nonaka 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    358      1.1  nonaka 	 * least one 16K aligned region.
    359      1.1  nonaka 	 */
    360      1.1  nonaka 
    361      1.1  nonaka #ifdef VERBOSE_INIT_ARM
    362      1.1  nonaka 	printf("Allocating page tables\n");
    363      1.1  nonaka #endif
    364      1.1  nonaka 
    365      1.1  nonaka 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    366      1.1  nonaka 
    367      1.1  nonaka #ifdef VERBOSE_INIT_ARM
    368      1.1  nonaka 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    369      1.1  nonaka 	       physical_freestart, free_pages, free_pages);
    370      1.1  nonaka #endif
    371      1.1  nonaka 
    372      1.1  nonaka 	/* Define a macro to simplify memory allocation */
    373      1.1  nonaka #define	valloc_pages(var, np)				\
    374      1.1  nonaka 	alloc_pages((var).pv_pa, (np));			\
    375      1.1  nonaka 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    376      1.1  nonaka 
    377      1.1  nonaka #define alloc_pages(var, np)				\
    378      1.1  nonaka 	physical_freeend -= ((np) * PAGE_SIZE);		\
    379      1.1  nonaka 	if (physical_freeend < physical_freestart)	\
    380      1.1  nonaka 		panic("initarm: out of memory");	\
    381      1.1  nonaka 	(var) = physical_freeend;			\
    382      1.1  nonaka 	free_pages -= (np);				\
    383      1.1  nonaka 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    384      1.1  nonaka 
    385      1.1  nonaka 	loop1 = 0;
    386      1.1  nonaka 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    387      1.1  nonaka 		/* Are we 16KB aligned for an L1 ? */
    388      1.1  nonaka 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
    389      1.1  nonaka 		    && kernel_l1pt.pv_pa == 0) {
    390      1.1  nonaka 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    391      1.1  nonaka 		} else {
    392      1.1  nonaka 			valloc_pages(kernel_pt_table[loop1],
    393      1.1  nonaka 			    L2_TABLE_SIZE / PAGE_SIZE);
    394      1.1  nonaka 			++loop1;
    395      1.1  nonaka 		}
    396      1.1  nonaka 	}
    397      1.1  nonaka 
    398      1.1  nonaka 	/* This should never be able to happen but better confirm that. */
    399      1.1  nonaka 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
    400      1.1  nonaka 		panic("initarm: Failed to align the kernel page directory");
    401      1.1  nonaka 
    402      1.1  nonaka 	/*
    403      1.1  nonaka 	 * Allocate a page for the system page mapped to V0x00000000
    404      1.1  nonaka 	 * This page will just contain the system vectors and can be
    405      1.1  nonaka 	 * shared by all processes.
    406      1.1  nonaka 	 */
    407      1.1  nonaka 	alloc_pages(systempage.pv_pa, 1);
    408      1.1  nonaka 
    409      1.1  nonaka 	/* Allocate stacks for all modes */
    410      1.1  nonaka 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    411      1.1  nonaka 	valloc_pages(abtstack, ABT_STACK_SIZE);
    412      1.1  nonaka 	valloc_pages(undstack, UND_STACK_SIZE);
    413      1.1  nonaka 	valloc_pages(kernelstack, UPAGES);
    414      1.1  nonaka 
    415      1.1  nonaka 	/* Allocate enough pages for cleaning the Mini-Data cache. */
    416      1.1  nonaka 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
    417      1.1  nonaka 	valloc_pages(minidataclean, 1);
    418      1.1  nonaka 
    419      1.1  nonaka #ifdef VERBOSE_INIT_ARM
    420      1.1  nonaka 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    421      1.1  nonaka 	    irqstack.pv_va);
    422      1.1  nonaka 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    423      1.1  nonaka 	    abtstack.pv_va);
    424      1.1  nonaka 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    425      1.1  nonaka 	    undstack.pv_va);
    426      1.1  nonaka 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    427      1.1  nonaka 	    kernelstack.pv_va);
    428      1.1  nonaka #endif
    429      1.1  nonaka 
    430      1.1  nonaka 	/*
    431      1.1  nonaka 	 * XXX Defer this to later so that we can reclaim the memory
    432      1.1  nonaka 	 * XXX used by the RedBoot page tables.
    433      1.1  nonaka 	 */
    434      1.1  nonaka 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    435      1.1  nonaka 
    436      1.1  nonaka 	/*
    437      1.1  nonaka 	 * Ok we have allocated physical pages for the primary kernel
    438      1.1  nonaka 	 * page tables
    439      1.1  nonaka 	 */
    440      1.1  nonaka 
    441      1.1  nonaka #ifdef VERBOSE_INIT_ARM
    442      1.1  nonaka 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    443      1.1  nonaka #endif
    444      1.1  nonaka 
    445      1.1  nonaka 	/*
    446      1.1  nonaka 	 * Now we start construction of the L1 page table
    447      1.1  nonaka 	 * We start by mapping the L2 page tables into the L1.
    448      1.1  nonaka 	 * This means that we can replace L1 mappings later on if necessary
    449      1.1  nonaka 	 */
    450      1.1  nonaka 	l1pagetable = kernel_l1pt.pv_pa;
    451      1.1  nonaka 
    452      1.1  nonaka 	/* Map the L2 pages tables in the L1 page table */
    453      1.1  nonaka 	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
    454      1.1  nonaka 	    &kernel_pt_table[KERNEL_PT_SYS]);
    455      1.1  nonaka 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    456      1.1  nonaka 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    457      1.1  nonaka 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    458      1.1  nonaka 	pmap_link_l2pt(l1pagetable, HDLG_IOPXS_VBASE,
    459      1.1  nonaka 	    &kernel_pt_table[KERNEL_PT_IOPXS]);
    460      1.1  nonaka 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    461      1.1  nonaka 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    462      1.1  nonaka 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    463      1.1  nonaka 
    464      1.1  nonaka 	/* update the top of the kernel VM */
    465      1.1  nonaka 	pmap_curmaxkvaddr =
    466      1.1  nonaka 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    467      1.1  nonaka 
    468      1.1  nonaka #ifdef VERBOSE_INIT_ARM
    469      1.1  nonaka 	printf("Mapping kernel\n");
    470      1.1  nonaka #endif
    471      1.1  nonaka 
    472      1.1  nonaka 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    473      1.1  nonaka 	{
    474      1.1  nonaka 		extern char etext[], _end[];
    475      1.1  nonaka 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    476      1.1  nonaka 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    477      1.1  nonaka 		u_int logical;
    478      1.1  nonaka 
    479      1.1  nonaka 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    480      1.1  nonaka 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    481      1.1  nonaka 
    482      1.1  nonaka 		logical = 0x00200000;	/* offset of kernel in RAM */
    483      1.1  nonaka 
    484      1.1  nonaka 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    485      1.1  nonaka 		    physical_start + logical, textsize,
    486      1.1  nonaka 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    487      1.1  nonaka 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    488      1.1  nonaka 		    physical_start + logical, totalsize - textsize,
    489      1.1  nonaka 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    490      1.1  nonaka 	}
    491      1.1  nonaka 
    492      1.1  nonaka #ifdef VERBOSE_INIT_ARM
    493      1.1  nonaka 	printf("Constructing L2 page tables\n");
    494      1.1  nonaka #endif
    495      1.1  nonaka 
    496      1.1  nonaka 	/* Map the stack pages */
    497      1.1  nonaka 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    498      1.1  nonaka 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    499      1.1  nonaka 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    500      1.1  nonaka 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    501      1.1  nonaka 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    502      1.1  nonaka 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    503      1.1  nonaka 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    504      1.1  nonaka 	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    505      1.1  nonaka 
    506      1.1  nonaka 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    507      1.1  nonaka 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    508      1.1  nonaka 
    509      1.1  nonaka 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    510      1.1  nonaka 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    511      1.1  nonaka 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    512      1.1  nonaka 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    513      1.1  nonaka 	}
    514      1.1  nonaka 
    515      1.1  nonaka 	/* Map the Mini-Data cache clean area. */
    516      1.1  nonaka 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
    517      1.1  nonaka 	    minidataclean.pv_pa);
    518      1.1  nonaka 
    519      1.1  nonaka 	/* Map the vector page. */
    520      1.1  nonaka 	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
    521      1.1  nonaka 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    522      1.1  nonaka 
    523      1.1  nonaka 	/* Map the statically mapped devices. */
    524      1.1  nonaka 	pmap_devmap_bootstrap(l1pagetable, hdlg_devmap);
    525      1.1  nonaka 
    526      1.1  nonaka 	/*
    527      1.1  nonaka 	 * Give the XScale global cache clean code an appropriately
    528      1.1  nonaka 	 * sized chunk of unmapped VA space starting at 0xff000000
    529      1.1  nonaka 	 * (our device mappings end before this address).
    530      1.1  nonaka 	 */
    531      1.1  nonaka 	xscale_cache_clean_addr = 0xff000000U;
    532      1.1  nonaka 
    533      1.1  nonaka 	/*
    534      1.1  nonaka 	 * Now we have the real page tables in place so we can switch to them.
    535      1.1  nonaka 	 * Once this is done we will be running with the REAL kernel page
    536      1.1  nonaka 	 * tables.
    537      1.1  nonaka 	 */
    538      1.1  nonaka 
    539      1.1  nonaka 	/*
    540      1.1  nonaka 	 * Update the physical_freestart/physical_freeend/free_pages
    541      1.1  nonaka 	 * variables.
    542      1.1  nonaka 	 */
    543      1.1  nonaka 	{
    544      1.1  nonaka 		extern char _end[];
    545      1.1  nonaka 
    546      1.1  nonaka 		physical_freestart = physical_start +
    547      1.1  nonaka 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
    548      1.1  nonaka 		     KERNEL_BASE);
    549      1.1  nonaka 		physical_freeend = physical_end;
    550      1.1  nonaka 		free_pages =
    551      1.1  nonaka 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
    552      1.1  nonaka 	}
    553      1.1  nonaka 
    554      1.1  nonaka 	/* Switch tables */
    555      1.1  nonaka #ifdef VERBOSE_INIT_ARM
    556      1.1  nonaka 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    557      1.1  nonaka 	       physical_freestart, free_pages, free_pages);
    558      1.1  nonaka 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    559      1.1  nonaka #endif
    560      1.1  nonaka 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    561      1.1  nonaka 	setttb(kernel_l1pt.pv_pa);
    562      1.1  nonaka 	cpu_tlb_flushID();
    563      1.1  nonaka 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    564      1.1  nonaka 
    565      1.1  nonaka 	/*
    566      1.1  nonaka 	 * Moved from cpu_startup() as data_abort_handler() references
    567      1.1  nonaka 	 * this during uvm init
    568      1.1  nonaka 	 */
    569      1.1  nonaka 	proc0paddr = (struct user *)kernelstack.pv_va;
    570      1.1  nonaka 	lwp0.l_addr = proc0paddr;
    571      1.1  nonaka 
    572      1.1  nonaka #ifdef VERBOSE_INIT_ARM
    573      1.1  nonaka 	printf("done!\n");
    574      1.1  nonaka #endif
    575      1.1  nonaka 
    576      1.1  nonaka #ifdef VERBOSE_INIT_ARM
    577      1.1  nonaka 	printf("bootstrap done.\n");
    578      1.1  nonaka #endif
    579      1.1  nonaka 
    580      1.1  nonaka 	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
    581      1.1  nonaka 
    582      1.1  nonaka 	/*
    583      1.1  nonaka 	 * Pages were allocated during the secondary bootstrap for the
    584      1.1  nonaka 	 * stacks for different CPU modes.
    585      1.1  nonaka 	 * We must now set the r13 registers in the different CPU modes to
    586      1.1  nonaka 	 * point to these stacks.
    587      1.1  nonaka 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    588      1.1  nonaka 	 * of the stack memory.
    589      1.1  nonaka 	 */
    590      1.1  nonaka #ifdef VERBOSE_INIT_ARM
    591      1.1  nonaka 	printf("init subsystems: stacks ");
    592      1.1  nonaka #endif
    593      1.1  nonaka 
    594      1.1  nonaka 	set_stackptr(PSR_IRQ32_MODE,
    595      1.1  nonaka 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    596      1.1  nonaka 	set_stackptr(PSR_ABT32_MODE,
    597      1.1  nonaka 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    598      1.1  nonaka 	set_stackptr(PSR_UND32_MODE,
    599      1.1  nonaka 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    600      1.1  nonaka 
    601      1.1  nonaka 	/*
    602      1.1  nonaka 	 * Well we should set a data abort handler.
    603      1.1  nonaka 	 * Once things get going this will change as we will need a proper
    604      1.1  nonaka 	 * handler.
    605      1.1  nonaka 	 * Until then we will use a handler that just panics but tells us
    606      1.1  nonaka 	 * why.
    607      1.1  nonaka 	 * Initialisation of the vectors will just panic on a data abort.
    608      1.1  nonaka 	 * This just fills in a slightly better one.
    609      1.1  nonaka 	 */
    610      1.1  nonaka #ifdef VERBOSE_INIT_ARM
    611      1.1  nonaka 	printf("vectors ");
    612      1.1  nonaka #endif
    613      1.1  nonaka 	data_abort_handler_address = (u_int)data_abort_handler;
    614      1.1  nonaka 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    615      1.1  nonaka 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    616      1.1  nonaka 
    617      1.1  nonaka 	/* Initialise the undefined instruction handlers */
    618      1.1  nonaka #ifdef VERBOSE_INIT_ARM
    619      1.1  nonaka 	printf("undefined ");
    620      1.1  nonaka #endif
    621      1.1  nonaka 	undefined_init();
    622      1.1  nonaka 
    623      1.1  nonaka 	/* Load memory into UVM. */
    624      1.1  nonaka #ifdef VERBOSE_INIT_ARM
    625      1.1  nonaka 	printf("page ");
    626      1.1  nonaka #endif
    627      1.1  nonaka 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
    628      1.1  nonaka 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    629      1.1  nonaka 	    atop(physical_freestart), atop(physical_freeend),
    630      1.1  nonaka 	    VM_FREELIST_DEFAULT);
    631      1.1  nonaka 
    632      1.1  nonaka 	/* Boot strap pmap telling it where the kernel page table is */
    633      1.1  nonaka #ifdef VERBOSE_INIT_ARM
    634      1.1  nonaka 	printf("pmap ");
    635      1.1  nonaka #endif
    636  1.5.6.1     mjf 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
    637      1.1  nonaka 
    638      1.1  nonaka 	/* Setup the IRQ system */
    639      1.1  nonaka #ifdef VERBOSE_INIT_ARM
    640      1.1  nonaka 	printf("irq ");
    641      1.1  nonaka #endif
    642      1.1  nonaka 	i80321_intr_init();
    643      1.1  nonaka 
    644      1.1  nonaka #ifdef VERBOSE_INIT_ARM
    645      1.1  nonaka 	printf("done.\n");
    646      1.1  nonaka #endif
    647      1.1  nonaka 
    648      1.1  nonaka #ifdef BOOTHOWTO
    649      1.1  nonaka 	boothowto = BOOTHOWTO;
    650      1.1  nonaka #endif
    651      1.1  nonaka 
    652      1.1  nonaka #ifdef DDB
    653      1.1  nonaka 	db_machine_init();
    654      1.1  nonaka 	if (boothowto & RB_KDB)
    655      1.1  nonaka 		Debugger();
    656      1.1  nonaka #endif
    657      1.1  nonaka 
    658      1.1  nonaka 	/* We return the new stack pointer address */
    659      1.1  nonaka 	return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    660      1.1  nonaka }
    661      1.1  nonaka 
    662      1.1  nonaka /*
    663      1.1  nonaka  * void cpu_reboot(int howto, char *bootstr)
    664      1.1  nonaka  *
    665      1.1  nonaka  * Reboots the system
    666      1.1  nonaka  *
    667      1.1  nonaka  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    668      1.1  nonaka  * then reset the CPU.
    669      1.1  nonaka  */
    670      1.1  nonaka void
    671      1.1  nonaka cpu_reboot(int howto, char *bootstr)
    672      1.1  nonaka {
    673      1.1  nonaka 
    674      1.1  nonaka 	/*
    675      1.1  nonaka 	 * If we are still cold then hit the air brakes
    676      1.1  nonaka 	 * and crash to earth fast
    677      1.1  nonaka 	 */
    678      1.1  nonaka 	if (cold) {
    679      1.1  nonaka 		*(volatile uint8_t *)HDLG_LEDCTRL |= LEDCTRL_STAT_RED;
    680      1.1  nonaka 		howto |= RB_HALT;
    681      1.1  nonaka 		goto haltsys;
    682      1.1  nonaka 	}
    683      1.1  nonaka 
    684      1.1  nonaka 	/* Disable console buffering */
    685      1.1  nonaka 
    686      1.1  nonaka 	/*
    687      1.1  nonaka 	 * If RB_NOSYNC was not specified sync the discs.
    688      1.1  nonaka 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    689      1.1  nonaka 	 * unmount.  It looks like syslogd is getting woken up only to find
    690      1.1  nonaka 	 * that it cannot page part of the binary in as the filesystem has
    691      1.1  nonaka 	 * been unmounted.
    692      1.1  nonaka 	 */
    693      1.1  nonaka 	if ((howto & RB_NOSYNC) == 0) {
    694      1.1  nonaka 		bootsync();
    695      1.1  nonaka 		/*resettodr();*/
    696      1.1  nonaka 	}
    697      1.1  nonaka 
    698      1.1  nonaka 	/* wait 1s */
    699      1.1  nonaka 	delay(1 * 1000 * 1000);
    700      1.1  nonaka 
    701      1.1  nonaka 	/* Say NO to interrupts */
    702      1.1  nonaka 	splhigh();
    703      1.1  nonaka 
    704      1.1  nonaka 	/* Do a dump if requested. */
    705      1.1  nonaka 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
    706      1.1  nonaka 		dumpsys();
    707      1.1  nonaka 	}
    708      1.1  nonaka 
    709      1.1  nonaka haltsys:
    710      1.1  nonaka 	/* Run any shutdown hooks */
    711      1.1  nonaka 	doshutdownhooks();
    712      1.1  nonaka 
    713  1.5.6.2     mjf 	pmf_system_shutdown(boothowto);
    714  1.5.6.2     mjf 
    715      1.1  nonaka 	/* Make sure IRQ's are disabled */
    716      1.1  nonaka 	IRQdisable;
    717      1.1  nonaka 
    718      1.1  nonaka 	if (howto & RB_HALT) {
    719      1.1  nonaka 		*(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_POWOFF;
    720      1.1  nonaka 		delay(3 * 1000 * 1000);	/* wait 3s */
    721      1.1  nonaka 
    722      1.1  nonaka 		printf("SHUTDOWN FAILED!\n");
    723      1.1  nonaka 		printf("The operating system has halted.\n");
    724      1.1  nonaka 		printf("Please press any key to reboot.\n\n");
    725      1.1  nonaka 		cngetc();
    726      1.1  nonaka 	}
    727      1.1  nonaka 
    728      1.1  nonaka 	printf("rebooting...\n\r");
    729      1.1  nonaka 
    730      1.1  nonaka 	(void)disable_interrupts(I32_bit|F32_bit);
    731      1.1  nonaka 	cpu_idcache_wbinv_all();
    732      1.1  nonaka 	cpu_drain_writebuf();
    733      1.1  nonaka 
    734      1.1  nonaka 	*(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_RESET;
    735      1.1  nonaka 	delay(1 * 1000 * 1000);	/* wait 1s */
    736      1.1  nonaka 
    737      1.1  nonaka 	/* ...and if that didn't work, just croak. */
    738      1.1  nonaka 	printf("RESET FAILED!\n");
    739      1.1  nonaka 	for (;;) {
    740      1.1  nonaka 		continue;
    741      1.1  nonaka 	}
    742      1.1  nonaka }
    743      1.1  nonaka 
    744      1.1  nonaka /*
    745      1.1  nonaka  * console
    746      1.1  nonaka  */
    747      1.1  nonaka #include "com.h"
    748      1.1  nonaka #if NCOM > 0
    749      1.1  nonaka #include <dev/ic/comreg.h>
    750      1.1  nonaka #include <dev/ic/comvar.h>
    751      1.1  nonaka #endif
    752      1.1  nonaka 
    753      1.1  nonaka /*
    754      1.1  nonaka  * Define the default console speed for the board.  This is generally
    755      1.1  nonaka  * what the firmware provided with the board defaults to.
    756      1.1  nonaka  */
    757      1.1  nonaka #ifndef CONSPEED
    758      1.1  nonaka #define CONSPEED B115200
    759      1.1  nonaka #endif /* ! CONSPEED */
    760      1.1  nonaka 
    761      1.1  nonaka #ifndef CONUNIT
    762      1.1  nonaka #define	CONUNIT	0
    763      1.1  nonaka #endif
    764      1.1  nonaka 
    765      1.1  nonaka #ifndef CONMODE
    766      1.1  nonaka #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    767      1.1  nonaka #endif
    768      1.1  nonaka 
    769      1.1  nonaka int comcnspeed = CONSPEED;
    770      1.1  nonaka int comcnmode = CONMODE;
    771      1.1  nonaka int comcnunit = CONUNIT;
    772      1.1  nonaka 
    773      1.1  nonaka #if KGDB
    774      1.1  nonaka #ifndef KGDB_DEVNAME
    775      1.1  nonaka #error Must define KGDB_DEVNAME
    776      1.1  nonaka #endif
    777      1.1  nonaka const char kgdb_devname[] = KGDB_DEVNAME;
    778      1.1  nonaka 
    779      1.1  nonaka #ifndef KGDB_DEVADDR
    780      1.1  nonaka #error Must define KGDB_DEVADDR
    781      1.1  nonaka #endif
    782      1.1  nonaka unsigned long kgdb_devaddr = KGDB_DEVADDR;
    783      1.1  nonaka 
    784      1.1  nonaka #ifndef KGDB_DEVRATE
    785      1.1  nonaka #define KGDB_DEVRATE	CONSPEED
    786      1.1  nonaka #endif
    787      1.1  nonaka int kgdb_devrate = KGDB_DEVRATE;
    788      1.1  nonaka 
    789      1.1  nonaka #ifndef KGDB_DEVMODE
    790      1.1  nonaka #define KGDB_DEVMODE	CONMODE
    791      1.1  nonaka #endif
    792      1.1  nonaka int kgdb_devmode = KGDB_DEVMODE;
    793      1.1  nonaka #endif /* KGDB */
    794      1.1  nonaka 
    795      1.1  nonaka void
    796      1.1  nonaka consinit(void)
    797      1.1  nonaka {
    798      1.1  nonaka 	static const bus_addr_t comcnaddrs[] = {
    799      1.1  nonaka 		HDLG_UART1,		/* com0 */
    800      1.1  nonaka 	};
    801      1.1  nonaka 	static int consinit_called;
    802      1.1  nonaka 
    803      1.1  nonaka 	if (consinit_called)
    804      1.1  nonaka 		return;
    805      1.1  nonaka 	consinit_called = 1;
    806      1.1  nonaka 
    807      1.1  nonaka 	/*
    808      1.1  nonaka 	 * Console devices are mapped VA==PA.  Our devmap reflects
    809      1.1  nonaka 	 * this, so register it now so drivers can map the console
    810      1.1  nonaka 	 * device.
    811      1.1  nonaka 	 */
    812      1.1  nonaka 	pmap_devmap_register(hdlg_devmap);
    813      1.1  nonaka 
    814      1.1  nonaka #if NCOM > 0
    815      1.1  nonaka 	if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
    816      1.1  nonaka 	    COM_FREQ, COM_TYPE_NORMAL, comcnmode))
    817      1.1  nonaka 		panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
    818      1.1  nonaka #else
    819      1.1  nonaka 	panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
    820      1.1  nonaka #endif
    821      1.1  nonaka #if KGDB
    822      1.1  nonaka #if NCOM > 0
    823      1.1  nonaka 	if (strcmp(kgdb_devname, "com") == 0) {
    824      1.1  nonaka 		com_kgdb_attach(&obio_bs_tag, kgdb_devaddr, kgdb_devrate,
    825      1.1  nonaka 				COM_FREQ, COM_TYPE_NORMAL, kgdb_devmode);
    826      1.1  nonaka 	}
    827      1.1  nonaka #endif	/* NCOM > 0 */
    828      1.1  nonaka #endif	/* KGDB */
    829      1.1  nonaka }
    830