Home | History | Annotate | Line # | Download | only in hdl_g
hdlg_machdep.c revision 1.6
      1  1.6    matt /*	$NetBSD: hdlg_machdep.c,v 1.6 2008/04/27 18:58:46 matt Exp $	*/
      2  1.1  nonaka 
      3  1.1  nonaka /*
      4  1.1  nonaka  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
      5  1.1  nonaka  * All rights reserved.
      6  1.1  nonaka  *
      7  1.1  nonaka  * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
      8  1.1  nonaka  *
      9  1.1  nonaka  * Redistribution and use in source and binary forms, with or without
     10  1.1  nonaka  * modification, are permitted provided that the following conditions
     11  1.1  nonaka  * are met:
     12  1.1  nonaka  * 1. Redistributions of source code must retain the above copyright
     13  1.1  nonaka  *    notice, this list of conditions and the following disclaimer.
     14  1.1  nonaka  * 2. Redistributions in binary form must reproduce the above copyright
     15  1.1  nonaka  *    notice, this list of conditions and the following disclaimer in the
     16  1.1  nonaka  *    documentation and/or other materials provided with the distribution.
     17  1.1  nonaka  * 3. All advertising materials mentioning features or use of this software
     18  1.1  nonaka  *    must display the following acknowledgement:
     19  1.1  nonaka  *	This product includes software developed for the NetBSD Project by
     20  1.1  nonaka  *	Wasabi Systems, Inc.
     21  1.1  nonaka  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  1.1  nonaka  *    or promote products derived from this software without specific prior
     23  1.1  nonaka  *    written permission.
     24  1.1  nonaka  *
     25  1.1  nonaka  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  1.1  nonaka  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  1.1  nonaka  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  1.1  nonaka  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  1.1  nonaka  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  1.1  nonaka  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  1.1  nonaka  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  1.1  nonaka  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  1.1  nonaka  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  1.1  nonaka  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  1.1  nonaka  * POSSIBILITY OF SUCH DAMAGE.
     36  1.1  nonaka  */
     37  1.1  nonaka 
     38  1.1  nonaka /*
     39  1.1  nonaka  * Copyright (c) 1997,1998 Mark Brinicombe.
     40  1.1  nonaka  * Copyright (c) 1997,1998 Causality Limited.
     41  1.1  nonaka  * All rights reserved.
     42  1.1  nonaka  *
     43  1.1  nonaka  * Redistribution and use in source and binary forms, with or without
     44  1.1  nonaka  * modification, are permitted provided that the following conditions
     45  1.1  nonaka  * are met:
     46  1.1  nonaka  * 1. Redistributions of source code must retain the above copyright
     47  1.1  nonaka  *    notice, this list of conditions and the following disclaimer.
     48  1.1  nonaka  * 2. Redistributions in binary form must reproduce the above copyright
     49  1.1  nonaka  *    notice, this list of conditions and the following disclaimer in the
     50  1.1  nonaka  *    documentation and/or other materials provided with the distribution.
     51  1.1  nonaka  * 3. All advertising materials mentioning features or use of this software
     52  1.1  nonaka  *    must display the following acknowledgement:
     53  1.1  nonaka  *	This product includes software developed by Mark Brinicombe
     54  1.1  nonaka  *	for the NetBSD Project.
     55  1.1  nonaka  * 4. The name of the company nor the name of the author may be used to
     56  1.1  nonaka  *    endorse or promote products derived from this software without specific
     57  1.1  nonaka  *    prior written permission.
     58  1.1  nonaka  *
     59  1.1  nonaka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60  1.1  nonaka  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61  1.1  nonaka  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  1.1  nonaka  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63  1.1  nonaka  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64  1.1  nonaka  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65  1.1  nonaka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  1.1  nonaka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  1.1  nonaka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  1.1  nonaka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  1.1  nonaka  * SUCH DAMAGE.
     70  1.1  nonaka  *
     71  1.1  nonaka  * Machine dependant functions for kernel setup for GigaLANDISK
     72  1.1  nonaka  * using RedBoot firmware.
     73  1.1  nonaka  */
     74  1.1  nonaka 
     75  1.1  nonaka #include <sys/cdefs.h>
     76  1.6    matt __KERNEL_RCSID(0, "$NetBSD: hdlg_machdep.c,v 1.6 2008/04/27 18:58:46 matt Exp $");
     77  1.1  nonaka 
     78  1.1  nonaka #include "opt_ddb.h"
     79  1.1  nonaka #include "opt_kgdb.h"
     80  1.1  nonaka #include "opt_pmap_debug.h"
     81  1.1  nonaka 
     82  1.1  nonaka #include <sys/param.h>
     83  1.1  nonaka #include <sys/device.h>
     84  1.1  nonaka #include <sys/systm.h>
     85  1.1  nonaka #include <sys/kernel.h>
     86  1.1  nonaka #include <sys/exec.h>
     87  1.1  nonaka #include <sys/proc.h>
     88  1.1  nonaka #include <sys/msgbuf.h>
     89  1.1  nonaka #include <sys/reboot.h>
     90  1.1  nonaka #include <sys/termios.h>
     91  1.1  nonaka #include <sys/ksyms.h>
     92  1.1  nonaka 
     93  1.1  nonaka #include <uvm/uvm_extern.h>
     94  1.1  nonaka 
     95  1.1  nonaka #include <dev/cons.h>
     96  1.1  nonaka 
     97  1.1  nonaka #include <machine/db_machdep.h>
     98  1.1  nonaka #include <ddb/db_sym.h>
     99  1.1  nonaka #include <ddb/db_extern.h>
    100  1.1  nonaka 
    101  1.1  nonaka #include <machine/bootconfig.h>
    102  1.1  nonaka #include <machine/bus.h>
    103  1.1  nonaka #include <machine/cpu.h>
    104  1.1  nonaka #include <machine/frame.h>
    105  1.1  nonaka #include <arm/undefined.h>
    106  1.1  nonaka 
    107  1.1  nonaka #include <arm/arm32/machdep.h>
    108  1.1  nonaka 
    109  1.1  nonaka #include <arm/xscale/i80321reg.h>
    110  1.1  nonaka #include <arm/xscale/i80321var.h>
    111  1.1  nonaka 
    112  1.1  nonaka #include <dev/pci/ppbreg.h>
    113  1.1  nonaka 
    114  1.1  nonaka #include <evbarm/hdl_g/hdlgreg.h>
    115  1.1  nonaka #include <evbarm/hdl_g/hdlgvar.h>
    116  1.1  nonaka #include <evbarm/hdl_g/obiovar.h>
    117  1.1  nonaka 
    118  1.1  nonaka #include "ksyms.h"
    119  1.1  nonaka 
    120  1.1  nonaka /* Kernel text starts 2MB in from the bottom of the kernel address space. */
    121  1.1  nonaka #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
    122  1.1  nonaka #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    123  1.1  nonaka 
    124  1.1  nonaka /*
    125  1.1  nonaka  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
    126  1.1  nonaka  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
    127  1.1  nonaka  */
    128  1.1  nonaka #define KERNEL_VM_SIZE		0x0C000000
    129  1.1  nonaka 
    130  1.1  nonaka /*
    131  1.1  nonaka  * Address to call from cpu_reset() to reset the machine.
    132  1.1  nonaka  * This is machine architecture dependant as it varies depending
    133  1.1  nonaka  * on where the ROM appears when you turn the MMU off.
    134  1.1  nonaka  *
    135  1.1  nonaka  * XXX Not actually used on hdlg -- clean up the generic
    136  1.1  nonaka  * ARM code.
    137  1.1  nonaka  */
    138  1.1  nonaka u_int cpu_reset_address = 0x00000000;
    139  1.1  nonaka 
    140  1.1  nonaka /* Define various stack sizes in pages */
    141  1.1  nonaka #define IRQ_STACK_SIZE	1
    142  1.1  nonaka #define ABT_STACK_SIZE	1
    143  1.1  nonaka #define UND_STACK_SIZE	1
    144  1.1  nonaka 
    145  1.1  nonaka BootConfig bootconfig;		/* Boot config storage */
    146  1.1  nonaka char *boot_args = NULL;
    147  1.1  nonaka char *boot_file = NULL;
    148  1.1  nonaka 
    149  1.1  nonaka vm_offset_t physical_start;
    150  1.1  nonaka vm_offset_t physical_freestart;
    151  1.1  nonaka vm_offset_t physical_freeend;
    152  1.1  nonaka vm_offset_t physical_end;
    153  1.1  nonaka u_int free_pages;
    154  1.1  nonaka vm_offset_t pagetables_start;
    155  1.1  nonaka int physmem = 0;
    156  1.1  nonaka 
    157  1.1  nonaka /*int debug_flags;*/
    158  1.1  nonaka #ifndef PMAP_STATIC_L1S
    159  1.1  nonaka int max_processes = 64;			/* Default number */
    160  1.1  nonaka #endif	/* !PMAP_STATIC_L1S */
    161  1.1  nonaka 
    162  1.1  nonaka /* Physical and virtual addresses for some global pages */
    163  1.1  nonaka pv_addr_t irqstack;
    164  1.1  nonaka pv_addr_t undstack;
    165  1.1  nonaka pv_addr_t abtstack;
    166  1.1  nonaka pv_addr_t kernelstack;
    167  1.1  nonaka pv_addr_t minidataclean;
    168  1.1  nonaka 
    169  1.1  nonaka vm_offset_t msgbufphys;
    170  1.1  nonaka 
    171  1.1  nonaka extern u_int data_abort_handler_address;
    172  1.1  nonaka extern u_int prefetch_abort_handler_address;
    173  1.1  nonaka extern u_int undefined_handler_address;
    174  1.1  nonaka 
    175  1.1  nonaka #ifdef PMAP_DEBUG
    176  1.1  nonaka extern int pmap_debug_level;
    177  1.1  nonaka #endif
    178  1.1  nonaka 
    179  1.1  nonaka #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
    180  1.1  nonaka 
    181  1.1  nonaka #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
    182  1.1  nonaka #define	KERNEL_PT_KERNEL_NUM	4
    183  1.1  nonaka 
    184  1.1  nonaka 					/* L2 table for mapping i80321 */
    185  1.1  nonaka #define	KERNEL_PT_IOPXS		(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
    186  1.1  nonaka 
    187  1.1  nonaka 					/* L2 tables for mapping kernel VM */
    188  1.1  nonaka #define KERNEL_PT_VMDATA	(KERNEL_PT_IOPXS + 1)
    189  1.1  nonaka #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    190  1.1  nonaka #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    191  1.1  nonaka 
    192  1.1  nonaka pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    193  1.1  nonaka 
    194  1.1  nonaka struct user *proc0paddr;
    195  1.1  nonaka 
    196  1.1  nonaka /* Prototypes */
    197  1.1  nonaka void consinit(void);
    198  1.1  nonaka 
    199  1.1  nonaka /* Static device mappings. */
    200  1.1  nonaka static const struct pmap_devmap hdlg_devmap[] = {
    201  1.1  nonaka     /*
    202  1.1  nonaka      * Map the on-board devices VA == PA so that we can access them
    203  1.1  nonaka      * with the MMU on or off.
    204  1.1  nonaka      */
    205  1.1  nonaka     {
    206  1.1  nonaka 	HDLG_OBIO_BASE,
    207  1.1  nonaka 	HDLG_OBIO_BASE,
    208  1.1  nonaka 	HDLG_OBIO_SIZE,
    209  1.1  nonaka 	VM_PROT_READ|VM_PROT_WRITE,
    210  1.1  nonaka 	PTE_NOCACHE,
    211  1.1  nonaka     },
    212  1.1  nonaka 
    213  1.1  nonaka     {
    214  1.1  nonaka 	HDLG_IOW_VBASE,
    215  1.1  nonaka 	VERDE_OUT_XLATE_IO_WIN0_BASE,
    216  1.1  nonaka 	VERDE_OUT_XLATE_IO_WIN_SIZE,
    217  1.1  nonaka 	VM_PROT_READ|VM_PROT_WRITE,
    218  1.1  nonaka 	PTE_NOCACHE,
    219  1.1  nonaka    },
    220  1.1  nonaka 
    221  1.1  nonaka    {
    222  1.1  nonaka 	HDLG_80321_VBASE,
    223  1.1  nonaka 	VERDE_PMMR_BASE,
    224  1.1  nonaka 	VERDE_PMMR_SIZE,
    225  1.1  nonaka 	VM_PROT_READ|VM_PROT_WRITE,
    226  1.1  nonaka 	PTE_NOCACHE,
    227  1.1  nonaka    },
    228  1.1  nonaka 
    229  1.1  nonaka    {
    230  1.1  nonaka 	0,
    231  1.1  nonaka 	0,
    232  1.1  nonaka 	0,
    233  1.1  nonaka 	0,
    234  1.1  nonaka 	0,
    235  1.1  nonaka     }
    236  1.1  nonaka };
    237  1.1  nonaka 
    238  1.1  nonaka static void
    239  1.1  nonaka hardclock_hook(void)
    240  1.1  nonaka {
    241  1.1  nonaka 
    242  1.1  nonaka 	/* Nothing to do */
    243  1.1  nonaka }
    244  1.1  nonaka 
    245  1.1  nonaka /*
    246  1.1  nonaka  * u_int initarm(...)
    247  1.1  nonaka  *
    248  1.1  nonaka  * Initial entry point on startup. This gets called before main() is
    249  1.1  nonaka  * entered.
    250  1.1  nonaka  * It should be responsible for setting up everything that must be
    251  1.1  nonaka  * in place when main is called.
    252  1.1  nonaka  * This includes
    253  1.1  nonaka  *   Taking a copy of the boot configuration structure.
    254  1.1  nonaka  *   Initialising the physical console so characters can be printed.
    255  1.1  nonaka  *   Setting up page tables for the kernel
    256  1.1  nonaka  *   Relocating the kernel to the bottom of physical memory
    257  1.1  nonaka  */
    258  1.1  nonaka u_int
    259  1.1  nonaka initarm(void *arg)
    260  1.1  nonaka {
    261  1.1  nonaka 	extern vaddr_t xscale_cache_clean_addr;
    262  1.1  nonaka #ifdef DIAGNOSTIC
    263  1.1  nonaka 	extern vsize_t xscale_minidata_clean_size;
    264  1.1  nonaka #endif
    265  1.1  nonaka 	int loop;
    266  1.1  nonaka 	int loop1;
    267  1.1  nonaka 	u_int l1pagetable;
    268  1.1  nonaka 	paddr_t memstart;
    269  1.1  nonaka 	psize_t memsize;
    270  1.1  nonaka 
    271  1.1  nonaka 	/* Calibrate the delay loop. */
    272  1.1  nonaka 	i80321_calibrate_delay();
    273  1.1  nonaka 	i80321_hardclock_hook = hardclock_hook;
    274  1.1  nonaka 
    275  1.1  nonaka 	/*
    276  1.1  nonaka 	 * Since we map the on-board devices VA==PA, and the kernel
    277  1.1  nonaka 	 * is running VA==PA, it's possible for us to initialize
    278  1.1  nonaka 	 * the console now.
    279  1.1  nonaka 	 */
    280  1.1  nonaka 	consinit();
    281  1.1  nonaka 
    282  1.1  nonaka #ifdef VERBOSE_INIT_ARM
    283  1.1  nonaka 	/* Talk to the user */
    284  1.4  nonaka 	printf("\nNetBSD/evbarm (HDL-G) booting ...\n");
    285  1.1  nonaka #endif
    286  1.1  nonaka 
    287  1.1  nonaka 	/*
    288  1.1  nonaka 	 * Heads up ... Setup the CPU / MMU / TLB functions
    289  1.1  nonaka 	 */
    290  1.1  nonaka 	if (set_cpufuncs())
    291  1.1  nonaka 		panic("CPU not recognized!");
    292  1.1  nonaka 
    293  1.1  nonaka 	/*
    294  1.1  nonaka 	 * We are currently running with the MMU enabled and the
    295  1.1  nonaka 	 * entire address space mapped VA==PA, except for the
    296  1.1  nonaka 	 * first 64M of RAM is also double-mapped at 0xc0000000.
    297  1.1  nonaka 	 * There is an L1 page table at 0xa0004000.
    298  1.1  nonaka 	 */
    299  1.1  nonaka 
    300  1.1  nonaka 	/*
    301  1.1  nonaka 	 * Fetch the SDRAM start/size from the i80321 SDRAM configuration
    302  1.1  nonaka 	 * registers.
    303  1.1  nonaka 	 */
    304  1.1  nonaka 	i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE,
    305  1.1  nonaka 	    &memstart, &memsize);
    306  1.1  nonaka 
    307  1.1  nonaka #ifdef VERBOSE_INIT_ARM
    308  1.1  nonaka 	printf("initarm: Configuring system ...\n");
    309  1.1  nonaka #endif
    310  1.1  nonaka 
    311  1.1  nonaka 	/* Fake bootconfig structure for the benefit of pmap.c */
    312  1.3     wiz 	/* XXX must make the memory description h/w independent */
    313  1.1  nonaka 	bootconfig.dramblocks = 1;
    314  1.1  nonaka 	bootconfig.dram[0].address = memstart;
    315  1.1  nonaka 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    316  1.1  nonaka 
    317  1.1  nonaka 	/*
    318  1.1  nonaka 	 * Set up the variables that define the availablilty of
    319  1.1  nonaka 	 * physical memory.  For now, we're going to set
    320  1.1  nonaka 	 * physical_freestart to 0xa0200000 (where the kernel
    321  1.1  nonaka 	 * was loaded), and allocate the memory we need downwards.
    322  1.1  nonaka 	 * If we get too close to the L1 table that we set up, we
    323  1.1  nonaka 	 * will panic.  We will update physical_freestart and
    324  1.1  nonaka 	 * physical_freeend later to reflect what pmap_bootstrap()
    325  1.1  nonaka 	 * wants to see.
    326  1.1  nonaka 	 *
    327  1.1  nonaka 	 * XXX pmap_bootstrap() needs an enema.
    328  1.1  nonaka 	 */
    329  1.1  nonaka 	physical_start = bootconfig.dram[0].address;
    330  1.1  nonaka 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
    331  1.1  nonaka 
    332  1.1  nonaka 	physical_freestart = 0xa0009000UL;
    333  1.1  nonaka 	physical_freeend = 0xa0200000UL;
    334  1.1  nonaka 
    335  1.1  nonaka 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    336  1.1  nonaka 
    337  1.1  nonaka #ifdef VERBOSE_INIT_ARM
    338  1.1  nonaka 	/* Tell the user about the memory */
    339  1.1  nonaka 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    340  1.1  nonaka 	    physical_start, physical_end - 1);
    341  1.1  nonaka #endif
    342  1.1  nonaka 
    343  1.1  nonaka 	/*
    344  1.1  nonaka 	 * Okay, the kernel starts 2MB in from the bottom of physical
    345  1.1  nonaka 	 * memory.  We are going to allocate our bootstrap pages downwards
    346  1.1  nonaka 	 * from there.
    347  1.1  nonaka 	 *
    348  1.1  nonaka 	 * We need to allocate some fixed page tables to get the kernel
    349  1.1  nonaka 	 * going.  We allocate one page directory and a number of page
    350  1.1  nonaka 	 * tables and store the physical addresses in the kernel_pt_table
    351  1.1  nonaka 	 * array.
    352  1.1  nonaka 	 *
    353  1.1  nonaka 	 * The kernel page directory must be on a 16K boundary.  The page
    354  1.1  nonaka 	 * tables must be on 4K boundaries.  What we do is allocate the
    355  1.1  nonaka 	 * page directory on the first 16K boundary that we encounter, and
    356  1.1  nonaka 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    357  1.1  nonaka 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    358  1.1  nonaka 	 * least one 16K aligned region.
    359  1.1  nonaka 	 */
    360  1.1  nonaka 
    361  1.1  nonaka #ifdef VERBOSE_INIT_ARM
    362  1.1  nonaka 	printf("Allocating page tables\n");
    363  1.1  nonaka #endif
    364  1.1  nonaka 
    365  1.1  nonaka 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    366  1.1  nonaka 
    367  1.1  nonaka #ifdef VERBOSE_INIT_ARM
    368  1.1  nonaka 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    369  1.1  nonaka 	       physical_freestart, free_pages, free_pages);
    370  1.1  nonaka #endif
    371  1.1  nonaka 
    372  1.1  nonaka 	/* Define a macro to simplify memory allocation */
    373  1.1  nonaka #define	valloc_pages(var, np)				\
    374  1.1  nonaka 	alloc_pages((var).pv_pa, (np));			\
    375  1.1  nonaka 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    376  1.1  nonaka 
    377  1.1  nonaka #define alloc_pages(var, np)				\
    378  1.1  nonaka 	physical_freeend -= ((np) * PAGE_SIZE);		\
    379  1.1  nonaka 	if (physical_freeend < physical_freestart)	\
    380  1.1  nonaka 		panic("initarm: out of memory");	\
    381  1.1  nonaka 	(var) = physical_freeend;			\
    382  1.1  nonaka 	free_pages -= (np);				\
    383  1.1  nonaka 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    384  1.1  nonaka 
    385  1.1  nonaka 	loop1 = 0;
    386  1.1  nonaka 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    387  1.1  nonaka 		/* Are we 16KB aligned for an L1 ? */
    388  1.1  nonaka 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
    389  1.1  nonaka 		    && kernel_l1pt.pv_pa == 0) {
    390  1.1  nonaka 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    391  1.1  nonaka 		} else {
    392  1.1  nonaka 			valloc_pages(kernel_pt_table[loop1],
    393  1.1  nonaka 			    L2_TABLE_SIZE / PAGE_SIZE);
    394  1.1  nonaka 			++loop1;
    395  1.1  nonaka 		}
    396  1.1  nonaka 	}
    397  1.1  nonaka 
    398  1.1  nonaka 	/* This should never be able to happen but better confirm that. */
    399  1.1  nonaka 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
    400  1.1  nonaka 		panic("initarm: Failed to align the kernel page directory");
    401  1.1  nonaka 
    402  1.1  nonaka 	/*
    403  1.1  nonaka 	 * Allocate a page for the system page mapped to V0x00000000
    404  1.1  nonaka 	 * This page will just contain the system vectors and can be
    405  1.1  nonaka 	 * shared by all processes.
    406  1.1  nonaka 	 */
    407  1.1  nonaka 	alloc_pages(systempage.pv_pa, 1);
    408  1.1  nonaka 
    409  1.1  nonaka 	/* Allocate stacks for all modes */
    410  1.1  nonaka 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    411  1.1  nonaka 	valloc_pages(abtstack, ABT_STACK_SIZE);
    412  1.1  nonaka 	valloc_pages(undstack, UND_STACK_SIZE);
    413  1.1  nonaka 	valloc_pages(kernelstack, UPAGES);
    414  1.1  nonaka 
    415  1.1  nonaka 	/* Allocate enough pages for cleaning the Mini-Data cache. */
    416  1.1  nonaka 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
    417  1.1  nonaka 	valloc_pages(minidataclean, 1);
    418  1.1  nonaka 
    419  1.1  nonaka #ifdef VERBOSE_INIT_ARM
    420  1.1  nonaka 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    421  1.1  nonaka 	    irqstack.pv_va);
    422  1.1  nonaka 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    423  1.1  nonaka 	    abtstack.pv_va);
    424  1.1  nonaka 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    425  1.1  nonaka 	    undstack.pv_va);
    426  1.1  nonaka 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    427  1.1  nonaka 	    kernelstack.pv_va);
    428  1.1  nonaka #endif
    429  1.1  nonaka 
    430  1.1  nonaka 	/*
    431  1.1  nonaka 	 * XXX Defer this to later so that we can reclaim the memory
    432  1.1  nonaka 	 * XXX used by the RedBoot page tables.
    433  1.1  nonaka 	 */
    434  1.1  nonaka 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    435  1.1  nonaka 
    436  1.1  nonaka 	/*
    437  1.1  nonaka 	 * Ok we have allocated physical pages for the primary kernel
    438  1.1  nonaka 	 * page tables
    439  1.1  nonaka 	 */
    440  1.1  nonaka 
    441  1.1  nonaka #ifdef VERBOSE_INIT_ARM
    442  1.1  nonaka 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    443  1.1  nonaka #endif
    444  1.1  nonaka 
    445  1.1  nonaka 	/*
    446  1.1  nonaka 	 * Now we start construction of the L1 page table
    447  1.1  nonaka 	 * We start by mapping the L2 page tables into the L1.
    448  1.1  nonaka 	 * This means that we can replace L1 mappings later on if necessary
    449  1.1  nonaka 	 */
    450  1.1  nonaka 	l1pagetable = kernel_l1pt.pv_pa;
    451  1.1  nonaka 
    452  1.1  nonaka 	/* Map the L2 pages tables in the L1 page table */
    453  1.1  nonaka 	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
    454  1.1  nonaka 	    &kernel_pt_table[KERNEL_PT_SYS]);
    455  1.1  nonaka 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    456  1.1  nonaka 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    457  1.1  nonaka 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    458  1.1  nonaka 	pmap_link_l2pt(l1pagetable, HDLG_IOPXS_VBASE,
    459  1.1  nonaka 	    &kernel_pt_table[KERNEL_PT_IOPXS]);
    460  1.1  nonaka 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    461  1.1  nonaka 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    462  1.1  nonaka 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    463  1.1  nonaka 
    464  1.1  nonaka 	/* update the top of the kernel VM */
    465  1.1  nonaka 	pmap_curmaxkvaddr =
    466  1.1  nonaka 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    467  1.1  nonaka 
    468  1.1  nonaka #ifdef VERBOSE_INIT_ARM
    469  1.1  nonaka 	printf("Mapping kernel\n");
    470  1.1  nonaka #endif
    471  1.1  nonaka 
    472  1.1  nonaka 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    473  1.1  nonaka 	{
    474  1.1  nonaka 		extern char etext[], _end[];
    475  1.1  nonaka 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    476  1.1  nonaka 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    477  1.1  nonaka 		u_int logical;
    478  1.1  nonaka 
    479  1.1  nonaka 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    480  1.1  nonaka 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    481  1.1  nonaka 
    482  1.1  nonaka 		logical = 0x00200000;	/* offset of kernel in RAM */
    483  1.1  nonaka 
    484  1.1  nonaka 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    485  1.1  nonaka 		    physical_start + logical, textsize,
    486  1.1  nonaka 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    487  1.1  nonaka 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    488  1.1  nonaka 		    physical_start + logical, totalsize - textsize,
    489  1.1  nonaka 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    490  1.1  nonaka 	}
    491  1.1  nonaka 
    492  1.1  nonaka #ifdef VERBOSE_INIT_ARM
    493  1.1  nonaka 	printf("Constructing L2 page tables\n");
    494  1.1  nonaka #endif
    495  1.1  nonaka 
    496  1.1  nonaka 	/* Map the stack pages */
    497  1.1  nonaka 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    498  1.1  nonaka 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    499  1.1  nonaka 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    500  1.1  nonaka 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    501  1.1  nonaka 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    502  1.1  nonaka 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    503  1.1  nonaka 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    504  1.1  nonaka 	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    505  1.1  nonaka 
    506  1.1  nonaka 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    507  1.1  nonaka 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    508  1.1  nonaka 
    509  1.1  nonaka 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    510  1.1  nonaka 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    511  1.1  nonaka 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    512  1.1  nonaka 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    513  1.1  nonaka 	}
    514  1.1  nonaka 
    515  1.1  nonaka 	/* Map the Mini-Data cache clean area. */
    516  1.1  nonaka 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
    517  1.1  nonaka 	    minidataclean.pv_pa);
    518  1.1  nonaka 
    519  1.1  nonaka 	/* Map the vector page. */
    520  1.1  nonaka 	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
    521  1.1  nonaka 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    522  1.1  nonaka 
    523  1.1  nonaka 	/* Map the statically mapped devices. */
    524  1.1  nonaka 	pmap_devmap_bootstrap(l1pagetable, hdlg_devmap);
    525  1.1  nonaka 
    526  1.1  nonaka 	/*
    527  1.1  nonaka 	 * Give the XScale global cache clean code an appropriately
    528  1.1  nonaka 	 * sized chunk of unmapped VA space starting at 0xff000000
    529  1.1  nonaka 	 * (our device mappings end before this address).
    530  1.1  nonaka 	 */
    531  1.1  nonaka 	xscale_cache_clean_addr = 0xff000000U;
    532  1.1  nonaka 
    533  1.1  nonaka 	/*
    534  1.1  nonaka 	 * Now we have the real page tables in place so we can switch to them.
    535  1.1  nonaka 	 * Once this is done we will be running with the REAL kernel page
    536  1.1  nonaka 	 * tables.
    537  1.1  nonaka 	 */
    538  1.1  nonaka 
    539  1.1  nonaka 	/*
    540  1.1  nonaka 	 * Update the physical_freestart/physical_freeend/free_pages
    541  1.1  nonaka 	 * variables.
    542  1.1  nonaka 	 */
    543  1.1  nonaka 	{
    544  1.1  nonaka 		extern char _end[];
    545  1.1  nonaka 
    546  1.1  nonaka 		physical_freestart = physical_start +
    547  1.1  nonaka 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
    548  1.1  nonaka 		     KERNEL_BASE);
    549  1.1  nonaka 		physical_freeend = physical_end;
    550  1.1  nonaka 		free_pages =
    551  1.1  nonaka 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
    552  1.1  nonaka 	}
    553  1.1  nonaka 
    554  1.1  nonaka 	/* Switch tables */
    555  1.1  nonaka #ifdef VERBOSE_INIT_ARM
    556  1.1  nonaka 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    557  1.1  nonaka 	       physical_freestart, free_pages, free_pages);
    558  1.1  nonaka 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    559  1.1  nonaka #endif
    560  1.1  nonaka 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    561  1.1  nonaka 	setttb(kernel_l1pt.pv_pa);
    562  1.1  nonaka 	cpu_tlb_flushID();
    563  1.1  nonaka 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    564  1.1  nonaka 
    565  1.1  nonaka 	/*
    566  1.1  nonaka 	 * Moved from cpu_startup() as data_abort_handler() references
    567  1.1  nonaka 	 * this during uvm init
    568  1.1  nonaka 	 */
    569  1.1  nonaka 	proc0paddr = (struct user *)kernelstack.pv_va;
    570  1.1  nonaka 	lwp0.l_addr = proc0paddr;
    571  1.1  nonaka 
    572  1.1  nonaka #ifdef VERBOSE_INIT_ARM
    573  1.1  nonaka 	printf("done!\n");
    574  1.1  nonaka #endif
    575  1.1  nonaka 
    576  1.1  nonaka #ifdef VERBOSE_INIT_ARM
    577  1.1  nonaka 	printf("bootstrap done.\n");
    578  1.1  nonaka #endif
    579  1.1  nonaka 
    580  1.1  nonaka 	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
    581  1.1  nonaka 
    582  1.1  nonaka 	/*
    583  1.1  nonaka 	 * Pages were allocated during the secondary bootstrap for the
    584  1.1  nonaka 	 * stacks for different CPU modes.
    585  1.1  nonaka 	 * We must now set the r13 registers in the different CPU modes to
    586  1.1  nonaka 	 * point to these stacks.
    587  1.1  nonaka 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    588  1.1  nonaka 	 * of the stack memory.
    589  1.1  nonaka 	 */
    590  1.1  nonaka #ifdef VERBOSE_INIT_ARM
    591  1.1  nonaka 	printf("init subsystems: stacks ");
    592  1.1  nonaka #endif
    593  1.1  nonaka 
    594  1.1  nonaka 	set_stackptr(PSR_IRQ32_MODE,
    595  1.1  nonaka 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    596  1.1  nonaka 	set_stackptr(PSR_ABT32_MODE,
    597  1.1  nonaka 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    598  1.1  nonaka 	set_stackptr(PSR_UND32_MODE,
    599  1.1  nonaka 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    600  1.1  nonaka 
    601  1.1  nonaka 	/*
    602  1.1  nonaka 	 * Well we should set a data abort handler.
    603  1.1  nonaka 	 * Once things get going this will change as we will need a proper
    604  1.1  nonaka 	 * handler.
    605  1.1  nonaka 	 * Until then we will use a handler that just panics but tells us
    606  1.1  nonaka 	 * why.
    607  1.1  nonaka 	 * Initialisation of the vectors will just panic on a data abort.
    608  1.1  nonaka 	 * This just fills in a slightly better one.
    609  1.1  nonaka 	 */
    610  1.1  nonaka #ifdef VERBOSE_INIT_ARM
    611  1.1  nonaka 	printf("vectors ");
    612  1.1  nonaka #endif
    613  1.1  nonaka 	data_abort_handler_address = (u_int)data_abort_handler;
    614  1.1  nonaka 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    615  1.1  nonaka 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    616  1.1  nonaka 
    617  1.1  nonaka 	/* Initialise the undefined instruction handlers */
    618  1.1  nonaka #ifdef VERBOSE_INIT_ARM
    619  1.1  nonaka 	printf("undefined ");
    620  1.1  nonaka #endif
    621  1.1  nonaka 	undefined_init();
    622  1.1  nonaka 
    623  1.1  nonaka 	/* Load memory into UVM. */
    624  1.1  nonaka #ifdef VERBOSE_INIT_ARM
    625  1.1  nonaka 	printf("page ");
    626  1.1  nonaka #endif
    627  1.1  nonaka 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
    628  1.1  nonaka 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    629  1.1  nonaka 	    atop(physical_freestart), atop(physical_freeend),
    630  1.1  nonaka 	    VM_FREELIST_DEFAULT);
    631  1.1  nonaka 
    632  1.1  nonaka 	/* Boot strap pmap telling it where the kernel page table is */
    633  1.1  nonaka #ifdef VERBOSE_INIT_ARM
    634  1.1  nonaka 	printf("pmap ");
    635  1.1  nonaka #endif
    636  1.6    matt 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
    637  1.1  nonaka 
    638  1.1  nonaka 	/* Setup the IRQ system */
    639  1.1  nonaka #ifdef VERBOSE_INIT_ARM
    640  1.1  nonaka 	printf("irq ");
    641  1.1  nonaka #endif
    642  1.1  nonaka 	i80321_intr_init();
    643  1.1  nonaka 
    644  1.1  nonaka #ifdef VERBOSE_INIT_ARM
    645  1.1  nonaka 	printf("done.\n");
    646  1.1  nonaka #endif
    647  1.1  nonaka 
    648  1.1  nonaka #ifdef BOOTHOWTO
    649  1.1  nonaka 	boothowto = BOOTHOWTO;
    650  1.1  nonaka #endif
    651  1.1  nonaka 
    652  1.1  nonaka #if NKSYMS || defined(DDB) || defined(LKM)
    653  1.1  nonaka 	/* Firmware doesn't load symbols. */
    654  1.1  nonaka 	ksyms_init(0, NULL, NULL);
    655  1.1  nonaka #endif
    656  1.1  nonaka 
    657  1.1  nonaka #ifdef DDB
    658  1.1  nonaka 	db_machine_init();
    659  1.1  nonaka 	if (boothowto & RB_KDB)
    660  1.1  nonaka 		Debugger();
    661  1.1  nonaka #endif
    662  1.1  nonaka 
    663  1.1  nonaka 	/* We return the new stack pointer address */
    664  1.1  nonaka 	return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    665  1.1  nonaka }
    666  1.1  nonaka 
    667  1.1  nonaka /*
    668  1.1  nonaka  * void cpu_reboot(int howto, char *bootstr)
    669  1.1  nonaka  *
    670  1.1  nonaka  * Reboots the system
    671  1.1  nonaka  *
    672  1.1  nonaka  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    673  1.1  nonaka  * then reset the CPU.
    674  1.1  nonaka  */
    675  1.1  nonaka void
    676  1.1  nonaka cpu_reboot(int howto, char *bootstr)
    677  1.1  nonaka {
    678  1.1  nonaka 
    679  1.1  nonaka 	/*
    680  1.1  nonaka 	 * If we are still cold then hit the air brakes
    681  1.1  nonaka 	 * and crash to earth fast
    682  1.1  nonaka 	 */
    683  1.1  nonaka 	if (cold) {
    684  1.1  nonaka 		*(volatile uint8_t *)HDLG_LEDCTRL |= LEDCTRL_STAT_RED;
    685  1.1  nonaka 		howto |= RB_HALT;
    686  1.1  nonaka 		goto haltsys;
    687  1.1  nonaka 	}
    688  1.1  nonaka 
    689  1.1  nonaka 	/* Disable console buffering */
    690  1.1  nonaka 
    691  1.1  nonaka 	/*
    692  1.1  nonaka 	 * If RB_NOSYNC was not specified sync the discs.
    693  1.1  nonaka 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    694  1.1  nonaka 	 * unmount.  It looks like syslogd is getting woken up only to find
    695  1.1  nonaka 	 * that it cannot page part of the binary in as the filesystem has
    696  1.1  nonaka 	 * been unmounted.
    697  1.1  nonaka 	 */
    698  1.1  nonaka 	if ((howto & RB_NOSYNC) == 0) {
    699  1.1  nonaka 		bootsync();
    700  1.1  nonaka 		/*resettodr();*/
    701  1.1  nonaka 	}
    702  1.1  nonaka 
    703  1.1  nonaka 	/* wait 1s */
    704  1.1  nonaka 	delay(1 * 1000 * 1000);
    705  1.1  nonaka 
    706  1.1  nonaka 	/* Say NO to interrupts */
    707  1.1  nonaka 	splhigh();
    708  1.1  nonaka 
    709  1.1  nonaka 	/* Do a dump if requested. */
    710  1.1  nonaka 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
    711  1.1  nonaka 		dumpsys();
    712  1.1  nonaka 	}
    713  1.1  nonaka 
    714  1.1  nonaka haltsys:
    715  1.1  nonaka 	/* Run any shutdown hooks */
    716  1.1  nonaka 	doshutdownhooks();
    717  1.1  nonaka 
    718  1.1  nonaka 	/* Make sure IRQ's are disabled */
    719  1.1  nonaka 	IRQdisable;
    720  1.1  nonaka 
    721  1.1  nonaka 	if (howto & RB_HALT) {
    722  1.1  nonaka 		*(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_POWOFF;
    723  1.1  nonaka 		delay(3 * 1000 * 1000);	/* wait 3s */
    724  1.1  nonaka 
    725  1.1  nonaka 		printf("SHUTDOWN FAILED!\n");
    726  1.1  nonaka 		printf("The operating system has halted.\n");
    727  1.1  nonaka 		printf("Please press any key to reboot.\n\n");
    728  1.1  nonaka 		cngetc();
    729  1.1  nonaka 	}
    730  1.1  nonaka 
    731  1.1  nonaka 	printf("rebooting...\n\r");
    732  1.1  nonaka 
    733  1.1  nonaka 	(void)disable_interrupts(I32_bit|F32_bit);
    734  1.1  nonaka 	cpu_idcache_wbinv_all();
    735  1.1  nonaka 	cpu_drain_writebuf();
    736  1.1  nonaka 
    737  1.1  nonaka 	*(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_RESET;
    738  1.1  nonaka 	delay(1 * 1000 * 1000);	/* wait 1s */
    739  1.1  nonaka 
    740  1.1  nonaka 	/* ...and if that didn't work, just croak. */
    741  1.1  nonaka 	printf("RESET FAILED!\n");
    742  1.1  nonaka 	for (;;) {
    743  1.1  nonaka 		continue;
    744  1.1  nonaka 	}
    745  1.1  nonaka }
    746  1.1  nonaka 
    747  1.1  nonaka /*
    748  1.1  nonaka  * console
    749  1.1  nonaka  */
    750  1.1  nonaka #include "com.h"
    751  1.1  nonaka #if NCOM > 0
    752  1.1  nonaka #include <dev/ic/comreg.h>
    753  1.1  nonaka #include <dev/ic/comvar.h>
    754  1.1  nonaka #endif
    755  1.1  nonaka 
    756  1.1  nonaka /*
    757  1.1  nonaka  * Define the default console speed for the board.  This is generally
    758  1.1  nonaka  * what the firmware provided with the board defaults to.
    759  1.1  nonaka  */
    760  1.1  nonaka #ifndef CONSPEED
    761  1.1  nonaka #define CONSPEED B115200
    762  1.1  nonaka #endif /* ! CONSPEED */
    763  1.1  nonaka 
    764  1.1  nonaka #ifndef CONUNIT
    765  1.1  nonaka #define	CONUNIT	0
    766  1.1  nonaka #endif
    767  1.1  nonaka 
    768  1.1  nonaka #ifndef CONMODE
    769  1.1  nonaka #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    770  1.1  nonaka #endif
    771  1.1  nonaka 
    772  1.1  nonaka int comcnspeed = CONSPEED;
    773  1.1  nonaka int comcnmode = CONMODE;
    774  1.1  nonaka int comcnunit = CONUNIT;
    775  1.1  nonaka 
    776  1.1  nonaka #if KGDB
    777  1.1  nonaka #ifndef KGDB_DEVNAME
    778  1.1  nonaka #error Must define KGDB_DEVNAME
    779  1.1  nonaka #endif
    780  1.1  nonaka const char kgdb_devname[] = KGDB_DEVNAME;
    781  1.1  nonaka 
    782  1.1  nonaka #ifndef KGDB_DEVADDR
    783  1.1  nonaka #error Must define KGDB_DEVADDR
    784  1.1  nonaka #endif
    785  1.1  nonaka unsigned long kgdb_devaddr = KGDB_DEVADDR;
    786  1.1  nonaka 
    787  1.1  nonaka #ifndef KGDB_DEVRATE
    788  1.1  nonaka #define KGDB_DEVRATE	CONSPEED
    789  1.1  nonaka #endif
    790  1.1  nonaka int kgdb_devrate = KGDB_DEVRATE;
    791  1.1  nonaka 
    792  1.1  nonaka #ifndef KGDB_DEVMODE
    793  1.1  nonaka #define KGDB_DEVMODE	CONMODE
    794  1.1  nonaka #endif
    795  1.1  nonaka int kgdb_devmode = KGDB_DEVMODE;
    796  1.1  nonaka #endif /* KGDB */
    797  1.1  nonaka 
    798  1.1  nonaka void
    799  1.1  nonaka consinit(void)
    800  1.1  nonaka {
    801  1.1  nonaka 	static const bus_addr_t comcnaddrs[] = {
    802  1.1  nonaka 		HDLG_UART1,		/* com0 */
    803  1.1  nonaka 	};
    804  1.1  nonaka 	static int consinit_called;
    805  1.1  nonaka 
    806  1.1  nonaka 	if (consinit_called)
    807  1.1  nonaka 		return;
    808  1.1  nonaka 	consinit_called = 1;
    809  1.1  nonaka 
    810  1.1  nonaka 	/*
    811  1.1  nonaka 	 * Console devices are mapped VA==PA.  Our devmap reflects
    812  1.1  nonaka 	 * this, so register it now so drivers can map the console
    813  1.1  nonaka 	 * device.
    814  1.1  nonaka 	 */
    815  1.1  nonaka 	pmap_devmap_register(hdlg_devmap);
    816  1.1  nonaka 
    817  1.1  nonaka #if NCOM > 0
    818  1.1  nonaka 	if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
    819  1.1  nonaka 	    COM_FREQ, COM_TYPE_NORMAL, comcnmode))
    820  1.1  nonaka 		panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
    821  1.1  nonaka #else
    822  1.1  nonaka 	panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
    823  1.1  nonaka #endif
    824  1.1  nonaka #if KGDB
    825  1.1  nonaka #if NCOM > 0
    826  1.1  nonaka 	if (strcmp(kgdb_devname, "com") == 0) {
    827  1.1  nonaka 		com_kgdb_attach(&obio_bs_tag, kgdb_devaddr, kgdb_devrate,
    828  1.1  nonaka 				COM_FREQ, COM_TYPE_NORMAL, kgdb_devmode);
    829  1.1  nonaka 	}
    830  1.1  nonaka #endif	/* NCOM > 0 */
    831  1.1  nonaka #endif	/* KGDB */
    832  1.1  nonaka }
    833