hdlg_machdep.c revision 1.2.10.3 1 /* $NetBSD: hdlg_machdep.c,v 1.2.10.3 2006/12/30 20:45:50 yamt Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1997,1998 Mark Brinicombe.
40 * Copyright (c) 1997,1998 Causality Limited.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by Mark Brinicombe
54 * for the NetBSD Project.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * Machine dependant functions for kernel setup for GigaLANDISK
72 * using RedBoot firmware.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: hdlg_machdep.c,v 1.2.10.3 2006/12/30 20:45:50 yamt Exp $");
77
78 #include "opt_ddb.h"
79 #include "opt_kgdb.h"
80 #include "opt_pmap_debug.h"
81
82 #include <sys/param.h>
83 #include <sys/device.h>
84 #include <sys/systm.h>
85 #include <sys/kernel.h>
86 #include <sys/exec.h>
87 #include <sys/proc.h>
88 #include <sys/msgbuf.h>
89 #include <sys/reboot.h>
90 #include <sys/termios.h>
91 #include <sys/ksyms.h>
92
93 #include <uvm/uvm_extern.h>
94
95 #include <dev/cons.h>
96
97 #include <machine/db_machdep.h>
98 #include <ddb/db_sym.h>
99 #include <ddb/db_extern.h>
100
101 #include <machine/bootconfig.h>
102 #include <machine/bus.h>
103 #include <machine/cpu.h>
104 #include <machine/frame.h>
105 #include <arm/undefined.h>
106
107 #include <arm/arm32/machdep.h>
108
109 #include <arm/xscale/i80321reg.h>
110 #include <arm/xscale/i80321var.h>
111
112 #include <dev/pci/ppbreg.h>
113
114 #include <evbarm/hdl_g/hdlgreg.h>
115 #include <evbarm/hdl_g/hdlgvar.h>
116 #include <evbarm/hdl_g/obiovar.h>
117
118 #include "opt_ipkdb.h"
119 #include "ksyms.h"
120
121 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
122 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
123 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
124
125 /*
126 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
127 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
128 */
129 #define KERNEL_VM_SIZE 0x0C000000
130
131 /*
132 * Address to call from cpu_reset() to reset the machine.
133 * This is machine architecture dependant as it varies depending
134 * on where the ROM appears when you turn the MMU off.
135 *
136 * XXX Not actually used on hdlg -- clean up the generic
137 * ARM code.
138 */
139 u_int cpu_reset_address = 0x00000000;
140
141 /* Define various stack sizes in pages */
142 #define IRQ_STACK_SIZE 1
143 #define ABT_STACK_SIZE 1
144 #ifdef IPKDB
145 #define UND_STACK_SIZE 2
146 #else
147 #define UND_STACK_SIZE 1
148 #endif
149
150 BootConfig bootconfig; /* Boot config storage */
151 char *boot_args = NULL;
152 char *boot_file = NULL;
153
154 vm_offset_t physical_start;
155 vm_offset_t physical_freestart;
156 vm_offset_t physical_freeend;
157 vm_offset_t physical_end;
158 u_int free_pages;
159 vm_offset_t pagetables_start;
160 int physmem = 0;
161
162 /*int debug_flags;*/
163 #ifndef PMAP_STATIC_L1S
164 int max_processes = 64; /* Default number */
165 #endif /* !PMAP_STATIC_L1S */
166
167 /* Physical and virtual addresses for some global pages */
168 pv_addr_t systempage;
169 pv_addr_t irqstack;
170 pv_addr_t undstack;
171 pv_addr_t abtstack;
172 pv_addr_t kernelstack;
173 pv_addr_t minidataclean;
174
175 vm_offset_t msgbufphys;
176
177 extern u_int data_abort_handler_address;
178 extern u_int prefetch_abort_handler_address;
179 extern u_int undefined_handler_address;
180
181 #ifdef PMAP_DEBUG
182 extern int pmap_debug_level;
183 #endif
184
185 #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
186
187 #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
188 #define KERNEL_PT_KERNEL_NUM 4
189
190 /* L2 table for mapping i80321 */
191 #define KERNEL_PT_IOPXS (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
192
193 /* L2 tables for mapping kernel VM */
194 #define KERNEL_PT_VMDATA (KERNEL_PT_IOPXS + 1)
195 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
196 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
197
198 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
199
200 struct user *proc0paddr;
201
202 /* Prototypes */
203 void consinit(void);
204
205 /* Static device mappings. */
206 static const struct pmap_devmap hdlg_devmap[] = {
207 /*
208 * Map the on-board devices VA == PA so that we can access them
209 * with the MMU on or off.
210 */
211 {
212 HDLG_OBIO_BASE,
213 HDLG_OBIO_BASE,
214 HDLG_OBIO_SIZE,
215 VM_PROT_READ|VM_PROT_WRITE,
216 PTE_NOCACHE,
217 },
218
219 {
220 HDLG_IOW_VBASE,
221 VERDE_OUT_XLATE_IO_WIN0_BASE,
222 VERDE_OUT_XLATE_IO_WIN_SIZE,
223 VM_PROT_READ|VM_PROT_WRITE,
224 PTE_NOCACHE,
225 },
226
227 {
228 HDLG_80321_VBASE,
229 VERDE_PMMR_BASE,
230 VERDE_PMMR_SIZE,
231 VM_PROT_READ|VM_PROT_WRITE,
232 PTE_NOCACHE,
233 },
234
235 {
236 0,
237 0,
238 0,
239 0,
240 0,
241 }
242 };
243
244 static void
245 hardclock_hook(void)
246 {
247
248 /* Nothing to do */
249 }
250
251 /*
252 * u_int initarm(...)
253 *
254 * Initial entry point on startup. This gets called before main() is
255 * entered.
256 * It should be responsible for setting up everything that must be
257 * in place when main is called.
258 * This includes
259 * Taking a copy of the boot configuration structure.
260 * Initialising the physical console so characters can be printed.
261 * Setting up page tables for the kernel
262 * Relocating the kernel to the bottom of physical memory
263 */
264 u_int
265 initarm(void *arg)
266 {
267 extern vaddr_t xscale_cache_clean_addr;
268 #ifdef DIAGNOSTIC
269 extern vsize_t xscale_minidata_clean_size;
270 #endif
271 int loop;
272 int loop1;
273 u_int l1pagetable;
274 pv_addr_t kernel_l1pt;
275 paddr_t memstart;
276 psize_t memsize;
277
278 /* Calibrate the delay loop. */
279 i80321_calibrate_delay();
280 i80321_hardclock_hook = hardclock_hook;
281
282 /*
283 * Since we map the on-board devices VA==PA, and the kernel
284 * is running VA==PA, it's possible for us to initialize
285 * the console now.
286 */
287 consinit();
288
289 #ifdef VERBOSE_INIT_ARM
290 /* Talk to the user */
291 printf("\nNetBSD/evbarm (HDL-G) booting ...\n");
292 #endif
293
294 /*
295 * Heads up ... Setup the CPU / MMU / TLB functions
296 */
297 if (set_cpufuncs())
298 panic("CPU not recognized!");
299
300 /*
301 * We are currently running with the MMU enabled and the
302 * entire address space mapped VA==PA, except for the
303 * first 64M of RAM is also double-mapped at 0xc0000000.
304 * There is an L1 page table at 0xa0004000.
305 */
306
307 /*
308 * Fetch the SDRAM start/size from the i80321 SDRAM configuration
309 * registers.
310 */
311 i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE,
312 &memstart, &memsize);
313
314 #ifdef VERBOSE_INIT_ARM
315 printf("initarm: Configuring system ...\n");
316 #endif
317
318 /* Fake bootconfig structure for the benefit of pmap.c */
319 /* XXX must make the memory description h/w independent */
320 bootconfig.dramblocks = 1;
321 bootconfig.dram[0].address = memstart;
322 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
323
324 /*
325 * Set up the variables that define the availablilty of
326 * physical memory. For now, we're going to set
327 * physical_freestart to 0xa0200000 (where the kernel
328 * was loaded), and allocate the memory we need downwards.
329 * If we get too close to the L1 table that we set up, we
330 * will panic. We will update physical_freestart and
331 * physical_freeend later to reflect what pmap_bootstrap()
332 * wants to see.
333 *
334 * XXX pmap_bootstrap() needs an enema.
335 */
336 physical_start = bootconfig.dram[0].address;
337 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
338
339 physical_freestart = 0xa0009000UL;
340 physical_freeend = 0xa0200000UL;
341
342 physmem = (physical_end - physical_start) / PAGE_SIZE;
343
344 #ifdef VERBOSE_INIT_ARM
345 /* Tell the user about the memory */
346 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
347 physical_start, physical_end - 1);
348 #endif
349
350 /*
351 * Okay, the kernel starts 2MB in from the bottom of physical
352 * memory. We are going to allocate our bootstrap pages downwards
353 * from there.
354 *
355 * We need to allocate some fixed page tables to get the kernel
356 * going. We allocate one page directory and a number of page
357 * tables and store the physical addresses in the kernel_pt_table
358 * array.
359 *
360 * The kernel page directory must be on a 16K boundary. The page
361 * tables must be on 4K boundaries. What we do is allocate the
362 * page directory on the first 16K boundary that we encounter, and
363 * the page tables on 4K boundaries otherwise. Since we allocate
364 * at least 3 L2 page tables, we are guaranteed to encounter at
365 * least one 16K aligned region.
366 */
367
368 #ifdef VERBOSE_INIT_ARM
369 printf("Allocating page tables\n");
370 #endif
371
372 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
373
374 #ifdef VERBOSE_INIT_ARM
375 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
376 physical_freestart, free_pages, free_pages);
377 #endif
378
379 /* Define a macro to simplify memory allocation */
380 #define valloc_pages(var, np) \
381 alloc_pages((var).pv_pa, (np)); \
382 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
383
384 #define alloc_pages(var, np) \
385 physical_freeend -= ((np) * PAGE_SIZE); \
386 if (physical_freeend < physical_freestart) \
387 panic("initarm: out of memory"); \
388 (var) = physical_freeend; \
389 free_pages -= (np); \
390 memset((char *)(var), 0, ((np) * PAGE_SIZE));
391
392 loop1 = 0;
393 kernel_l1pt.pv_pa = 0;
394 kernel_l1pt.pv_va = 0;
395 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
396 /* Are we 16KB aligned for an L1 ? */
397 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
398 && kernel_l1pt.pv_pa == 0) {
399 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
400 } else {
401 valloc_pages(kernel_pt_table[loop1],
402 L2_TABLE_SIZE / PAGE_SIZE);
403 ++loop1;
404 }
405 }
406
407 /* This should never be able to happen but better confirm that. */
408 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
409 panic("initarm: Failed to align the kernel page directory");
410
411 /*
412 * Allocate a page for the system page mapped to V0x00000000
413 * This page will just contain the system vectors and can be
414 * shared by all processes.
415 */
416 alloc_pages(systempage.pv_pa, 1);
417
418 /* Allocate stacks for all modes */
419 valloc_pages(irqstack, IRQ_STACK_SIZE);
420 valloc_pages(abtstack, ABT_STACK_SIZE);
421 valloc_pages(undstack, UND_STACK_SIZE);
422 valloc_pages(kernelstack, UPAGES);
423
424 /* Allocate enough pages for cleaning the Mini-Data cache. */
425 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
426 valloc_pages(minidataclean, 1);
427
428 #ifdef VERBOSE_INIT_ARM
429 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
430 irqstack.pv_va);
431 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
432 abtstack.pv_va);
433 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
434 undstack.pv_va);
435 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
436 kernelstack.pv_va);
437 #endif
438
439 /*
440 * XXX Defer this to later so that we can reclaim the memory
441 * XXX used by the RedBoot page tables.
442 */
443 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
444
445 /*
446 * Ok we have allocated physical pages for the primary kernel
447 * page tables
448 */
449
450 #ifdef VERBOSE_INIT_ARM
451 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
452 #endif
453
454 /*
455 * Now we start construction of the L1 page table
456 * We start by mapping the L2 page tables into the L1.
457 * This means that we can replace L1 mappings later on if necessary
458 */
459 l1pagetable = kernel_l1pt.pv_pa;
460
461 /* Map the L2 pages tables in the L1 page table */
462 pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
463 &kernel_pt_table[KERNEL_PT_SYS]);
464 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
465 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
466 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
467 pmap_link_l2pt(l1pagetable, HDLG_IOPXS_VBASE,
468 &kernel_pt_table[KERNEL_PT_IOPXS]);
469 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
470 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
471 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
472
473 /* update the top of the kernel VM */
474 pmap_curmaxkvaddr =
475 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
476
477 #ifdef VERBOSE_INIT_ARM
478 printf("Mapping kernel\n");
479 #endif
480
481 /* Now we fill in the L2 pagetable for the kernel static code/data */
482 {
483 extern char etext[], _end[];
484 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
485 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
486 u_int logical;
487
488 textsize = (textsize + PGOFSET) & ~PGOFSET;
489 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
490
491 logical = 0x00200000; /* offset of kernel in RAM */
492
493 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
494 physical_start + logical, textsize,
495 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
496 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
497 physical_start + logical, totalsize - textsize,
498 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
499 }
500
501 #ifdef VERBOSE_INIT_ARM
502 printf("Constructing L2 page tables\n");
503 #endif
504
505 /* Map the stack pages */
506 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
507 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
508 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
509 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
510 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
511 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
512 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
513 UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
514
515 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
516 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
517
518 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
519 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
520 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
521 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
522 }
523
524 /* Map the Mini-Data cache clean area. */
525 xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
526 minidataclean.pv_pa);
527
528 /* Map the vector page. */
529 pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
530 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
531
532 /* Map the statically mapped devices. */
533 pmap_devmap_bootstrap(l1pagetable, hdlg_devmap);
534
535 /*
536 * Give the XScale global cache clean code an appropriately
537 * sized chunk of unmapped VA space starting at 0xff000000
538 * (our device mappings end before this address).
539 */
540 xscale_cache_clean_addr = 0xff000000U;
541
542 /*
543 * Now we have the real page tables in place so we can switch to them.
544 * Once this is done we will be running with the REAL kernel page
545 * tables.
546 */
547
548 /*
549 * Update the physical_freestart/physical_freeend/free_pages
550 * variables.
551 */
552 {
553 extern char _end[];
554
555 physical_freestart = physical_start +
556 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
557 KERNEL_BASE);
558 physical_freeend = physical_end;
559 free_pages =
560 (physical_freeend - physical_freestart) / PAGE_SIZE;
561 }
562
563 /* Switch tables */
564 #ifdef VERBOSE_INIT_ARM
565 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
566 physical_freestart, free_pages, free_pages);
567 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
568 #endif
569 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
570 setttb(kernel_l1pt.pv_pa);
571 cpu_tlb_flushID();
572 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
573
574 /*
575 * Moved from cpu_startup() as data_abort_handler() references
576 * this during uvm init
577 */
578 proc0paddr = (struct user *)kernelstack.pv_va;
579 lwp0.l_addr = proc0paddr;
580
581 #ifdef VERBOSE_INIT_ARM
582 printf("done!\n");
583 #endif
584
585 #ifdef VERBOSE_INIT_ARM
586 printf("bootstrap done.\n");
587 #endif
588
589 arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
590
591 /*
592 * Pages were allocated during the secondary bootstrap for the
593 * stacks for different CPU modes.
594 * We must now set the r13 registers in the different CPU modes to
595 * point to these stacks.
596 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
597 * of the stack memory.
598 */
599 #ifdef VERBOSE_INIT_ARM
600 printf("init subsystems: stacks ");
601 #endif
602
603 set_stackptr(PSR_IRQ32_MODE,
604 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
605 set_stackptr(PSR_ABT32_MODE,
606 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
607 set_stackptr(PSR_UND32_MODE,
608 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
609
610 /*
611 * Well we should set a data abort handler.
612 * Once things get going this will change as we will need a proper
613 * handler.
614 * Until then we will use a handler that just panics but tells us
615 * why.
616 * Initialisation of the vectors will just panic on a data abort.
617 * This just fills in a slightly better one.
618 */
619 #ifdef VERBOSE_INIT_ARM
620 printf("vectors ");
621 #endif
622 data_abort_handler_address = (u_int)data_abort_handler;
623 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
624 undefined_handler_address = (u_int)undefinedinstruction_bounce;
625
626 /* Initialise the undefined instruction handlers */
627 #ifdef VERBOSE_INIT_ARM
628 printf("undefined ");
629 #endif
630 undefined_init();
631
632 /* Load memory into UVM. */
633 #ifdef VERBOSE_INIT_ARM
634 printf("page ");
635 #endif
636 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
637 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
638 atop(physical_freestart), atop(physical_freeend),
639 VM_FREELIST_DEFAULT);
640
641 /* Boot strap pmap telling it where the kernel page table is */
642 #ifdef VERBOSE_INIT_ARM
643 printf("pmap ");
644 #endif
645 pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
646 KERNEL_VM_BASE + KERNEL_VM_SIZE);
647
648 /* Setup the IRQ system */
649 #ifdef VERBOSE_INIT_ARM
650 printf("irq ");
651 #endif
652 i80321_intr_init();
653
654 #ifdef VERBOSE_INIT_ARM
655 printf("done.\n");
656 #endif
657
658 #ifdef BOOTHOWTO
659 boothowto = BOOTHOWTO;
660 #endif
661
662 #ifdef IPKDB
663 /* Initialise ipkdb */
664 ipkdb_init();
665 if (boothowto & RB_KDB)
666 ipkdb_connect(0);
667 #endif
668
669 #if NKSYMS || defined(DDB) || defined(LKM)
670 /* Firmware doesn't load symbols. */
671 ksyms_init(0, NULL, NULL);
672 #endif
673
674 #ifdef DDB
675 db_machine_init();
676 if (boothowto & RB_KDB)
677 Debugger();
678 #endif
679
680 /* We return the new stack pointer address */
681 return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
682 }
683
684 /*
685 * void cpu_reboot(int howto, char *bootstr)
686 *
687 * Reboots the system
688 *
689 * Deal with any syncing, unmounting, dumping and shutdown hooks,
690 * then reset the CPU.
691 */
692 void
693 cpu_reboot(int howto, char *bootstr)
694 {
695
696 /*
697 * If we are still cold then hit the air brakes
698 * and crash to earth fast
699 */
700 if (cold) {
701 *(volatile uint8_t *)HDLG_LEDCTRL |= LEDCTRL_STAT_RED;
702 howto |= RB_HALT;
703 goto haltsys;
704 }
705
706 /* Disable console buffering */
707
708 /*
709 * If RB_NOSYNC was not specified sync the discs.
710 * Note: Unless cold is set to 1 here, syslogd will die during the
711 * unmount. It looks like syslogd is getting woken up only to find
712 * that it cannot page part of the binary in as the filesystem has
713 * been unmounted.
714 */
715 if ((howto & RB_NOSYNC) == 0) {
716 bootsync();
717 /*resettodr();*/
718 }
719
720 /* wait 1s */
721 delay(1 * 1000 * 1000);
722
723 /* Say NO to interrupts */
724 splhigh();
725
726 /* Do a dump if requested. */
727 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
728 dumpsys();
729 }
730
731 haltsys:
732 /* Run any shutdown hooks */
733 doshutdownhooks();
734
735 /* Make sure IRQ's are disabled */
736 IRQdisable;
737
738 if (howto & RB_HALT) {
739 *(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_POWOFF;
740 delay(3 * 1000 * 1000); /* wait 3s */
741
742 printf("SHUTDOWN FAILED!\n");
743 printf("The operating system has halted.\n");
744 printf("Please press any key to reboot.\n\n");
745 cngetc();
746 }
747
748 printf("rebooting...\n\r");
749
750 (void)disable_interrupts(I32_bit|F32_bit);
751 cpu_idcache_wbinv_all();
752 cpu_drain_writebuf();
753
754 *(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_RESET;
755 delay(1 * 1000 * 1000); /* wait 1s */
756
757 /* ...and if that didn't work, just croak. */
758 printf("RESET FAILED!\n");
759 for (;;) {
760 continue;
761 }
762 }
763
764 /*
765 * console
766 */
767 #include "com.h"
768 #if NCOM > 0
769 #include <dev/ic/comreg.h>
770 #include <dev/ic/comvar.h>
771 #endif
772
773 /*
774 * Define the default console speed for the board. This is generally
775 * what the firmware provided with the board defaults to.
776 */
777 #ifndef CONSPEED
778 #define CONSPEED B115200
779 #endif /* ! CONSPEED */
780
781 #ifndef CONUNIT
782 #define CONUNIT 0
783 #endif
784
785 #ifndef CONMODE
786 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
787 #endif
788
789 int comcnspeed = CONSPEED;
790 int comcnmode = CONMODE;
791 int comcnunit = CONUNIT;
792
793 #if KGDB
794 #ifndef KGDB_DEVNAME
795 #error Must define KGDB_DEVNAME
796 #endif
797 const char kgdb_devname[] = KGDB_DEVNAME;
798
799 #ifndef KGDB_DEVADDR
800 #error Must define KGDB_DEVADDR
801 #endif
802 unsigned long kgdb_devaddr = KGDB_DEVADDR;
803
804 #ifndef KGDB_DEVRATE
805 #define KGDB_DEVRATE CONSPEED
806 #endif
807 int kgdb_devrate = KGDB_DEVRATE;
808
809 #ifndef KGDB_DEVMODE
810 #define KGDB_DEVMODE CONMODE
811 #endif
812 int kgdb_devmode = KGDB_DEVMODE;
813 #endif /* KGDB */
814
815 void
816 consinit(void)
817 {
818 static const bus_addr_t comcnaddrs[] = {
819 HDLG_UART1, /* com0 */
820 };
821 static int consinit_called;
822
823 if (consinit_called)
824 return;
825 consinit_called = 1;
826
827 /*
828 * Console devices are mapped VA==PA. Our devmap reflects
829 * this, so register it now so drivers can map the console
830 * device.
831 */
832 pmap_devmap_register(hdlg_devmap);
833
834 #if NCOM > 0
835 if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
836 COM_FREQ, COM_TYPE_NORMAL, comcnmode))
837 panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
838 #else
839 panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
840 #endif
841 #if KGDB
842 #if NCOM > 0
843 if (strcmp(kgdb_devname, "com") == 0) {
844 com_kgdb_attach(&obio_bs_tag, kgdb_devaddr, kgdb_devrate,
845 COM_FREQ, COM_TYPE_NORMAL, kgdb_devmode);
846 }
847 #endif /* NCOM > 0 */
848 #endif /* KGDB */
849 }
850