hdlg_machdep.c revision 1.4.36.1 1 /* $NetBSD: hdlg_machdep.c,v 1.4.36.1 2008/01/20 17:51:13 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1997,1998 Mark Brinicombe.
40 * Copyright (c) 1997,1998 Causality Limited.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by Mark Brinicombe
54 * for the NetBSD Project.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * Machine dependant functions for kernel setup for GigaLANDISK
72 * using RedBoot firmware.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: hdlg_machdep.c,v 1.4.36.1 2008/01/20 17:51:13 bouyer Exp $");
77
78 #include "opt_ddb.h"
79 #include "opt_kgdb.h"
80 #include "opt_pmap_debug.h"
81
82 #include <sys/param.h>
83 #include <sys/device.h>
84 #include <sys/systm.h>
85 #include <sys/kernel.h>
86 #include <sys/exec.h>
87 #include <sys/proc.h>
88 #include <sys/msgbuf.h>
89 #include <sys/reboot.h>
90 #include <sys/termios.h>
91 #include <sys/ksyms.h>
92
93 #include <uvm/uvm_extern.h>
94
95 #include <dev/cons.h>
96
97 #include <machine/db_machdep.h>
98 #include <ddb/db_sym.h>
99 #include <ddb/db_extern.h>
100
101 #include <machine/bootconfig.h>
102 #include <machine/bus.h>
103 #include <machine/cpu.h>
104 #include <machine/frame.h>
105 #include <arm/undefined.h>
106
107 #include <arm/arm32/machdep.h>
108
109 #include <arm/xscale/i80321reg.h>
110 #include <arm/xscale/i80321var.h>
111
112 #include <dev/pci/ppbreg.h>
113
114 #include <evbarm/hdl_g/hdlgreg.h>
115 #include <evbarm/hdl_g/hdlgvar.h>
116 #include <evbarm/hdl_g/obiovar.h>
117
118 #include "ksyms.h"
119
120 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
121 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
122 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
123
124 /*
125 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
126 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
127 */
128 #define KERNEL_VM_SIZE 0x0C000000
129
130 /*
131 * Address to call from cpu_reset() to reset the machine.
132 * This is machine architecture dependant as it varies depending
133 * on where the ROM appears when you turn the MMU off.
134 *
135 * XXX Not actually used on hdlg -- clean up the generic
136 * ARM code.
137 */
138 u_int cpu_reset_address = 0x00000000;
139
140 /* Define various stack sizes in pages */
141 #define IRQ_STACK_SIZE 1
142 #define ABT_STACK_SIZE 1
143 #define UND_STACK_SIZE 1
144
145 BootConfig bootconfig; /* Boot config storage */
146 char *boot_args = NULL;
147 char *boot_file = NULL;
148
149 vm_offset_t physical_start;
150 vm_offset_t physical_freestart;
151 vm_offset_t physical_freeend;
152 vm_offset_t physical_end;
153 u_int free_pages;
154 vm_offset_t pagetables_start;
155 int physmem = 0;
156
157 /*int debug_flags;*/
158 #ifndef PMAP_STATIC_L1S
159 int max_processes = 64; /* Default number */
160 #endif /* !PMAP_STATIC_L1S */
161
162 /* Physical and virtual addresses for some global pages */
163 pv_addr_t systempage;
164 pv_addr_t irqstack;
165 pv_addr_t undstack;
166 pv_addr_t abtstack;
167 pv_addr_t kernelstack;
168 pv_addr_t minidataclean;
169
170 vm_offset_t msgbufphys;
171
172 extern u_int data_abort_handler_address;
173 extern u_int prefetch_abort_handler_address;
174 extern u_int undefined_handler_address;
175
176 #ifdef PMAP_DEBUG
177 extern int pmap_debug_level;
178 #endif
179
180 #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
181
182 #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
183 #define KERNEL_PT_KERNEL_NUM 4
184
185 /* L2 table for mapping i80321 */
186 #define KERNEL_PT_IOPXS (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
187
188 /* L2 tables for mapping kernel VM */
189 #define KERNEL_PT_VMDATA (KERNEL_PT_IOPXS + 1)
190 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
191 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
192
193 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
194
195 struct user *proc0paddr;
196
197 /* Prototypes */
198 void consinit(void);
199
200 /* Static device mappings. */
201 static const struct pmap_devmap hdlg_devmap[] = {
202 /*
203 * Map the on-board devices VA == PA so that we can access them
204 * with the MMU on or off.
205 */
206 {
207 HDLG_OBIO_BASE,
208 HDLG_OBIO_BASE,
209 HDLG_OBIO_SIZE,
210 VM_PROT_READ|VM_PROT_WRITE,
211 PTE_NOCACHE,
212 },
213
214 {
215 HDLG_IOW_VBASE,
216 VERDE_OUT_XLATE_IO_WIN0_BASE,
217 VERDE_OUT_XLATE_IO_WIN_SIZE,
218 VM_PROT_READ|VM_PROT_WRITE,
219 PTE_NOCACHE,
220 },
221
222 {
223 HDLG_80321_VBASE,
224 VERDE_PMMR_BASE,
225 VERDE_PMMR_SIZE,
226 VM_PROT_READ|VM_PROT_WRITE,
227 PTE_NOCACHE,
228 },
229
230 {
231 0,
232 0,
233 0,
234 0,
235 0,
236 }
237 };
238
239 static void
240 hardclock_hook(void)
241 {
242
243 /* Nothing to do */
244 }
245
246 /*
247 * u_int initarm(...)
248 *
249 * Initial entry point on startup. This gets called before main() is
250 * entered.
251 * It should be responsible for setting up everything that must be
252 * in place when main is called.
253 * This includes
254 * Taking a copy of the boot configuration structure.
255 * Initialising the physical console so characters can be printed.
256 * Setting up page tables for the kernel
257 * Relocating the kernel to the bottom of physical memory
258 */
259 u_int
260 initarm(void *arg)
261 {
262 extern vaddr_t xscale_cache_clean_addr;
263 #ifdef DIAGNOSTIC
264 extern vsize_t xscale_minidata_clean_size;
265 #endif
266 int loop;
267 int loop1;
268 u_int l1pagetable;
269 pv_addr_t kernel_l1pt;
270 paddr_t memstart;
271 psize_t memsize;
272
273 /* Calibrate the delay loop. */
274 i80321_calibrate_delay();
275 i80321_hardclock_hook = hardclock_hook;
276
277 /*
278 * Since we map the on-board devices VA==PA, and the kernel
279 * is running VA==PA, it's possible for us to initialize
280 * the console now.
281 */
282 consinit();
283
284 #ifdef VERBOSE_INIT_ARM
285 /* Talk to the user */
286 printf("\nNetBSD/evbarm (HDL-G) booting ...\n");
287 #endif
288
289 /*
290 * Heads up ... Setup the CPU / MMU / TLB functions
291 */
292 if (set_cpufuncs())
293 panic("CPU not recognized!");
294
295 /*
296 * We are currently running with the MMU enabled and the
297 * entire address space mapped VA==PA, except for the
298 * first 64M of RAM is also double-mapped at 0xc0000000.
299 * There is an L1 page table at 0xa0004000.
300 */
301
302 /*
303 * Fetch the SDRAM start/size from the i80321 SDRAM configuration
304 * registers.
305 */
306 i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE,
307 &memstart, &memsize);
308
309 #ifdef VERBOSE_INIT_ARM
310 printf("initarm: Configuring system ...\n");
311 #endif
312
313 /* Fake bootconfig structure for the benefit of pmap.c */
314 /* XXX must make the memory description h/w independent */
315 bootconfig.dramblocks = 1;
316 bootconfig.dram[0].address = memstart;
317 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
318
319 /*
320 * Set up the variables that define the availablilty of
321 * physical memory. For now, we're going to set
322 * physical_freestart to 0xa0200000 (where the kernel
323 * was loaded), and allocate the memory we need downwards.
324 * If we get too close to the L1 table that we set up, we
325 * will panic. We will update physical_freestart and
326 * physical_freeend later to reflect what pmap_bootstrap()
327 * wants to see.
328 *
329 * XXX pmap_bootstrap() needs an enema.
330 */
331 physical_start = bootconfig.dram[0].address;
332 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
333
334 physical_freestart = 0xa0009000UL;
335 physical_freeend = 0xa0200000UL;
336
337 physmem = (physical_end - physical_start) / PAGE_SIZE;
338
339 #ifdef VERBOSE_INIT_ARM
340 /* Tell the user about the memory */
341 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
342 physical_start, physical_end - 1);
343 #endif
344
345 /*
346 * Okay, the kernel starts 2MB in from the bottom of physical
347 * memory. We are going to allocate our bootstrap pages downwards
348 * from there.
349 *
350 * We need to allocate some fixed page tables to get the kernel
351 * going. We allocate one page directory and a number of page
352 * tables and store the physical addresses in the kernel_pt_table
353 * array.
354 *
355 * The kernel page directory must be on a 16K boundary. The page
356 * tables must be on 4K boundaries. What we do is allocate the
357 * page directory on the first 16K boundary that we encounter, and
358 * the page tables on 4K boundaries otherwise. Since we allocate
359 * at least 3 L2 page tables, we are guaranteed to encounter at
360 * least one 16K aligned region.
361 */
362
363 #ifdef VERBOSE_INIT_ARM
364 printf("Allocating page tables\n");
365 #endif
366
367 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
368
369 #ifdef VERBOSE_INIT_ARM
370 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
371 physical_freestart, free_pages, free_pages);
372 #endif
373
374 /* Define a macro to simplify memory allocation */
375 #define valloc_pages(var, np) \
376 alloc_pages((var).pv_pa, (np)); \
377 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
378
379 #define alloc_pages(var, np) \
380 physical_freeend -= ((np) * PAGE_SIZE); \
381 if (physical_freeend < physical_freestart) \
382 panic("initarm: out of memory"); \
383 (var) = physical_freeend; \
384 free_pages -= (np); \
385 memset((char *)(var), 0, ((np) * PAGE_SIZE));
386
387 loop1 = 0;
388 kernel_l1pt.pv_pa = 0;
389 kernel_l1pt.pv_va = 0;
390 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
391 /* Are we 16KB aligned for an L1 ? */
392 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
393 && kernel_l1pt.pv_pa == 0) {
394 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
395 } else {
396 valloc_pages(kernel_pt_table[loop1],
397 L2_TABLE_SIZE / PAGE_SIZE);
398 ++loop1;
399 }
400 }
401
402 /* This should never be able to happen but better confirm that. */
403 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
404 panic("initarm: Failed to align the kernel page directory");
405
406 /*
407 * Allocate a page for the system page mapped to V0x00000000
408 * This page will just contain the system vectors and can be
409 * shared by all processes.
410 */
411 alloc_pages(systempage.pv_pa, 1);
412
413 /* Allocate stacks for all modes */
414 valloc_pages(irqstack, IRQ_STACK_SIZE);
415 valloc_pages(abtstack, ABT_STACK_SIZE);
416 valloc_pages(undstack, UND_STACK_SIZE);
417 valloc_pages(kernelstack, UPAGES);
418
419 /* Allocate enough pages for cleaning the Mini-Data cache. */
420 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
421 valloc_pages(minidataclean, 1);
422
423 #ifdef VERBOSE_INIT_ARM
424 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
425 irqstack.pv_va);
426 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
427 abtstack.pv_va);
428 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
429 undstack.pv_va);
430 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
431 kernelstack.pv_va);
432 #endif
433
434 /*
435 * XXX Defer this to later so that we can reclaim the memory
436 * XXX used by the RedBoot page tables.
437 */
438 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
439
440 /*
441 * Ok we have allocated physical pages for the primary kernel
442 * page tables
443 */
444
445 #ifdef VERBOSE_INIT_ARM
446 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
447 #endif
448
449 /*
450 * Now we start construction of the L1 page table
451 * We start by mapping the L2 page tables into the L1.
452 * This means that we can replace L1 mappings later on if necessary
453 */
454 l1pagetable = kernel_l1pt.pv_pa;
455
456 /* Map the L2 pages tables in the L1 page table */
457 pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
458 &kernel_pt_table[KERNEL_PT_SYS]);
459 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
460 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
461 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
462 pmap_link_l2pt(l1pagetable, HDLG_IOPXS_VBASE,
463 &kernel_pt_table[KERNEL_PT_IOPXS]);
464 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
465 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
466 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
467
468 /* update the top of the kernel VM */
469 pmap_curmaxkvaddr =
470 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
471
472 #ifdef VERBOSE_INIT_ARM
473 printf("Mapping kernel\n");
474 #endif
475
476 /* Now we fill in the L2 pagetable for the kernel static code/data */
477 {
478 extern char etext[], _end[];
479 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
480 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
481 u_int logical;
482
483 textsize = (textsize + PGOFSET) & ~PGOFSET;
484 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
485
486 logical = 0x00200000; /* offset of kernel in RAM */
487
488 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
489 physical_start + logical, textsize,
490 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
491 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
492 physical_start + logical, totalsize - textsize,
493 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
494 }
495
496 #ifdef VERBOSE_INIT_ARM
497 printf("Constructing L2 page tables\n");
498 #endif
499
500 /* Map the stack pages */
501 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
502 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
503 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
504 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
505 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
506 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
507 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
508 UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
509
510 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
511 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
512
513 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
514 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
515 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
516 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
517 }
518
519 /* Map the Mini-Data cache clean area. */
520 xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
521 minidataclean.pv_pa);
522
523 /* Map the vector page. */
524 pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
525 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
526
527 /* Map the statically mapped devices. */
528 pmap_devmap_bootstrap(l1pagetable, hdlg_devmap);
529
530 /*
531 * Give the XScale global cache clean code an appropriately
532 * sized chunk of unmapped VA space starting at 0xff000000
533 * (our device mappings end before this address).
534 */
535 xscale_cache_clean_addr = 0xff000000U;
536
537 /*
538 * Now we have the real page tables in place so we can switch to them.
539 * Once this is done we will be running with the REAL kernel page
540 * tables.
541 */
542
543 /*
544 * Update the physical_freestart/physical_freeend/free_pages
545 * variables.
546 */
547 {
548 extern char _end[];
549
550 physical_freestart = physical_start +
551 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
552 KERNEL_BASE);
553 physical_freeend = physical_end;
554 free_pages =
555 (physical_freeend - physical_freestart) / PAGE_SIZE;
556 }
557
558 /* Switch tables */
559 #ifdef VERBOSE_INIT_ARM
560 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
561 physical_freestart, free_pages, free_pages);
562 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
563 #endif
564 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
565 setttb(kernel_l1pt.pv_pa);
566 cpu_tlb_flushID();
567 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
568
569 /*
570 * Moved from cpu_startup() as data_abort_handler() references
571 * this during uvm init
572 */
573 proc0paddr = (struct user *)kernelstack.pv_va;
574 lwp0.l_addr = proc0paddr;
575
576 #ifdef VERBOSE_INIT_ARM
577 printf("done!\n");
578 #endif
579
580 #ifdef VERBOSE_INIT_ARM
581 printf("bootstrap done.\n");
582 #endif
583
584 arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
585
586 /*
587 * Pages were allocated during the secondary bootstrap for the
588 * stacks for different CPU modes.
589 * We must now set the r13 registers in the different CPU modes to
590 * point to these stacks.
591 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
592 * of the stack memory.
593 */
594 #ifdef VERBOSE_INIT_ARM
595 printf("init subsystems: stacks ");
596 #endif
597
598 set_stackptr(PSR_IRQ32_MODE,
599 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
600 set_stackptr(PSR_ABT32_MODE,
601 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
602 set_stackptr(PSR_UND32_MODE,
603 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
604
605 /*
606 * Well we should set a data abort handler.
607 * Once things get going this will change as we will need a proper
608 * handler.
609 * Until then we will use a handler that just panics but tells us
610 * why.
611 * Initialisation of the vectors will just panic on a data abort.
612 * This just fills in a slightly better one.
613 */
614 #ifdef VERBOSE_INIT_ARM
615 printf("vectors ");
616 #endif
617 data_abort_handler_address = (u_int)data_abort_handler;
618 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
619 undefined_handler_address = (u_int)undefinedinstruction_bounce;
620
621 /* Initialise the undefined instruction handlers */
622 #ifdef VERBOSE_INIT_ARM
623 printf("undefined ");
624 #endif
625 undefined_init();
626
627 /* Load memory into UVM. */
628 #ifdef VERBOSE_INIT_ARM
629 printf("page ");
630 #endif
631 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
632 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
633 atop(physical_freestart), atop(physical_freeend),
634 VM_FREELIST_DEFAULT);
635
636 /* Boot strap pmap telling it where the kernel page table is */
637 #ifdef VERBOSE_INIT_ARM
638 printf("pmap ");
639 #endif
640 pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
641 KERNEL_VM_BASE + KERNEL_VM_SIZE);
642
643 /* Setup the IRQ system */
644 #ifdef VERBOSE_INIT_ARM
645 printf("irq ");
646 #endif
647 i80321_intr_init();
648
649 #ifdef VERBOSE_INIT_ARM
650 printf("done.\n");
651 #endif
652
653 #ifdef BOOTHOWTO
654 boothowto = BOOTHOWTO;
655 #endif
656
657 #if NKSYMS || defined(DDB) || defined(LKM)
658 /* Firmware doesn't load symbols. */
659 ksyms_init(0, NULL, NULL);
660 #endif
661
662 #ifdef DDB
663 db_machine_init();
664 if (boothowto & RB_KDB)
665 Debugger();
666 #endif
667
668 /* We return the new stack pointer address */
669 return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
670 }
671
672 /*
673 * void cpu_reboot(int howto, char *bootstr)
674 *
675 * Reboots the system
676 *
677 * Deal with any syncing, unmounting, dumping and shutdown hooks,
678 * then reset the CPU.
679 */
680 void
681 cpu_reboot(int howto, char *bootstr)
682 {
683
684 /*
685 * If we are still cold then hit the air brakes
686 * and crash to earth fast
687 */
688 if (cold) {
689 *(volatile uint8_t *)HDLG_LEDCTRL |= LEDCTRL_STAT_RED;
690 howto |= RB_HALT;
691 goto haltsys;
692 }
693
694 /* Disable console buffering */
695
696 /*
697 * If RB_NOSYNC was not specified sync the discs.
698 * Note: Unless cold is set to 1 here, syslogd will die during the
699 * unmount. It looks like syslogd is getting woken up only to find
700 * that it cannot page part of the binary in as the filesystem has
701 * been unmounted.
702 */
703 if ((howto & RB_NOSYNC) == 0) {
704 bootsync();
705 /*resettodr();*/
706 }
707
708 /* wait 1s */
709 delay(1 * 1000 * 1000);
710
711 /* Say NO to interrupts */
712 splhigh();
713
714 /* Do a dump if requested. */
715 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
716 dumpsys();
717 }
718
719 haltsys:
720 /* Run any shutdown hooks */
721 doshutdownhooks();
722
723 /* Make sure IRQ's are disabled */
724 IRQdisable;
725
726 if (howto & RB_HALT) {
727 *(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_POWOFF;
728 delay(3 * 1000 * 1000); /* wait 3s */
729
730 printf("SHUTDOWN FAILED!\n");
731 printf("The operating system has halted.\n");
732 printf("Please press any key to reboot.\n\n");
733 cngetc();
734 }
735
736 printf("rebooting...\n\r");
737
738 (void)disable_interrupts(I32_bit|F32_bit);
739 cpu_idcache_wbinv_all();
740 cpu_drain_writebuf();
741
742 *(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_RESET;
743 delay(1 * 1000 * 1000); /* wait 1s */
744
745 /* ...and if that didn't work, just croak. */
746 printf("RESET FAILED!\n");
747 for (;;) {
748 continue;
749 }
750 }
751
752 /*
753 * console
754 */
755 #include "com.h"
756 #if NCOM > 0
757 #include <dev/ic/comreg.h>
758 #include <dev/ic/comvar.h>
759 #endif
760
761 /*
762 * Define the default console speed for the board. This is generally
763 * what the firmware provided with the board defaults to.
764 */
765 #ifndef CONSPEED
766 #define CONSPEED B115200
767 #endif /* ! CONSPEED */
768
769 #ifndef CONUNIT
770 #define CONUNIT 0
771 #endif
772
773 #ifndef CONMODE
774 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
775 #endif
776
777 int comcnspeed = CONSPEED;
778 int comcnmode = CONMODE;
779 int comcnunit = CONUNIT;
780
781 #if KGDB
782 #ifndef KGDB_DEVNAME
783 #error Must define KGDB_DEVNAME
784 #endif
785 const char kgdb_devname[] = KGDB_DEVNAME;
786
787 #ifndef KGDB_DEVADDR
788 #error Must define KGDB_DEVADDR
789 #endif
790 unsigned long kgdb_devaddr = KGDB_DEVADDR;
791
792 #ifndef KGDB_DEVRATE
793 #define KGDB_DEVRATE CONSPEED
794 #endif
795 int kgdb_devrate = KGDB_DEVRATE;
796
797 #ifndef KGDB_DEVMODE
798 #define KGDB_DEVMODE CONMODE
799 #endif
800 int kgdb_devmode = KGDB_DEVMODE;
801 #endif /* KGDB */
802
803 void
804 consinit(void)
805 {
806 static const bus_addr_t comcnaddrs[] = {
807 HDLG_UART1, /* com0 */
808 };
809 static int consinit_called;
810
811 if (consinit_called)
812 return;
813 consinit_called = 1;
814
815 /*
816 * Console devices are mapped VA==PA. Our devmap reflects
817 * this, so register it now so drivers can map the console
818 * device.
819 */
820 pmap_devmap_register(hdlg_devmap);
821
822 #if NCOM > 0
823 if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
824 COM_FREQ, COM_TYPE_NORMAL, comcnmode))
825 panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
826 #else
827 panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
828 #endif
829 #if KGDB
830 #if NCOM > 0
831 if (strcmp(kgdb_devname, "com") == 0) {
832 com_kgdb_attach(&obio_bs_tag, kgdb_devaddr, kgdb_devrate,
833 COM_FREQ, COM_TYPE_NORMAL, kgdb_devmode);
834 }
835 #endif /* NCOM > 0 */
836 #endif /* KGDB */
837 }
838