ifpga_clock.c revision 1.13 1 1.13 cegger /* $NetBSD: ifpga_clock.c,v 1.13 2009/03/18 10:22:27 cegger Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.1 rearnsha * Copyright (c) 2001 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 1.1 rearnsha * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 1.1 rearnsha * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 1.1 rearnsha * IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23 1.1 rearnsha * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 1.1 rearnsha * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 1.1 rearnsha * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 rearnsha * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 rearnsha * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 rearnsha * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 rearnsha * SUCH DAMAGE.
30 1.1 rearnsha */
31 1.1 rearnsha
32 1.1 rearnsha /*
33 1.1 rearnsha * The IFPGA has three timers. Timer 0 is clocked by the system bus clock,
34 1.1 rearnsha * while timers 1 and 2 are clocked at 24MHz. To keep things simple here,
35 1.1 rearnsha * we use timers 1 and 2 only. All three timers are 16-bit counters that
36 1.1 rearnsha * are programmable in either periodic mode or in one-shot mode.
37 1.1 rearnsha */
38 1.1 rearnsha
39 1.1 rearnsha /* Include header files */
40 1.5 lukem
41 1.5 lukem #include <sys/cdefs.h>
42 1.13 cegger __KERNEL_RCSID(0, "$NetBSD: ifpga_clock.c,v 1.13 2009/03/18 10:22:27 cegger Exp $");
43 1.1 rearnsha
44 1.1 rearnsha #include <sys/types.h>
45 1.1 rearnsha #include <sys/param.h>
46 1.1 rearnsha #include <sys/systm.h>
47 1.1 rearnsha #include <sys/kernel.h>
48 1.12 joerg #include <sys/atomic.h>
49 1.1 rearnsha #include <sys/time.h>
50 1.12 joerg #include <sys/timetc.h>
51 1.1 rearnsha #include <sys/device.h>
52 1.1 rearnsha
53 1.2 thorpej #include <arm/cpufunc.h>
54 1.1 rearnsha #include <machine/intr.h>
55 1.3 thorpej
56 1.1 rearnsha #include <evbarm/ifpga/ifpgavar.h>
57 1.1 rearnsha #include <evbarm/ifpga/ifpgamem.h>
58 1.1 rearnsha #include <evbarm/ifpga/ifpgareg.h>
59 1.1 rearnsha
60 1.1 rearnsha /*
61 1.1 rearnsha * Statistics clock interval and variance, in usec. Variance must be a
62 1.1 rearnsha * power of two. Since this gives us an even number, not an odd number,
63 1.1 rearnsha * we discard one case and compensate. That is, a variance of 1024 would
64 1.1 rearnsha * give us offsets in [0..1023]. Instead, we take offsets in [1..1023].
65 1.1 rearnsha * This is symmetric about the point 512, or statvar/2, and thus averages
66 1.1 rearnsha * to that value (assuming uniform random numbers).
67 1.1 rearnsha */
68 1.1 rearnsha static int statvar = 1024 / 4; /* {stat,prof}clock variance */
69 1.1 rearnsha static int statmin; /* statclock interval - variance/2 */
70 1.1 rearnsha static int profmin; /* profclock interval - variance/2 */
71 1.1 rearnsha static int timer2min; /* current, from above choices */
72 1.1 rearnsha static int statprev; /* previous value in stat timer */
73 1.1 rearnsha
74 1.1 rearnsha #define TIMER_1_CLEAR (IFPGA_TIMER1_BASE + TIMERx_CLR)
75 1.1 rearnsha #define TIMER_1_LOAD (IFPGA_TIMER1_BASE + TIMERx_LOAD)
76 1.1 rearnsha #define TIMER_1_VALUE (IFPGA_TIMER1_BASE + TIMERx_VALUE)
77 1.1 rearnsha #define TIMER_1_CTRL (IFPGA_TIMER1_BASE + TIMERx_CTRL)
78 1.1 rearnsha
79 1.1 rearnsha #define TIMER_2_CLEAR (IFPGA_TIMER2_BASE + TIMERx_CLR)
80 1.1 rearnsha #define TIMER_2_LOAD (IFPGA_TIMER2_BASE + TIMERx_LOAD)
81 1.1 rearnsha #define TIMER_2_VALUE (IFPGA_TIMER2_BASE + TIMERx_VALUE)
82 1.1 rearnsha #define TIMER_2_CTRL (IFPGA_TIMER2_BASE + TIMERx_CTRL)
83 1.1 rearnsha
84 1.1 rearnsha #define COUNTS_PER_SEC (IFPGA_TIMER1_FREQ / 16)
85 1.1 rearnsha
86 1.12 joerg static u_int ifpga_get_timecount(struct timecounter *);
87 1.12 joerg
88 1.12 joerg static struct timecounter ifpga_timecounter = {
89 1.12 joerg ifpga_get_timecount, /* get_timecount */
90 1.12 joerg 0, /* no poll_pps */
91 1.12 joerg 0xffffffff, /* counter_mask */
92 1.12 joerg COUNTS_PER_SEC, /* frequency */
93 1.12 joerg "ifpga", /* name */
94 1.12 joerg 100, /* quality */
95 1.12 joerg NULL, /* prev */
96 1.12 joerg NULL, /* next */
97 1.12 joerg };
98 1.12 joerg
99 1.12 joerg static volatile uint32_t ifpga_base;
100 1.12 joerg
101 1.7 rearnsha extern struct ifpga_softc *ifpga_sc;
102 1.1 rearnsha
103 1.1 rearnsha static int clock_started = 0;
104 1.1 rearnsha
105 1.1 rearnsha static int load_timer(int, int);
106 1.1 rearnsha
107 1.10 perry static inline u_int
108 1.1 rearnsha getclock(void)
109 1.1 rearnsha {
110 1.7 rearnsha return bus_space_read_4(ifpga_sc->sc_iot, ifpga_sc->sc_tmr_ioh,
111 1.1 rearnsha TIMER_1_VALUE);
112 1.1 rearnsha }
113 1.1 rearnsha
114 1.10 perry static inline u_int
115 1.1 rearnsha getstatclock(void)
116 1.1 rearnsha {
117 1.7 rearnsha return bus_space_read_4(ifpga_sc->sc_iot, ifpga_sc->sc_tmr_ioh,
118 1.1 rearnsha TIMER_2_VALUE);
119 1.1 rearnsha }
120 1.1 rearnsha
121 1.1 rearnsha /*
122 1.1 rearnsha * int clockhandler(struct clockframe *frame)
123 1.1 rearnsha *
124 1.1 rearnsha * Function called by timer 1 interrupts.
125 1.1 rearnsha * This just clears the interrupt condition and calls hardclock().
126 1.1 rearnsha */
127 1.1 rearnsha
128 1.1 rearnsha static int
129 1.1 rearnsha clockhandler(void *fr)
130 1.1 rearnsha {
131 1.1 rearnsha struct clockframe *frame = (struct clockframe *)fr;
132 1.1 rearnsha
133 1.7 rearnsha bus_space_write_4(ifpga_sc->sc_iot, ifpga_sc->sc_tmr_ioh,
134 1.1 rearnsha TIMER_1_CLEAR, 0);
135 1.12 joerg
136 1.12 joerg atomic_add_32(&ifpga_base, ifpga_sc->sc_clock_count);
137 1.12 joerg
138 1.1 rearnsha hardclock(frame);
139 1.1 rearnsha return 0; /* Pass the interrupt on down the chain */
140 1.1 rearnsha }
141 1.1 rearnsha
142 1.1 rearnsha
143 1.1 rearnsha /*
144 1.1 rearnsha * int statclockhandler(struct clockframe *frame)
145 1.1 rearnsha *
146 1.1 rearnsha * Function called by timer 2 interrupts.
147 1.1 rearnsha * Add some random jitter to the clock, and then call statclock().
148 1.1 rearnsha */
149 1.1 rearnsha
150 1.1 rearnsha static int
151 1.1 rearnsha statclockhandler(void *fr)
152 1.1 rearnsha {
153 1.1 rearnsha struct clockframe *frame = (struct clockframe *) fr;
154 1.1 rearnsha int newint, r, var;
155 1.1 rearnsha
156 1.1 rearnsha var = statvar;
157 1.1 rearnsha do {
158 1.1 rearnsha r = random() & (var - 1);
159 1.1 rearnsha } while (r == 0);
160 1.1 rearnsha newint = timer2min + r;
161 1.1 rearnsha
162 1.1 rearnsha if (newint & ~0x0000ffff)
163 1.1 rearnsha panic("statclockhandler: statclock variance too large");
164 1.1 rearnsha
165 1.1 rearnsha /*
166 1.1 rearnsha * The timer was automatically reloaded with the previous latch
167 1.1 rearnsha * value at the time of the interrupts. Compensate now for the
168 1.1 rearnsha * amount of time that has run off since then, plus one tick
169 1.1 rearnsha * roundoff. This should keep us closer to the mean.
170 1.1 rearnsha */
171 1.1 rearnsha
172 1.1 rearnsha r = (statprev - getstatclock() + 1);
173 1.1 rearnsha if (r < newint) {
174 1.1 rearnsha newint -= r;
175 1.1 rearnsha r = 0;
176 1.1 rearnsha }
177 1.1 rearnsha else
178 1.1 rearnsha printf("statclockhandler: Statclock overrun\n");
179 1.1 rearnsha
180 1.1 rearnsha statprev = load_timer(IFPGA_TIMER2_BASE, newint);
181 1.1 rearnsha statclock(frame);
182 1.1 rearnsha if (r)
183 1.1 rearnsha /*
184 1.1 rearnsha * We've completely overrun the previous interval,
185 1.1 rearnsha * make sure we report the correct number of ticks.
186 1.1 rearnsha */
187 1.1 rearnsha statclock(frame);
188 1.1 rearnsha
189 1.1 rearnsha return 0; /* Pass the interrupt on down the chain */
190 1.1 rearnsha }
191 1.1 rearnsha
192 1.1 rearnsha static int
193 1.1 rearnsha load_timer(int base, int intvl)
194 1.1 rearnsha {
195 1.1 rearnsha int control;
196 1.1 rearnsha
197 1.1 rearnsha if (intvl & ~0x0000ffff)
198 1.4 provos panic("clock: Invalid interval");
199 1.1 rearnsha
200 1.1 rearnsha control = (TIMERx_CTRL_ENABLE | TIMERx_CTRL_MODE_PERIODIC |
201 1.1 rearnsha TIMERx_CTRL_PRESCALE_DIV16);
202 1.1 rearnsha
203 1.7 rearnsha bus_space_write_4(ifpga_sc->sc_iot, ifpga_sc->sc_tmr_ioh,
204 1.1 rearnsha base + TIMERx_LOAD, intvl);
205 1.7 rearnsha bus_space_write_4(ifpga_sc->sc_iot, ifpga_sc->sc_tmr_ioh,
206 1.1 rearnsha base + TIMERx_CTRL, control);
207 1.7 rearnsha bus_space_write_4(ifpga_sc->sc_iot, ifpga_sc->sc_tmr_ioh,
208 1.1 rearnsha base + TIMERx_CLR, 0);
209 1.1 rearnsha return intvl;
210 1.1 rearnsha }
211 1.1 rearnsha
212 1.1 rearnsha /*
213 1.1 rearnsha * void setstatclockrate(int hz)
214 1.1 rearnsha *
215 1.1 rearnsha * We assume that hz is either stathz or profhz, and that neither will
216 1.1 rearnsha * change after being set by cpu_initclocks(). We could recalculate the
217 1.1 rearnsha * intervals here, but that would be a pain.
218 1.1 rearnsha */
219 1.1 rearnsha
220 1.1 rearnsha void
221 1.8 rearnsha setstatclockrate(int new_hz)
222 1.1 rearnsha {
223 1.8 rearnsha if (new_hz == stathz)
224 1.1 rearnsha timer2min = statmin;
225 1.1 rearnsha else
226 1.1 rearnsha timer2min = profmin;
227 1.1 rearnsha }
228 1.1 rearnsha
229 1.1 rearnsha /*
230 1.1 rearnsha * void cpu_initclocks(void)
231 1.1 rearnsha *
232 1.1 rearnsha * Initialise the clocks.
233 1.1 rearnsha */
234 1.1 rearnsha
235 1.1 rearnsha void
236 1.13 cegger cpu_initclocks(void)
237 1.1 rearnsha {
238 1.1 rearnsha int intvl;
239 1.1 rearnsha int statint;
240 1.1 rearnsha int profint;
241 1.1 rearnsha int minint;
242 1.1 rearnsha
243 1.1 rearnsha if (hz < 50 || COUNTS_PER_SEC % hz) {
244 1.1 rearnsha printf("cannot get %d Hz clock; using 100 Hz\n", hz);
245 1.1 rearnsha hz = 100;
246 1.1 rearnsha tick = 1000000 / hz;
247 1.1 rearnsha }
248 1.1 rearnsha
249 1.1 rearnsha if (stathz == 0)
250 1.1 rearnsha stathz = hz;
251 1.1 rearnsha else if (stathz < 50 || COUNTS_PER_SEC % stathz) {
252 1.1 rearnsha printf("cannot get %d Hz statclock; using 100 Hz\n", stathz);
253 1.1 rearnsha stathz = 100;
254 1.1 rearnsha }
255 1.1 rearnsha
256 1.1 rearnsha if (profhz == 0)
257 1.1 rearnsha profhz = stathz * 5;
258 1.1 rearnsha else if (profhz < stathz || COUNTS_PER_SEC % profhz) {
259 1.1 rearnsha printf("cannot get %d Hz profclock; using %d Hz\n", profhz,
260 1.1 rearnsha stathz);
261 1.1 rearnsha profhz = stathz;
262 1.1 rearnsha }
263 1.1 rearnsha
264 1.1 rearnsha intvl = COUNTS_PER_SEC / hz;
265 1.1 rearnsha statint = COUNTS_PER_SEC / stathz;
266 1.1 rearnsha profint = COUNTS_PER_SEC / profhz;
267 1.1 rearnsha minint = statint / 2 + 100;
268 1.1 rearnsha while (statvar > minint)
269 1.1 rearnsha statvar >>= 1;
270 1.1 rearnsha
271 1.1 rearnsha /* Adjust interval counts, per note above. */
272 1.1 rearnsha intvl--;
273 1.1 rearnsha statint--;
274 1.1 rearnsha profint--;
275 1.1 rearnsha
276 1.1 rearnsha /* Calculate the base reload values. */
277 1.1 rearnsha statmin = statint - (statvar >> 1);
278 1.1 rearnsha profmin = profint - (statvar >> 1);
279 1.1 rearnsha timer2min = statmin;
280 1.1 rearnsha statprev = statint;
281 1.1 rearnsha
282 1.1 rearnsha /* Report the clock frequencies */
283 1.1 rearnsha printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
284 1.1 rearnsha
285 1.1 rearnsha /* Setup timer 1 and claim interrupt */
286 1.7 rearnsha ifpga_sc->sc_clockintr = ifpga_intr_establish(IFPGA_TIMER1_IRQ,
287 1.7 rearnsha IPL_CLOCK, clockhandler, 0);
288 1.7 rearnsha if (ifpga_sc->sc_clockintr == NULL)
289 1.4 provos panic("%s: Cannot install timer 1 interrupt handler",
290 1.7 rearnsha ifpga_sc->sc_dev.dv_xname);
291 1.1 rearnsha
292 1.7 rearnsha ifpga_sc->sc_clock_count
293 1.1 rearnsha = load_timer(IFPGA_TIMER1_BASE, intvl);
294 1.1 rearnsha
295 1.1 rearnsha /*
296 1.1 rearnsha * Use ticks per 256us for accuracy since ticks per us is often
297 1.1 rearnsha * fractional e.g. @ 66MHz
298 1.1 rearnsha */
299 1.7 rearnsha ifpga_sc->sc_clock_ticks_per_256us =
300 1.7 rearnsha ((((ifpga_sc->sc_clock_count * hz) / 1000) * 256) / 1000);
301 1.1 rearnsha
302 1.1 rearnsha clock_started = 1;
303 1.1 rearnsha
304 1.1 rearnsha /* Set up timer 2 as statclk/profclk. */
305 1.7 rearnsha ifpga_sc->sc_statclockintr = ifpga_intr_establish(IFPGA_TIMER2_IRQ,
306 1.11 ad IPL_HIGH, statclockhandler, 0);
307 1.7 rearnsha if (ifpga_sc->sc_statclockintr == NULL)
308 1.4 provos panic("%s: Cannot install timer 2 interrupt handler",
309 1.7 rearnsha ifpga_sc->sc_dev.dv_xname);
310 1.1 rearnsha load_timer(IFPGA_TIMER2_BASE, statint);
311 1.12 joerg
312 1.12 joerg tc_init(&ifpga_timecounter);
313 1.1 rearnsha }
314 1.1 rearnsha
315 1.12 joerg static u_int
316 1.12 joerg ifpga_get_timecount(struct timecounter *tc)
317 1.1 rearnsha {
318 1.12 joerg u_int base, counter;
319 1.1 rearnsha
320 1.12 joerg do {
321 1.12 joerg base = ifpga_base;
322 1.12 joerg counter = getclock();
323 1.12 joerg } while (base != ifpga_base);
324 1.1 rearnsha
325 1.12 joerg return base - counter;
326 1.1 rearnsha }
327 1.1 rearnsha
328 1.1 rearnsha /*
329 1.1 rearnsha * Estimated loop for n microseconds
330 1.1 rearnsha */
331 1.1 rearnsha
332 1.1 rearnsha /* Need to re-write this to use the timers */
333 1.1 rearnsha
334 1.1 rearnsha /* One day soon I will actually do this */
335 1.1 rearnsha
336 1.1 rearnsha int delaycount = 50;
337 1.1 rearnsha
338 1.1 rearnsha void
339 1.1 rearnsha delay(u_int n)
340 1.1 rearnsha {
341 1.1 rearnsha if (clock_started) {
342 1.1 rearnsha u_int starttime;
343 1.1 rearnsha u_int curtime;
344 1.6 rearnsha u_int delta = 0;
345 1.7 rearnsha u_int count_max = ifpga_sc->sc_clock_count;
346 1.1 rearnsha
347 1.1 rearnsha starttime = getclock();
348 1.1 rearnsha
349 1.1 rearnsha n *= IFPGA_TIMER1_FREQ / 1000000;
350 1.1 rearnsha
351 1.1 rearnsha do {
352 1.6 rearnsha n -= delta;
353 1.1 rearnsha curtime = getclock();
354 1.6 rearnsha delta = curtime - starttime;
355 1.6 rearnsha if (curtime < starttime)
356 1.6 rearnsha delta += count_max;
357 1.6 rearnsha starttime = curtime;
358 1.6 rearnsha } while (n > delta);
359 1.1 rearnsha } else {
360 1.1 rearnsha volatile u_int i;
361 1.1 rearnsha
362 1.1 rearnsha if (n == 0) return;
363 1.1 rearnsha while (n-- > 0) {
364 1.1 rearnsha /* XXX - Seriously gross hack */
365 1.1 rearnsha if (cputype == CPU_ID_SA110)
366 1.1 rearnsha for (i = delaycount; --i;)
367 1.1 rearnsha ;
368 1.1 rearnsha else
369 1.1 rearnsha for (i = 8; --i;)
370 1.1 rearnsha ;
371 1.1 rearnsha }
372 1.1 rearnsha }
373 1.1 rearnsha }
374