ifpga_clock.c revision 1.6 1 1.6 rearnsha /* $NetBSD: ifpga_clock.c,v 1.6 2003/09/06 11:21:44 rearnsha Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.1 rearnsha * Copyright (c) 2001 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 1.1 rearnsha * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 1.1 rearnsha * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 1.1 rearnsha * IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23 1.1 rearnsha * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 1.1 rearnsha * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 1.1 rearnsha * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 rearnsha * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 rearnsha * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 rearnsha * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 rearnsha * SUCH DAMAGE.
30 1.1 rearnsha */
31 1.1 rearnsha
32 1.1 rearnsha /*
33 1.1 rearnsha * The IFPGA has three timers. Timer 0 is clocked by the system bus clock,
34 1.1 rearnsha * while timers 1 and 2 are clocked at 24MHz. To keep things simple here,
35 1.1 rearnsha * we use timers 1 and 2 only. All three timers are 16-bit counters that
36 1.1 rearnsha * are programmable in either periodic mode or in one-shot mode.
37 1.1 rearnsha */
38 1.1 rearnsha
39 1.1 rearnsha /* Include header files */
40 1.5 lukem
41 1.5 lukem #include <sys/cdefs.h>
42 1.6 rearnsha __KERNEL_RCSID(0, "$NetBSD: ifpga_clock.c,v 1.6 2003/09/06 11:21:44 rearnsha Exp $");
43 1.1 rearnsha
44 1.1 rearnsha #include <sys/types.h>
45 1.1 rearnsha #include <sys/param.h>
46 1.1 rearnsha #include <sys/systm.h>
47 1.1 rearnsha #include <sys/kernel.h>
48 1.1 rearnsha #include <sys/time.h>
49 1.1 rearnsha #include <sys/device.h>
50 1.1 rearnsha
51 1.2 thorpej #include <arm/cpufunc.h>
52 1.1 rearnsha #include <machine/intr.h>
53 1.3 thorpej #include <evbarm/ifpga/irqhandler.h> /* XXX XXX XXX */
54 1.3 thorpej
55 1.1 rearnsha #include <evbarm/ifpga/ifpgavar.h>
56 1.1 rearnsha #include <evbarm/ifpga/ifpgamem.h>
57 1.1 rearnsha #include <evbarm/ifpga/ifpgareg.h>
58 1.1 rearnsha
59 1.1 rearnsha /*
60 1.1 rearnsha * Statistics clock interval and variance, in usec. Variance must be a
61 1.1 rearnsha * power of two. Since this gives us an even number, not an odd number,
62 1.1 rearnsha * we discard one case and compensate. That is, a variance of 1024 would
63 1.1 rearnsha * give us offsets in [0..1023]. Instead, we take offsets in [1..1023].
64 1.1 rearnsha * This is symmetric about the point 512, or statvar/2, and thus averages
65 1.1 rearnsha * to that value (assuming uniform random numbers).
66 1.1 rearnsha */
67 1.1 rearnsha static int statvar = 1024 / 4; /* {stat,prof}clock variance */
68 1.1 rearnsha static int statmin; /* statclock interval - variance/2 */
69 1.1 rearnsha static int profmin; /* profclock interval - variance/2 */
70 1.1 rearnsha static int timer2min; /* current, from above choices */
71 1.1 rearnsha static int statprev; /* previous value in stat timer */
72 1.1 rearnsha
73 1.1 rearnsha #define TIMER_1_CLEAR (IFPGA_TIMER1_BASE + TIMERx_CLR)
74 1.1 rearnsha #define TIMER_1_LOAD (IFPGA_TIMER1_BASE + TIMERx_LOAD)
75 1.1 rearnsha #define TIMER_1_VALUE (IFPGA_TIMER1_BASE + TIMERx_VALUE)
76 1.1 rearnsha #define TIMER_1_CTRL (IFPGA_TIMER1_BASE + TIMERx_CTRL)
77 1.1 rearnsha
78 1.1 rearnsha #define TIMER_2_CLEAR (IFPGA_TIMER2_BASE + TIMERx_CLR)
79 1.1 rearnsha #define TIMER_2_LOAD (IFPGA_TIMER2_BASE + TIMERx_LOAD)
80 1.1 rearnsha #define TIMER_2_VALUE (IFPGA_TIMER2_BASE + TIMERx_VALUE)
81 1.1 rearnsha #define TIMER_2_CTRL (IFPGA_TIMER2_BASE + TIMERx_CTRL)
82 1.1 rearnsha
83 1.1 rearnsha #define COUNTS_PER_SEC (IFPGA_TIMER1_FREQ / 16)
84 1.1 rearnsha
85 1.1 rearnsha extern struct ifpga_softc *clock_sc;
86 1.1 rearnsha
87 1.1 rearnsha static int clock_started = 0;
88 1.1 rearnsha
89 1.1 rearnsha static int load_timer(int, int);
90 1.1 rearnsha
91 1.1 rearnsha static __inline u_int
92 1.1 rearnsha getclock(void)
93 1.1 rearnsha {
94 1.1 rearnsha return bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_tmr_ioh,
95 1.1 rearnsha TIMER_1_VALUE);
96 1.1 rearnsha }
97 1.1 rearnsha
98 1.1 rearnsha static __inline u_int
99 1.1 rearnsha getstatclock(void)
100 1.1 rearnsha {
101 1.1 rearnsha return bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_tmr_ioh,
102 1.1 rearnsha TIMER_2_VALUE);
103 1.1 rearnsha }
104 1.1 rearnsha
105 1.1 rearnsha /*
106 1.1 rearnsha * int clockhandler(struct clockframe *frame)
107 1.1 rearnsha *
108 1.1 rearnsha * Function called by timer 1 interrupts.
109 1.1 rearnsha * This just clears the interrupt condition and calls hardclock().
110 1.1 rearnsha */
111 1.1 rearnsha
112 1.1 rearnsha static int
113 1.1 rearnsha clockhandler(void *fr)
114 1.1 rearnsha {
115 1.1 rearnsha struct clockframe *frame = (struct clockframe *)fr;
116 1.1 rearnsha
117 1.1 rearnsha bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_tmr_ioh,
118 1.1 rearnsha TIMER_1_CLEAR, 0);
119 1.1 rearnsha hardclock(frame);
120 1.1 rearnsha return 0; /* Pass the interrupt on down the chain */
121 1.1 rearnsha }
122 1.1 rearnsha
123 1.1 rearnsha
124 1.1 rearnsha /*
125 1.1 rearnsha * int statclockhandler(struct clockframe *frame)
126 1.1 rearnsha *
127 1.1 rearnsha * Function called by timer 2 interrupts.
128 1.1 rearnsha * Add some random jitter to the clock, and then call statclock().
129 1.1 rearnsha */
130 1.1 rearnsha
131 1.1 rearnsha static int
132 1.1 rearnsha statclockhandler(void *fr)
133 1.1 rearnsha {
134 1.1 rearnsha struct clockframe *frame = (struct clockframe *) fr;
135 1.1 rearnsha int newint, r, var;
136 1.1 rearnsha
137 1.1 rearnsha var = statvar;
138 1.1 rearnsha do {
139 1.1 rearnsha r = random() & (var - 1);
140 1.1 rearnsha } while (r == 0);
141 1.1 rearnsha newint = timer2min + r;
142 1.1 rearnsha
143 1.1 rearnsha if (newint & ~0x0000ffff)
144 1.1 rearnsha panic("statclockhandler: statclock variance too large");
145 1.1 rearnsha
146 1.1 rearnsha /*
147 1.1 rearnsha * The timer was automatically reloaded with the previous latch
148 1.1 rearnsha * value at the time of the interrupts. Compensate now for the
149 1.1 rearnsha * amount of time that has run off since then, plus one tick
150 1.1 rearnsha * roundoff. This should keep us closer to the mean.
151 1.1 rearnsha */
152 1.1 rearnsha
153 1.1 rearnsha r = (statprev - getstatclock() + 1);
154 1.1 rearnsha if (r < newint) {
155 1.1 rearnsha newint -= r;
156 1.1 rearnsha r = 0;
157 1.1 rearnsha }
158 1.1 rearnsha else
159 1.1 rearnsha printf("statclockhandler: Statclock overrun\n");
160 1.1 rearnsha
161 1.1 rearnsha statprev = load_timer(IFPGA_TIMER2_BASE, newint);
162 1.1 rearnsha statclock(frame);
163 1.1 rearnsha if (r)
164 1.1 rearnsha /*
165 1.1 rearnsha * We've completely overrun the previous interval,
166 1.1 rearnsha * make sure we report the correct number of ticks.
167 1.1 rearnsha */
168 1.1 rearnsha statclock(frame);
169 1.1 rearnsha
170 1.1 rearnsha return 0; /* Pass the interrupt on down the chain */
171 1.1 rearnsha }
172 1.1 rearnsha
173 1.1 rearnsha static int
174 1.1 rearnsha load_timer(int base, int intvl)
175 1.1 rearnsha {
176 1.1 rearnsha int control;
177 1.1 rearnsha
178 1.1 rearnsha if (intvl & ~0x0000ffff)
179 1.4 provos panic("clock: Invalid interval");
180 1.1 rearnsha
181 1.1 rearnsha control = (TIMERx_CTRL_ENABLE | TIMERx_CTRL_MODE_PERIODIC |
182 1.1 rearnsha TIMERx_CTRL_PRESCALE_DIV16);
183 1.1 rearnsha
184 1.1 rearnsha bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_tmr_ioh,
185 1.1 rearnsha base + TIMERx_LOAD, intvl);
186 1.1 rearnsha bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_tmr_ioh,
187 1.1 rearnsha base + TIMERx_CTRL, control);
188 1.1 rearnsha bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_tmr_ioh,
189 1.1 rearnsha base + TIMERx_CLR, 0);
190 1.1 rearnsha return intvl;
191 1.1 rearnsha }
192 1.1 rearnsha
193 1.1 rearnsha /*
194 1.1 rearnsha * void setstatclockrate(int hz)
195 1.1 rearnsha *
196 1.1 rearnsha * We assume that hz is either stathz or profhz, and that neither will
197 1.1 rearnsha * change after being set by cpu_initclocks(). We could recalculate the
198 1.1 rearnsha * intervals here, but that would be a pain.
199 1.1 rearnsha */
200 1.1 rearnsha
201 1.1 rearnsha void
202 1.1 rearnsha setstatclockrate(int hz)
203 1.1 rearnsha {
204 1.1 rearnsha if (hz == stathz)
205 1.1 rearnsha timer2min = statmin;
206 1.1 rearnsha else
207 1.1 rearnsha timer2min = profmin;
208 1.1 rearnsha }
209 1.1 rearnsha
210 1.1 rearnsha /*
211 1.1 rearnsha * void cpu_initclocks(void)
212 1.1 rearnsha *
213 1.1 rearnsha * Initialise the clocks.
214 1.1 rearnsha */
215 1.1 rearnsha
216 1.1 rearnsha void
217 1.1 rearnsha cpu_initclocks()
218 1.1 rearnsha {
219 1.1 rearnsha int intvl;
220 1.1 rearnsha int statint;
221 1.1 rearnsha int profint;
222 1.1 rearnsha int minint;
223 1.1 rearnsha
224 1.1 rearnsha if (hz < 50 || COUNTS_PER_SEC % hz) {
225 1.1 rearnsha printf("cannot get %d Hz clock; using 100 Hz\n", hz);
226 1.1 rearnsha hz = 100;
227 1.1 rearnsha tick = 1000000 / hz;
228 1.1 rearnsha }
229 1.1 rearnsha
230 1.1 rearnsha if (stathz == 0)
231 1.1 rearnsha stathz = hz;
232 1.1 rearnsha else if (stathz < 50 || COUNTS_PER_SEC % stathz) {
233 1.1 rearnsha printf("cannot get %d Hz statclock; using 100 Hz\n", stathz);
234 1.1 rearnsha stathz = 100;
235 1.1 rearnsha }
236 1.1 rearnsha
237 1.1 rearnsha if (profhz == 0)
238 1.1 rearnsha profhz = stathz * 5;
239 1.1 rearnsha else if (profhz < stathz || COUNTS_PER_SEC % profhz) {
240 1.1 rearnsha printf("cannot get %d Hz profclock; using %d Hz\n", profhz,
241 1.1 rearnsha stathz);
242 1.1 rearnsha profhz = stathz;
243 1.1 rearnsha }
244 1.1 rearnsha
245 1.1 rearnsha intvl = COUNTS_PER_SEC / hz;
246 1.1 rearnsha statint = COUNTS_PER_SEC / stathz;
247 1.1 rearnsha profint = COUNTS_PER_SEC / profhz;
248 1.1 rearnsha minint = statint / 2 + 100;
249 1.1 rearnsha while (statvar > minint)
250 1.1 rearnsha statvar >>= 1;
251 1.1 rearnsha
252 1.1 rearnsha /* Adjust interval counts, per note above. */
253 1.1 rearnsha intvl--;
254 1.1 rearnsha statint--;
255 1.1 rearnsha profint--;
256 1.1 rearnsha
257 1.1 rearnsha /* Calculate the base reload values. */
258 1.1 rearnsha statmin = statint - (statvar >> 1);
259 1.1 rearnsha profmin = profint - (statvar >> 1);
260 1.1 rearnsha timer2min = statmin;
261 1.1 rearnsha statprev = statint;
262 1.1 rearnsha
263 1.1 rearnsha /* Report the clock frequencies */
264 1.1 rearnsha printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
265 1.1 rearnsha
266 1.1 rearnsha /* Setup timer 1 and claim interrupt */
267 1.1 rearnsha clock_sc->sc_clockintr = intr_claim(IFPGA_TIMER1_IRQ, IPL_CLOCK,
268 1.1 rearnsha "tmr1 hard clk", clockhandler, 0);
269 1.1 rearnsha if (clock_sc->sc_clockintr == NULL)
270 1.4 provos panic("%s: Cannot install timer 1 interrupt handler",
271 1.1 rearnsha clock_sc->sc_dev.dv_xname);
272 1.1 rearnsha
273 1.1 rearnsha clock_sc->sc_clock_count
274 1.1 rearnsha = load_timer(IFPGA_TIMER1_BASE, intvl);
275 1.1 rearnsha
276 1.1 rearnsha /*
277 1.1 rearnsha * Use ticks per 256us for accuracy since ticks per us is often
278 1.1 rearnsha * fractional e.g. @ 66MHz
279 1.1 rearnsha */
280 1.1 rearnsha clock_sc->sc_clock_ticks_per_256us =
281 1.1 rearnsha ((((clock_sc->sc_clock_count * hz) / 1000) * 256) / 1000);
282 1.1 rearnsha
283 1.1 rearnsha clock_started = 1;
284 1.1 rearnsha
285 1.1 rearnsha /* Set up timer 2 as statclk/profclk. */
286 1.1 rearnsha clock_sc->sc_statclockintr = intr_claim(IFPGA_TIMER2_IRQ,
287 1.1 rearnsha IPL_STATCLOCK, "tmr2 stat clk", statclockhandler, 0);
288 1.1 rearnsha if (clock_sc->sc_statclockintr == NULL)
289 1.4 provos panic("%s: Cannot install timer 2 interrupt handler",
290 1.1 rearnsha clock_sc->sc_dev.dv_xname);
291 1.1 rearnsha load_timer(IFPGA_TIMER2_BASE, statint);
292 1.1 rearnsha }
293 1.1 rearnsha
294 1.1 rearnsha
295 1.1 rearnsha /*
296 1.1 rearnsha * void microtime(struct timeval *tvp)
297 1.1 rearnsha *
298 1.1 rearnsha * Fill in the specified timeval struct with the current time
299 1.1 rearnsha * accurate to the microsecond.
300 1.1 rearnsha */
301 1.1 rearnsha
302 1.1 rearnsha void
303 1.1 rearnsha microtime(struct timeval *tvp)
304 1.1 rearnsha {
305 1.1 rearnsha int s;
306 1.1 rearnsha int tm;
307 1.1 rearnsha int deltatm;
308 1.1 rearnsha static struct timeval oldtv;
309 1.1 rearnsha
310 1.1 rearnsha if (clock_sc == NULL || clock_sc->sc_clock_count == 0)
311 1.1 rearnsha return;
312 1.1 rearnsha
313 1.1 rearnsha s = splhigh();
314 1.1 rearnsha
315 1.1 rearnsha tm = getclock();
316 1.1 rearnsha
317 1.1 rearnsha deltatm = clock_sc->sc_clock_count - tm;
318 1.1 rearnsha
319 1.1 rearnsha #ifdef DIAGNOSTIC
320 1.1 rearnsha if (deltatm < 0)
321 1.4 provos panic("opps deltatm < 0 tm=%d deltatm=%d", tm, deltatm);
322 1.1 rearnsha #endif
323 1.1 rearnsha
324 1.1 rearnsha /* Fill in the timeval struct */
325 1.1 rearnsha *tvp = time;
326 1.1 rearnsha tvp->tv_usec += ((deltatm << 8) / clock_sc->sc_clock_ticks_per_256us);
327 1.1 rearnsha
328 1.1 rearnsha /* Make sure the micro seconds don't overflow. */
329 1.1 rearnsha while (tvp->tv_usec >= 1000000) {
330 1.1 rearnsha tvp->tv_usec -= 1000000;
331 1.1 rearnsha ++tvp->tv_sec;
332 1.1 rearnsha }
333 1.1 rearnsha
334 1.1 rearnsha /* Make sure the time has advanced. */
335 1.1 rearnsha if (tvp->tv_sec == oldtv.tv_sec &&
336 1.1 rearnsha tvp->tv_usec <= oldtv.tv_usec) {
337 1.1 rearnsha tvp->tv_usec = oldtv.tv_usec + 1;
338 1.1 rearnsha if (tvp->tv_usec >= 1000000) {
339 1.1 rearnsha tvp->tv_usec -= 1000000;
340 1.1 rearnsha ++tvp->tv_sec;
341 1.1 rearnsha }
342 1.1 rearnsha }
343 1.1 rearnsha
344 1.1 rearnsha oldtv = *tvp;
345 1.1 rearnsha (void)splx(s);
346 1.1 rearnsha }
347 1.1 rearnsha
348 1.1 rearnsha /*
349 1.1 rearnsha * Estimated loop for n microseconds
350 1.1 rearnsha */
351 1.1 rearnsha
352 1.1 rearnsha /* Need to re-write this to use the timers */
353 1.1 rearnsha
354 1.1 rearnsha /* One day soon I will actually do this */
355 1.1 rearnsha
356 1.1 rearnsha int delaycount = 50;
357 1.1 rearnsha
358 1.1 rearnsha void
359 1.1 rearnsha delay(u_int n)
360 1.1 rearnsha {
361 1.1 rearnsha if (clock_started) {
362 1.1 rearnsha u_int starttime;
363 1.1 rearnsha u_int curtime;
364 1.6 rearnsha u_int delta = 0;
365 1.6 rearnsha u_int count_max = clock_sc->sc_clock_count;
366 1.1 rearnsha
367 1.1 rearnsha starttime = getclock();
368 1.1 rearnsha
369 1.1 rearnsha n *= IFPGA_TIMER1_FREQ / 1000000;
370 1.1 rearnsha
371 1.1 rearnsha do {
372 1.6 rearnsha n -= delta;
373 1.1 rearnsha curtime = getclock();
374 1.6 rearnsha delta = curtime - starttime;
375 1.6 rearnsha if (curtime < starttime)
376 1.6 rearnsha delta += count_max;
377 1.6 rearnsha starttime = curtime;
378 1.6 rearnsha } while (n > delta);
379 1.1 rearnsha } else {
380 1.1 rearnsha volatile u_int i;
381 1.1 rearnsha
382 1.1 rearnsha if (n == 0) return;
383 1.1 rearnsha while (n-- > 0) {
384 1.1 rearnsha /* XXX - Seriously gross hack */
385 1.1 rearnsha if (cputype == CPU_ID_SA110)
386 1.1 rearnsha for (i = delaycount; --i;)
387 1.1 rearnsha ;
388 1.1 rearnsha else
389 1.1 rearnsha for (i = 8; --i;)
390 1.1 rearnsha ;
391 1.1 rearnsha }
392 1.1 rearnsha }
393 1.1 rearnsha }
394