int_bus_dma.c revision 1.1 1 1.1 rearnsha /* $NetBSD: int_bus_dma.c,v 1.1 2001/10/27 16:17:51 rearnsha Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*-
4 1.1 rearnsha * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * This code is derived from software contributed to The NetBSD Foundation
8 1.1 rearnsha * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.1 rearnsha * NASA Ames Research Center.
10 1.1 rearnsha *
11 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
12 1.1 rearnsha * modification, are permitted provided that the following conditions
13 1.1 rearnsha * are met:
14 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
15 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
16 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
18 1.1 rearnsha * documentation and/or other materials provided with the distribution.
19 1.1 rearnsha * 3. All advertising materials mentioning features or use of this software
20 1.1 rearnsha * must display the following acknowledgement:
21 1.1 rearnsha * This product includes software developed by the NetBSD
22 1.1 rearnsha * Foundation, Inc. and its contributors.
23 1.1 rearnsha * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.1 rearnsha * contributors may be used to endorse or promote products derived
25 1.1 rearnsha * from this software without specific prior written permission.
26 1.1 rearnsha *
27 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.1 rearnsha * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.1 rearnsha * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.1 rearnsha * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.1 rearnsha * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.1 rearnsha * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.1 rearnsha * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.1 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.1 rearnsha * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.1 rearnsha * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.1 rearnsha * POSSIBILITY OF SUCH DAMAGE.
38 1.1 rearnsha */
39 1.1 rearnsha /*
40 1.1 rearnsha * The integrator board has memory steering hardware that means that
41 1.1 rearnsha * the normal physical addresses used by the processor cannot be used
42 1.1 rearnsha * for DMA. Instead we have to use the "core module alias mapping
43 1.1 rearnsha * addresses". We don't use these for normal processor accesses since
44 1.1 rearnsha * they are much slower than the direct addresses when accessing
45 1.1 rearnsha * memory on the local board.
46 1.1 rearnsha */
47 1.1 rearnsha
48 1.1 rearnsha #include <sys/param.h>
49 1.1 rearnsha #include <sys/systm.h>
50 1.1 rearnsha #include <sys/kernel.h>
51 1.1 rearnsha #include <sys/map.h>
52 1.1 rearnsha #include <sys/proc.h>
53 1.1 rearnsha #include <sys/buf.h>
54 1.1 rearnsha #include <sys/reboot.h>
55 1.1 rearnsha #include <sys/conf.h>
56 1.1 rearnsha #include <sys/file.h>
57 1.1 rearnsha #include <sys/malloc.h>
58 1.1 rearnsha #include <sys/mbuf.h>
59 1.1 rearnsha #include <sys/vnode.h>
60 1.1 rearnsha #include <sys/device.h>
61 1.1 rearnsha
62 1.1 rearnsha #include <uvm/uvm_extern.h>
63 1.1 rearnsha
64 1.1 rearnsha #define _ARM32_BUS_DMA_PRIVATE
65 1.1 rearnsha #include <evbarm/integrator/int_bus_dma.h>
66 1.1 rearnsha
67 1.1 rearnsha #include <machine/cpu.h>
68 1.1 rearnsha #include <machine/cpufunc.h>
69 1.1 rearnsha #include <machine/psl.h>
70 1.1 rearnsha
71 1.1 rearnsha static int integrator_bus_dmamap_load_buffer __P((bus_dma_tag_t,
72 1.1 rearnsha bus_dmamap_t, void *, bus_size_t, struct proc *, int,
73 1.1 rearnsha vm_offset_t *, int *, int));
74 1.1 rearnsha static int integrator_bus_dma_inrange __P((bus_dma_segment_t *, int,
75 1.1 rearnsha bus_addr_t));
76 1.1 rearnsha
77 1.1 rearnsha /*
78 1.1 rearnsha * Common function for loading a DMA map with a linear buffer. May
79 1.1 rearnsha * be called by bus-specific DMA map load functions.
80 1.1 rearnsha */
81 1.1 rearnsha int
82 1.1 rearnsha integrator_bus_dmamap_load(t, map, buf, buflen, p, flags)
83 1.1 rearnsha bus_dma_tag_t t;
84 1.1 rearnsha bus_dmamap_t map;
85 1.1 rearnsha void *buf;
86 1.1 rearnsha bus_size_t buflen;
87 1.1 rearnsha struct proc *p;
88 1.1 rearnsha int flags;
89 1.1 rearnsha {
90 1.1 rearnsha vm_offset_t lastaddr;
91 1.1 rearnsha int seg, error;
92 1.1 rearnsha
93 1.1 rearnsha #ifdef DEBUG_DMA
94 1.1 rearnsha printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
95 1.1 rearnsha t, map, buf, buflen, p, flags);
96 1.1 rearnsha #endif /* DEBUG_DMA */
97 1.1 rearnsha
98 1.1 rearnsha /*
99 1.1 rearnsha * Make sure that on error condition we return "no valid mappings".
100 1.1 rearnsha */
101 1.1 rearnsha map->dm_mapsize = 0;
102 1.1 rearnsha map->dm_nsegs = 0;
103 1.1 rearnsha
104 1.1 rearnsha if (buflen > map->_dm_size)
105 1.1 rearnsha return (EINVAL);
106 1.1 rearnsha
107 1.1 rearnsha seg = 0;
108 1.1 rearnsha error = integrator_bus_dmamap_load_buffer(t, map, buf, buflen, p, flags,
109 1.1 rearnsha &lastaddr, &seg, 1);
110 1.1 rearnsha if (error == 0) {
111 1.1 rearnsha map->dm_mapsize = buflen;
112 1.1 rearnsha map->dm_nsegs = seg + 1;
113 1.1 rearnsha }
114 1.1 rearnsha #ifdef DEBUG_DMA
115 1.1 rearnsha printf("dmamap_load: error=%d\n", error);
116 1.1 rearnsha #endif /* DEBUG_DMA */
117 1.1 rearnsha return (error);
118 1.1 rearnsha }
119 1.1 rearnsha
120 1.1 rearnsha /*
121 1.1 rearnsha * Like _bus_dmamap_load(), but for mbufs.
122 1.1 rearnsha */
123 1.1 rearnsha int
124 1.1 rearnsha integrator_bus_dmamap_load_mbuf(t, map, m0, flags)
125 1.1 rearnsha bus_dma_tag_t t;
126 1.1 rearnsha bus_dmamap_t map;
127 1.1 rearnsha struct mbuf *m0;
128 1.1 rearnsha int flags;
129 1.1 rearnsha {
130 1.1 rearnsha vm_offset_t lastaddr;
131 1.1 rearnsha int seg, error, first;
132 1.1 rearnsha struct mbuf *m;
133 1.1 rearnsha
134 1.1 rearnsha #ifdef DEBUG_DMA
135 1.1 rearnsha printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
136 1.1 rearnsha t, map, m0, flags);
137 1.1 rearnsha #endif /* DEBUG_DMA */
138 1.1 rearnsha
139 1.1 rearnsha /*
140 1.1 rearnsha * Make sure that on error condition we return "no valid mappings."
141 1.1 rearnsha */
142 1.1 rearnsha map->dm_mapsize = 0;
143 1.1 rearnsha map->dm_nsegs = 0;
144 1.1 rearnsha
145 1.1 rearnsha #ifdef DIAGNOSTIC
146 1.1 rearnsha if ((m0->m_flags & M_PKTHDR) == 0)
147 1.1 rearnsha panic("integrator_bus_dmamap_load_mbuf: no packet header");
148 1.1 rearnsha #endif /* DIAGNOSTIC */
149 1.1 rearnsha
150 1.1 rearnsha if (m0->m_pkthdr.len > map->_dm_size)
151 1.1 rearnsha return (EINVAL);
152 1.1 rearnsha
153 1.1 rearnsha first = 1;
154 1.1 rearnsha seg = 0;
155 1.1 rearnsha error = 0;
156 1.1 rearnsha for (m = m0; m != NULL && error == 0; m = m->m_next) {
157 1.1 rearnsha error = integrator_bus_dmamap_load_buffer(t, map, m->m_data,
158 1.1 rearnsha m->m_len, NULL, flags, &lastaddr, &seg, first);
159 1.1 rearnsha first = 0;
160 1.1 rearnsha }
161 1.1 rearnsha if (error == 0) {
162 1.1 rearnsha map->dm_mapsize = m0->m_pkthdr.len;
163 1.1 rearnsha map->dm_nsegs = seg + 1;
164 1.1 rearnsha }
165 1.1 rearnsha #ifdef DEBUG_DMA
166 1.1 rearnsha printf("dmamap_load_mbuf: error=%d\n", error);
167 1.1 rearnsha #endif /* DEBUG_DMA */
168 1.1 rearnsha return (error);
169 1.1 rearnsha }
170 1.1 rearnsha
171 1.1 rearnsha /*
172 1.1 rearnsha * Like _bus_dmamap_load(), but for uios.
173 1.1 rearnsha */
174 1.1 rearnsha int
175 1.1 rearnsha integrator_bus_dmamap_load_uio(t, map, uio, flags)
176 1.1 rearnsha bus_dma_tag_t t;
177 1.1 rearnsha bus_dmamap_t map;
178 1.1 rearnsha struct uio *uio;
179 1.1 rearnsha int flags;
180 1.1 rearnsha {
181 1.1 rearnsha vm_offset_t lastaddr;
182 1.1 rearnsha int seg, i, error, first;
183 1.1 rearnsha bus_size_t minlen, resid;
184 1.1 rearnsha struct proc *p = NULL;
185 1.1 rearnsha struct iovec *iov;
186 1.1 rearnsha caddr_t addr;
187 1.1 rearnsha
188 1.1 rearnsha /*
189 1.1 rearnsha * Make sure that on error condition we return "no valid mappings."
190 1.1 rearnsha */
191 1.1 rearnsha map->dm_mapsize = 0;
192 1.1 rearnsha map->dm_nsegs = 0;
193 1.1 rearnsha
194 1.1 rearnsha resid = uio->uio_resid;
195 1.1 rearnsha iov = uio->uio_iov;
196 1.1 rearnsha
197 1.1 rearnsha if (uio->uio_segflg == UIO_USERSPACE) {
198 1.1 rearnsha p = uio->uio_procp;
199 1.1 rearnsha #ifdef DIAGNOSTIC
200 1.1 rearnsha if (p == NULL)
201 1.1 rearnsha panic("integrator_bus_dmamap_load_uio: USERSPACE but no proc");
202 1.1 rearnsha #endif
203 1.1 rearnsha }
204 1.1 rearnsha
205 1.1 rearnsha first = 1;
206 1.1 rearnsha seg = 0;
207 1.1 rearnsha error = 0;
208 1.1 rearnsha for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
209 1.1 rearnsha /*
210 1.1 rearnsha * Now at the first iovec to load. Load each iovec
211 1.1 rearnsha * until we have exhausted the residual count.
212 1.1 rearnsha */
213 1.1 rearnsha minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
214 1.1 rearnsha addr = (caddr_t)iov[i].iov_base;
215 1.1 rearnsha
216 1.1 rearnsha error = integrator_bus_dmamap_load_buffer(t, map, addr, minlen,
217 1.1 rearnsha p, flags, &lastaddr, &seg, first);
218 1.1 rearnsha first = 0;
219 1.1 rearnsha
220 1.1 rearnsha resid -= minlen;
221 1.1 rearnsha }
222 1.1 rearnsha if (error == 0) {
223 1.1 rearnsha map->dm_mapsize = uio->uio_resid;
224 1.1 rearnsha map->dm_nsegs = seg + 1;
225 1.1 rearnsha }
226 1.1 rearnsha return (error);
227 1.1 rearnsha }
228 1.1 rearnsha
229 1.1 rearnsha /*
230 1.1 rearnsha * Common function for DMA-safe memory allocation. May be called
231 1.1 rearnsha * by bus-specific DMA memory allocation functions.
232 1.1 rearnsha */
233 1.1 rearnsha
234 1.1 rearnsha extern vm_offset_t physical_start;
235 1.1 rearnsha extern vm_offset_t physical_freestart;
236 1.1 rearnsha extern vm_offset_t physical_freeend;
237 1.1 rearnsha extern vm_offset_t physical_end;
238 1.1 rearnsha
239 1.1 rearnsha int
240 1.1 rearnsha integrator_bus_dmamem_alloc(t, size, alignment, boundary, segs, nsegs, rsegs, flags)
241 1.1 rearnsha bus_dma_tag_t t;
242 1.1 rearnsha bus_size_t size, alignment, boundary;
243 1.1 rearnsha bus_dma_segment_t *segs;
244 1.1 rearnsha int nsegs;
245 1.1 rearnsha int *rsegs;
246 1.1 rearnsha int flags;
247 1.1 rearnsha {
248 1.1 rearnsha int error;
249 1.1 rearnsha #ifdef DEBUG_DMA
250 1.1 rearnsha printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x\n",
251 1.1 rearnsha t, size, alignment, boundary, segs, nsegs, rsegs, flags);
252 1.1 rearnsha #endif /* DEBUG_DMA */
253 1.1 rearnsha error = (integrator_bus_dmamem_alloc_range(t, size, alignment, boundary,
254 1.1 rearnsha segs, nsegs, rsegs, flags, trunc_page(physical_start), trunc_page(physical_end)));
255 1.1 rearnsha #ifdef DEBUG_DMA
256 1.1 rearnsha printf("dmamem_alloc: =%d\n", error);
257 1.1 rearnsha #endif /* DEBUG_DMA */
258 1.1 rearnsha return(error);
259 1.1 rearnsha }
260 1.1 rearnsha
261 1.1 rearnsha /*
262 1.1 rearnsha * Common function for freeing DMA-safe memory. May be called by
263 1.1 rearnsha * bus-specific DMA memory free functions.
264 1.1 rearnsha */
265 1.1 rearnsha void
266 1.1 rearnsha integrator_bus_dmamem_free(t, segs, nsegs)
267 1.1 rearnsha bus_dma_tag_t t;
268 1.1 rearnsha bus_dma_segment_t *segs;
269 1.1 rearnsha int nsegs;
270 1.1 rearnsha {
271 1.1 rearnsha struct vm_page *m;
272 1.1 rearnsha bus_addr_t addr;
273 1.1 rearnsha struct pglist mlist;
274 1.1 rearnsha int curseg;
275 1.1 rearnsha
276 1.1 rearnsha #ifdef DEBUG_DMA
277 1.1 rearnsha printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
278 1.1 rearnsha #endif /* DEBUG_DMA */
279 1.1 rearnsha
280 1.1 rearnsha /*
281 1.1 rearnsha * Build a list of pages to free back to the VM system.
282 1.1 rearnsha */
283 1.1 rearnsha TAILQ_INIT(&mlist);
284 1.1 rearnsha for (curseg = 0; curseg < nsegs; curseg++) {
285 1.1 rearnsha for (addr = segs[curseg].ds_addr;
286 1.1 rearnsha addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
287 1.1 rearnsha addr += PAGE_SIZE) {
288 1.1 rearnsha m = PHYS_TO_VM_PAGE(CM_ALIAS_TO_LOCAL(addr));
289 1.1 rearnsha TAILQ_INSERT_TAIL(&mlist, m, pageq);
290 1.1 rearnsha }
291 1.1 rearnsha }
292 1.1 rearnsha uvm_pglistfree(&mlist);
293 1.1 rearnsha }
294 1.1 rearnsha
295 1.1 rearnsha /*
296 1.1 rearnsha * Common function for mapping DMA-safe memory. May be called by
297 1.1 rearnsha * bus-specific DMA memory map functions.
298 1.1 rearnsha */
299 1.1 rearnsha int
300 1.1 rearnsha integrator_bus_dmamem_map(t, segs, nsegs, size, kvap, flags)
301 1.1 rearnsha bus_dma_tag_t t;
302 1.1 rearnsha bus_dma_segment_t *segs;
303 1.1 rearnsha int nsegs;
304 1.1 rearnsha size_t size;
305 1.1 rearnsha caddr_t *kvap;
306 1.1 rearnsha int flags;
307 1.1 rearnsha {
308 1.1 rearnsha vm_offset_t va;
309 1.1 rearnsha bus_addr_t addr;
310 1.1 rearnsha int curseg;
311 1.1 rearnsha pt_entry_t *ptep/*, pte*/;
312 1.1 rearnsha
313 1.1 rearnsha #ifdef DEBUG_DMA
314 1.1 rearnsha printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
315 1.1 rearnsha segs, nsegs, (unsigned long)size, flags);
316 1.1 rearnsha #endif /* DEBUG_DMA */
317 1.1 rearnsha
318 1.1 rearnsha size = round_page(size);
319 1.1 rearnsha va = uvm_km_valloc(kernel_map, size);
320 1.1 rearnsha
321 1.1 rearnsha if (va == 0)
322 1.1 rearnsha return (ENOMEM);
323 1.1 rearnsha
324 1.1 rearnsha *kvap = (caddr_t)va;
325 1.1 rearnsha
326 1.1 rearnsha for (curseg = 0; curseg < nsegs; curseg++) {
327 1.1 rearnsha for (addr = segs[curseg].ds_addr;
328 1.1 rearnsha addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
329 1.1 rearnsha addr += NBPG, va += NBPG, size -= NBPG) {
330 1.1 rearnsha #ifdef DEBUG_DMA
331 1.1 rearnsha printf("wiring p%lx to v%lx", CM_ALIAS_TO_LOCAL(addr),
332 1.1 rearnsha va);
333 1.1 rearnsha #endif /* DEBUG_DMA */
334 1.1 rearnsha if (size == 0)
335 1.1 rearnsha panic("integrator_bus_dmamem_map: size botch");
336 1.1 rearnsha pmap_enter(pmap_kernel(), va, CM_ALIAS_TO_LOCAL(addr),
337 1.1 rearnsha VM_PROT_READ | VM_PROT_WRITE,
338 1.1 rearnsha VM_PROT_READ | VM_PROT_WRITE | PMAP_WIRED);
339 1.1 rearnsha /*
340 1.1 rearnsha * If the memory must remain coherent with the
341 1.1 rearnsha * cache then we must make the memory uncacheable
342 1.1 rearnsha * in order to maintain virtual cache coherency.
343 1.1 rearnsha * We must also guarentee the cache does not already
344 1.1 rearnsha * contain the virtal addresses we are making
345 1.1 rearnsha * uncacheable.
346 1.1 rearnsha */
347 1.1 rearnsha if (flags & BUS_DMA_COHERENT) {
348 1.1 rearnsha cpu_cache_purgeD_rng(va, NBPG);
349 1.1 rearnsha cpu_drain_writebuf();
350 1.1 rearnsha ptep = vtopte(va);
351 1.1 rearnsha *ptep = ((*ptep) & (~PT_C | PT_B));
352 1.1 rearnsha tlb_flush();
353 1.1 rearnsha }
354 1.1 rearnsha #ifdef DEBUG_DMA
355 1.1 rearnsha ptep = vtopte(va);
356 1.1 rearnsha printf(" pte=v%p *pte=%x\n", ptep, *ptep);
357 1.1 rearnsha #endif /* DEBUG_DMA */
358 1.1 rearnsha }
359 1.1 rearnsha }
360 1.1 rearnsha pmap_update(pmap_kernel());
361 1.1 rearnsha #ifdef DEBUG_DMA
362 1.1 rearnsha printf("dmamem_map: =%p\n", *kvap);
363 1.1 rearnsha #endif /* DEBUG_DMA */
364 1.1 rearnsha return (0);
365 1.1 rearnsha }
366 1.1 rearnsha
367 1.1 rearnsha /*
368 1.1 rearnsha * Common functin for mmap(2)'ing DMA-safe memory. May be called by
369 1.1 rearnsha * bus-specific DMA mmap(2)'ing functions.
370 1.1 rearnsha */
371 1.1 rearnsha paddr_t
372 1.1 rearnsha integrator_bus_dmamem_mmap(t, segs, nsegs, off, prot, flags)
373 1.1 rearnsha bus_dma_tag_t t;
374 1.1 rearnsha bus_dma_segment_t *segs;
375 1.1 rearnsha int nsegs;
376 1.1 rearnsha off_t off;
377 1.1 rearnsha int prot, flags;
378 1.1 rearnsha {
379 1.1 rearnsha int i;
380 1.1 rearnsha
381 1.1 rearnsha for (i = 0; i < nsegs; i++) {
382 1.1 rearnsha #ifdef DIAGNOSTIC
383 1.1 rearnsha if (off & PGOFSET)
384 1.1 rearnsha panic("integrator_bus_dmamem_mmap: offset unaligned");
385 1.1 rearnsha if (segs[i].ds_addr & PGOFSET)
386 1.1 rearnsha panic("integrator_bus_dmamem_mmap: segment unaligned");
387 1.1 rearnsha if (segs[i].ds_len & PGOFSET)
388 1.1 rearnsha panic("integrator_bus_dmamem_mmap: segment size not multiple"
389 1.1 rearnsha " of page size");
390 1.1 rearnsha #endif /* DIAGNOSTIC */
391 1.1 rearnsha if (off >= segs[i].ds_len) {
392 1.1 rearnsha off -= segs[i].ds_len;
393 1.1 rearnsha continue;
394 1.1 rearnsha }
395 1.1 rearnsha
396 1.1 rearnsha return arm_byte_to_page((u_long)CM_ALIAS_TO_LOCAL(segs[i].ds_addr) + off);
397 1.1 rearnsha }
398 1.1 rearnsha
399 1.1 rearnsha /* Page not found. */
400 1.1 rearnsha return -1;
401 1.1 rearnsha }
402 1.1 rearnsha
403 1.1 rearnsha /**********************************************************************
404 1.1 rearnsha * DMA utility functions
405 1.1 rearnsha **********************************************************************/
406 1.1 rearnsha
407 1.1 rearnsha /*
408 1.1 rearnsha * Utility function to load a linear buffer. lastaddrp holds state
409 1.1 rearnsha * between invocations (for multiple-buffer loads). segp contains
410 1.1 rearnsha * the starting segment on entrace, and the ending segment on exit.
411 1.1 rearnsha * first indicates if this is the first invocation of this function.
412 1.1 rearnsha */
413 1.1 rearnsha static int
414 1.1 rearnsha integrator_bus_dmamap_load_buffer(t, map, buf, buflen, p, flags, lastaddrp,
415 1.1 rearnsha segp, first)
416 1.1 rearnsha bus_dma_tag_t t;
417 1.1 rearnsha bus_dmamap_t map;
418 1.1 rearnsha void *buf;
419 1.1 rearnsha bus_size_t buflen;
420 1.1 rearnsha struct proc *p;
421 1.1 rearnsha int flags;
422 1.1 rearnsha vm_offset_t *lastaddrp;
423 1.1 rearnsha int *segp;
424 1.1 rearnsha int first;
425 1.1 rearnsha {
426 1.1 rearnsha bus_size_t sgsize;
427 1.1 rearnsha bus_addr_t curaddr, lastaddr, baddr, bmask;
428 1.1 rearnsha vm_offset_t vaddr = (vm_offset_t)buf;
429 1.1 rearnsha int seg;
430 1.1 rearnsha pmap_t pmap;
431 1.1 rearnsha
432 1.1 rearnsha #ifdef DEBUG_DMA
433 1.1 rearnsha printf("integrator_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d, 1st=%d)\n",
434 1.1 rearnsha buf, buflen, flags, first);
435 1.1 rearnsha #endif /* DEBUG_DMA */
436 1.1 rearnsha
437 1.1 rearnsha if (p != NULL)
438 1.1 rearnsha pmap = p->p_vmspace->vm_map.pmap;
439 1.1 rearnsha else
440 1.1 rearnsha pmap = pmap_kernel();
441 1.1 rearnsha
442 1.1 rearnsha lastaddr = *lastaddrp;
443 1.1 rearnsha bmask = ~(map->_dm_boundary - 1);
444 1.1 rearnsha
445 1.1 rearnsha for (seg = *segp; buflen > 0; ) {
446 1.1 rearnsha /*
447 1.1 rearnsha * Get the physical address for this segment.
448 1.1 rearnsha */
449 1.1 rearnsha (void) pmap_extract(pmap, (vaddr_t)vaddr, &curaddr);
450 1.1 rearnsha
451 1.1 rearnsha /*
452 1.1 rearnsha * Make sure we're in an allowed DMA range.
453 1.1 rearnsha */
454 1.1 rearnsha if (t->_ranges != NULL &&
455 1.1 rearnsha integrator_bus_dma_inrange(t->_ranges, t->_nranges, curaddr) == 0)
456 1.1 rearnsha return (EINVAL);
457 1.1 rearnsha
458 1.1 rearnsha /*
459 1.1 rearnsha * Compute the segment size, and adjust counts.
460 1.1 rearnsha */
461 1.1 rearnsha sgsize = NBPG - ((u_long)vaddr & PGOFSET);
462 1.1 rearnsha if (buflen < sgsize)
463 1.1 rearnsha sgsize = buflen;
464 1.1 rearnsha
465 1.1 rearnsha /*
466 1.1 rearnsha * Make sure we don't cross any boundaries.
467 1.1 rearnsha */
468 1.1 rearnsha if (map->_dm_boundary > 0) {
469 1.1 rearnsha baddr = (curaddr + map->_dm_boundary) & bmask;
470 1.1 rearnsha if (sgsize > (baddr - curaddr))
471 1.1 rearnsha sgsize = (baddr - curaddr);
472 1.1 rearnsha }
473 1.1 rearnsha
474 1.1 rearnsha /*
475 1.1 rearnsha * Insert chunk into a segment, coalescing with
476 1.1 rearnsha * previous segment if possible.
477 1.1 rearnsha */
478 1.1 rearnsha if (first) {
479 1.1 rearnsha map->dm_segs[seg].ds_addr = LOCAL_TO_CM_ALIAS(curaddr);
480 1.1 rearnsha map->dm_segs[seg].ds_len = sgsize;
481 1.1 rearnsha map->dm_segs[seg]._ds_vaddr = vaddr;
482 1.1 rearnsha first = 0;
483 1.1 rearnsha } else {
484 1.1 rearnsha if (curaddr == lastaddr &&
485 1.1 rearnsha (map->dm_segs[seg].ds_len + sgsize) <=
486 1.1 rearnsha map->_dm_maxsegsz &&
487 1.1 rearnsha (map->_dm_boundary == 0 ||
488 1.1 rearnsha (map->dm_segs[seg].ds_addr & bmask) ==
489 1.1 rearnsha (LOCAL_TO_CM_ALIAS(curaddr) & bmask)))
490 1.1 rearnsha map->dm_segs[seg].ds_len += sgsize;
491 1.1 rearnsha else {
492 1.1 rearnsha if (++seg >= map->_dm_segcnt)
493 1.1 rearnsha break;
494 1.1 rearnsha map->dm_segs[seg].ds_addr = LOCAL_TO_CM_ALIAS(curaddr);
495 1.1 rearnsha map->dm_segs[seg].ds_len = sgsize;
496 1.1 rearnsha map->dm_segs[seg]._ds_vaddr = vaddr;
497 1.1 rearnsha }
498 1.1 rearnsha }
499 1.1 rearnsha
500 1.1 rearnsha lastaddr = curaddr + sgsize;
501 1.1 rearnsha vaddr += sgsize;
502 1.1 rearnsha buflen -= sgsize;
503 1.1 rearnsha }
504 1.1 rearnsha
505 1.1 rearnsha *segp = seg;
506 1.1 rearnsha *lastaddrp = lastaddr;
507 1.1 rearnsha
508 1.1 rearnsha /*
509 1.1 rearnsha * Did we fit?
510 1.1 rearnsha */
511 1.1 rearnsha if (buflen != 0)
512 1.1 rearnsha return (EFBIG); /* XXX better return value here? */
513 1.1 rearnsha return (0);
514 1.1 rearnsha }
515 1.1 rearnsha
516 1.1 rearnsha /*
517 1.1 rearnsha * Check to see if the specified page is in an allowed DMA range.
518 1.1 rearnsha */
519 1.1 rearnsha static int
520 1.1 rearnsha integrator_bus_dma_inrange(ranges, nranges, curaddr)
521 1.1 rearnsha bus_dma_segment_t *ranges;
522 1.1 rearnsha int nranges;
523 1.1 rearnsha bus_addr_t curaddr;
524 1.1 rearnsha {
525 1.1 rearnsha bus_dma_segment_t *ds;
526 1.1 rearnsha int i;
527 1.1 rearnsha
528 1.1 rearnsha for (i = 0, ds = ranges; i < nranges; i++, ds++) {
529 1.1 rearnsha if (curaddr >= CM_ALIAS_TO_LOCAL(ds->ds_addr) &&
530 1.1 rearnsha round_page(curaddr) <= (CM_ALIAS_TO_LOCAL(ds->ds_addr) + ds->ds_len))
531 1.1 rearnsha return (1);
532 1.1 rearnsha }
533 1.1 rearnsha
534 1.1 rearnsha return (0);
535 1.1 rearnsha }
536 1.1 rearnsha
537 1.1 rearnsha /*
538 1.1 rearnsha * Allocate physical memory from the given physical address range.
539 1.1 rearnsha * Called by DMA-safe memory allocation methods.
540 1.1 rearnsha */
541 1.1 rearnsha int
542 1.1 rearnsha integrator_bus_dmamem_alloc_range(t, size, alignment, boundary, segs, nsegs, rsegs,
543 1.1 rearnsha flags, low, high)
544 1.1 rearnsha bus_dma_tag_t t;
545 1.1 rearnsha bus_size_t size, alignment, boundary;
546 1.1 rearnsha bus_dma_segment_t *segs;
547 1.1 rearnsha int nsegs;
548 1.1 rearnsha int *rsegs;
549 1.1 rearnsha int flags;
550 1.1 rearnsha vm_offset_t low;
551 1.1 rearnsha vm_offset_t high;
552 1.1 rearnsha {
553 1.1 rearnsha vm_offset_t curaddr, lastaddr;
554 1.1 rearnsha struct vm_page *m;
555 1.1 rearnsha struct pglist mlist;
556 1.1 rearnsha int curseg, error;
557 1.1 rearnsha
558 1.1 rearnsha #ifdef DEBUG_DMA
559 1.1 rearnsha printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
560 1.1 rearnsha t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
561 1.1 rearnsha #endif /* DEBUG_DMA */
562 1.1 rearnsha
563 1.1 rearnsha /* Always round the size. */
564 1.1 rearnsha size = round_page(size);
565 1.1 rearnsha
566 1.1 rearnsha /*
567 1.1 rearnsha * Allocate pages from the VM system.
568 1.1 rearnsha */
569 1.1 rearnsha TAILQ_INIT(&mlist);
570 1.1 rearnsha error = uvm_pglistalloc(size, low, high, alignment, boundary,
571 1.1 rearnsha &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
572 1.1 rearnsha if (error)
573 1.1 rearnsha return (error);
574 1.1 rearnsha
575 1.1 rearnsha /*
576 1.1 rearnsha * Compute the location, size, and number of segments actually
577 1.1 rearnsha * returned by the VM code.
578 1.1 rearnsha */
579 1.1 rearnsha m = mlist.tqh_first;
580 1.1 rearnsha curseg = 0;
581 1.1 rearnsha lastaddr = VM_PAGE_TO_PHYS(m);
582 1.1 rearnsha segs[curseg].ds_addr = LOCAL_TO_CM_ALIAS(lastaddr);
583 1.1 rearnsha segs[curseg].ds_len = PAGE_SIZE;
584 1.1 rearnsha #ifdef DEBUG_DMA
585 1.1 rearnsha printf("alloc: page %lx\n", lastaddr);
586 1.1 rearnsha #endif /* DEBUG_DMA */
587 1.1 rearnsha m = m->pageq.tqe_next;
588 1.1 rearnsha
589 1.1 rearnsha for (; m != NULL; m = m->pageq.tqe_next) {
590 1.1 rearnsha curaddr = VM_PAGE_TO_PHYS(m);
591 1.1 rearnsha #ifdef DIAGNOSTIC
592 1.1 rearnsha if (curaddr < low || curaddr >= high) {
593 1.1 rearnsha printf("uvm_pglistalloc returned non-sensical"
594 1.1 rearnsha " address 0x%lx\n", curaddr);
595 1.1 rearnsha panic("integrator_bus_dmamem_alloc_range");
596 1.1 rearnsha }
597 1.1 rearnsha #endif /* DIAGNOSTIC */
598 1.1 rearnsha #ifdef DEBUG_DMA
599 1.1 rearnsha printf("alloc: page %lx\n", curaddr);
600 1.1 rearnsha #endif /* DEBUG_DMA */
601 1.1 rearnsha if (curaddr == (lastaddr + PAGE_SIZE))
602 1.1 rearnsha segs[curseg].ds_len += PAGE_SIZE;
603 1.1 rearnsha else {
604 1.1 rearnsha curseg++;
605 1.1 rearnsha segs[curseg].ds_addr = LOCAL_TO_CM_ALIAS(curaddr);
606 1.1 rearnsha segs[curseg].ds_len = PAGE_SIZE;
607 1.1 rearnsha }
608 1.1 rearnsha lastaddr = curaddr;
609 1.1 rearnsha }
610 1.1 rearnsha
611 1.1 rearnsha *rsegs = curseg + 1;
612 1.1 rearnsha
613 1.1 rearnsha return (0);
614 1.1 rearnsha }
615