Home | History | Annotate | Line # | Download | only in integrator
int_bus_dma.c revision 1.3
      1  1.3   thorpej /*	$NetBSD: int_bus_dma.c,v 1.3 2001/11/26 20:49:05 thorpej Exp $	*/
      2  1.1  rearnsha 
      3  1.1  rearnsha /*-
      4  1.1  rearnsha  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      5  1.1  rearnsha  * All rights reserved.
      6  1.1  rearnsha  *
      7  1.1  rearnsha  * This code is derived from software contributed to The NetBSD Foundation
      8  1.1  rearnsha  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.1  rearnsha  * NASA Ames Research Center.
     10  1.1  rearnsha  *
     11  1.1  rearnsha  * Redistribution and use in source and binary forms, with or without
     12  1.1  rearnsha  * modification, are permitted provided that the following conditions
     13  1.1  rearnsha  * are met:
     14  1.1  rearnsha  * 1. Redistributions of source code must retain the above copyright
     15  1.1  rearnsha  *    notice, this list of conditions and the following disclaimer.
     16  1.1  rearnsha  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.1  rearnsha  *    notice, this list of conditions and the following disclaimer in the
     18  1.1  rearnsha  *    documentation and/or other materials provided with the distribution.
     19  1.1  rearnsha  * 3. All advertising materials mentioning features or use of this software
     20  1.1  rearnsha  *    must display the following acknowledgement:
     21  1.1  rearnsha  *	This product includes software developed by the NetBSD
     22  1.1  rearnsha  *	Foundation, Inc. and its contributors.
     23  1.1  rearnsha  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  1.1  rearnsha  *    contributors may be used to endorse or promote products derived
     25  1.1  rearnsha  *    from this software without specific prior written permission.
     26  1.1  rearnsha  *
     27  1.1  rearnsha  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  1.1  rearnsha  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  1.1  rearnsha  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  1.1  rearnsha  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  1.1  rearnsha  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  1.1  rearnsha  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  1.1  rearnsha  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  1.1  rearnsha  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  1.1  rearnsha  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  1.1  rearnsha  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  1.1  rearnsha  * POSSIBILITY OF SUCH DAMAGE.
     38  1.1  rearnsha  */
     39  1.1  rearnsha /*
     40  1.1  rearnsha  * The integrator board has memory steering hardware that means that
     41  1.1  rearnsha  * the normal physical addresses used by the processor cannot be used
     42  1.1  rearnsha  * for DMA.  Instead we have to use the "core module alias mapping
     43  1.1  rearnsha  * addresses".  We don't use these for normal processor accesses since
     44  1.1  rearnsha  * they are much slower than the direct addresses when accessing
     45  1.1  rearnsha  * memory on the local board.
     46  1.1  rearnsha  */
     47  1.1  rearnsha 
     48  1.1  rearnsha #include <sys/param.h>
     49  1.1  rearnsha #include <sys/systm.h>
     50  1.1  rearnsha #include <sys/kernel.h>
     51  1.1  rearnsha #include <sys/map.h>
     52  1.1  rearnsha #include <sys/proc.h>
     53  1.1  rearnsha #include <sys/buf.h>
     54  1.1  rearnsha #include <sys/reboot.h>
     55  1.1  rearnsha #include <sys/conf.h>
     56  1.1  rearnsha #include <sys/file.h>
     57  1.1  rearnsha #include <sys/malloc.h>
     58  1.1  rearnsha #include <sys/mbuf.h>
     59  1.1  rearnsha #include <sys/vnode.h>
     60  1.1  rearnsha #include <sys/device.h>
     61  1.1  rearnsha 
     62  1.1  rearnsha #include <uvm/uvm_extern.h>
     63  1.1  rearnsha 
     64  1.1  rearnsha #define _ARM32_BUS_DMA_PRIVATE
     65  1.1  rearnsha #include <evbarm/integrator/int_bus_dma.h>
     66  1.1  rearnsha 
     67  1.1  rearnsha #include <machine/cpu.h>
     68  1.2   thorpej #include <arm/cpufunc.h>
     69  1.1  rearnsha 
     70  1.1  rearnsha static int	integrator_bus_dmamap_load_buffer __P((bus_dma_tag_t,
     71  1.1  rearnsha 		    bus_dmamap_t, void *, bus_size_t, struct proc *, int,
     72  1.1  rearnsha 		    vm_offset_t *, int *, int));
     73  1.1  rearnsha static int	integrator_bus_dma_inrange __P((bus_dma_segment_t *, int,
     74  1.1  rearnsha 		    bus_addr_t));
     75  1.1  rearnsha 
     76  1.1  rearnsha /*
     77  1.1  rearnsha  * Common function for loading a DMA map with a linear buffer.  May
     78  1.1  rearnsha  * be called by bus-specific DMA map load functions.
     79  1.1  rearnsha  */
     80  1.1  rearnsha int
     81  1.1  rearnsha integrator_bus_dmamap_load(t, map, buf, buflen, p, flags)
     82  1.1  rearnsha 	bus_dma_tag_t t;
     83  1.1  rearnsha 	bus_dmamap_t map;
     84  1.1  rearnsha 	void *buf;
     85  1.1  rearnsha 	bus_size_t buflen;
     86  1.1  rearnsha 	struct proc *p;
     87  1.1  rearnsha 	int flags;
     88  1.1  rearnsha {
     89  1.1  rearnsha 	vm_offset_t lastaddr;
     90  1.1  rearnsha 	int seg, error;
     91  1.1  rearnsha 
     92  1.1  rearnsha #ifdef DEBUG_DMA
     93  1.1  rearnsha 	printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
     94  1.1  rearnsha 	    t, map, buf, buflen, p, flags);
     95  1.1  rearnsha #endif	/* DEBUG_DMA */
     96  1.1  rearnsha 
     97  1.1  rearnsha 	/*
     98  1.1  rearnsha 	 * Make sure that on error condition we return "no valid mappings".
     99  1.1  rearnsha 	 */
    100  1.1  rearnsha 	map->dm_mapsize = 0;
    101  1.1  rearnsha 	map->dm_nsegs = 0;
    102  1.1  rearnsha 
    103  1.1  rearnsha 	if (buflen > map->_dm_size)
    104  1.1  rearnsha 		return (EINVAL);
    105  1.1  rearnsha 
    106  1.1  rearnsha 	seg = 0;
    107  1.1  rearnsha 	error = integrator_bus_dmamap_load_buffer(t, map, buf, buflen, p, flags,
    108  1.1  rearnsha 	    &lastaddr, &seg, 1);
    109  1.1  rearnsha 	if (error == 0) {
    110  1.1  rearnsha 		map->dm_mapsize = buflen;
    111  1.1  rearnsha 		map->dm_nsegs = seg + 1;
    112  1.1  rearnsha 	}
    113  1.1  rearnsha #ifdef DEBUG_DMA
    114  1.1  rearnsha 	printf("dmamap_load: error=%d\n", error);
    115  1.1  rearnsha #endif	/* DEBUG_DMA */
    116  1.1  rearnsha 	return (error);
    117  1.1  rearnsha }
    118  1.1  rearnsha 
    119  1.1  rearnsha /*
    120  1.1  rearnsha  * Like _bus_dmamap_load(), but for mbufs.
    121  1.1  rearnsha  */
    122  1.1  rearnsha int
    123  1.1  rearnsha integrator_bus_dmamap_load_mbuf(t, map, m0, flags)
    124  1.1  rearnsha 	bus_dma_tag_t t;
    125  1.1  rearnsha 	bus_dmamap_t map;
    126  1.1  rearnsha 	struct mbuf *m0;
    127  1.1  rearnsha 	int flags;
    128  1.1  rearnsha {
    129  1.1  rearnsha 	vm_offset_t lastaddr;
    130  1.1  rearnsha 	int seg, error, first;
    131  1.1  rearnsha 	struct mbuf *m;
    132  1.1  rearnsha 
    133  1.1  rearnsha #ifdef DEBUG_DMA
    134  1.1  rearnsha 	printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
    135  1.1  rearnsha 	    t, map, m0, flags);
    136  1.1  rearnsha #endif	/* DEBUG_DMA */
    137  1.1  rearnsha 
    138  1.1  rearnsha 	/*
    139  1.1  rearnsha 	 * Make sure that on error condition we return "no valid mappings."
    140  1.1  rearnsha 	 */
    141  1.1  rearnsha 	map->dm_mapsize = 0;
    142  1.1  rearnsha 	map->dm_nsegs = 0;
    143  1.1  rearnsha 
    144  1.1  rearnsha #ifdef DIAGNOSTIC
    145  1.1  rearnsha 	if ((m0->m_flags & M_PKTHDR) == 0)
    146  1.1  rearnsha 		panic("integrator_bus_dmamap_load_mbuf: no packet header");
    147  1.1  rearnsha #endif	/* DIAGNOSTIC */
    148  1.1  rearnsha 
    149  1.1  rearnsha 	if (m0->m_pkthdr.len > map->_dm_size)
    150  1.1  rearnsha 		return (EINVAL);
    151  1.1  rearnsha 
    152  1.1  rearnsha 	first = 1;
    153  1.1  rearnsha 	seg = 0;
    154  1.1  rearnsha 	error = 0;
    155  1.1  rearnsha 	for (m = m0; m != NULL && error == 0; m = m->m_next) {
    156  1.1  rearnsha 		error = integrator_bus_dmamap_load_buffer(t, map, m->m_data,
    157  1.1  rearnsha 		    m->m_len, NULL, flags, &lastaddr, &seg, first);
    158  1.1  rearnsha 		first = 0;
    159  1.1  rearnsha 	}
    160  1.1  rearnsha 	if (error == 0) {
    161  1.1  rearnsha 		map->dm_mapsize = m0->m_pkthdr.len;
    162  1.1  rearnsha 		map->dm_nsegs = seg + 1;
    163  1.1  rearnsha 	}
    164  1.1  rearnsha #ifdef DEBUG_DMA
    165  1.1  rearnsha 	printf("dmamap_load_mbuf: error=%d\n", error);
    166  1.1  rearnsha #endif	/* DEBUG_DMA */
    167  1.1  rearnsha 	return (error);
    168  1.1  rearnsha }
    169  1.1  rearnsha 
    170  1.1  rearnsha /*
    171  1.1  rearnsha  * Like _bus_dmamap_load(), but for uios.
    172  1.1  rearnsha  */
    173  1.1  rearnsha int
    174  1.1  rearnsha integrator_bus_dmamap_load_uio(t, map, uio, flags)
    175  1.1  rearnsha 	bus_dma_tag_t t;
    176  1.1  rearnsha 	bus_dmamap_t map;
    177  1.1  rearnsha 	struct uio *uio;
    178  1.1  rearnsha 	int flags;
    179  1.1  rearnsha {
    180  1.1  rearnsha 	vm_offset_t lastaddr;
    181  1.1  rearnsha 	int seg, i, error, first;
    182  1.1  rearnsha 	bus_size_t minlen, resid;
    183  1.1  rearnsha 	struct proc *p = NULL;
    184  1.1  rearnsha 	struct iovec *iov;
    185  1.1  rearnsha 	caddr_t addr;
    186  1.1  rearnsha 
    187  1.1  rearnsha 	/*
    188  1.1  rearnsha 	 * Make sure that on error condition we return "no valid mappings."
    189  1.1  rearnsha 	 */
    190  1.1  rearnsha 	map->dm_mapsize = 0;
    191  1.1  rearnsha 	map->dm_nsegs = 0;
    192  1.1  rearnsha 
    193  1.1  rearnsha 	resid = uio->uio_resid;
    194  1.1  rearnsha 	iov = uio->uio_iov;
    195  1.1  rearnsha 
    196  1.1  rearnsha 	if (uio->uio_segflg == UIO_USERSPACE) {
    197  1.1  rearnsha 		p = uio->uio_procp;
    198  1.1  rearnsha #ifdef DIAGNOSTIC
    199  1.1  rearnsha 		if (p == NULL)
    200  1.1  rearnsha 			panic("integrator_bus_dmamap_load_uio: USERSPACE but no proc");
    201  1.1  rearnsha #endif
    202  1.1  rearnsha 	}
    203  1.1  rearnsha 
    204  1.1  rearnsha 	first = 1;
    205  1.1  rearnsha 	seg = 0;
    206  1.1  rearnsha 	error = 0;
    207  1.1  rearnsha 	for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
    208  1.1  rearnsha 		/*
    209  1.1  rearnsha 		 * Now at the first iovec to load.  Load each iovec
    210  1.1  rearnsha 		 * until we have exhausted the residual count.
    211  1.1  rearnsha 		 */
    212  1.1  rearnsha 		minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
    213  1.1  rearnsha 		addr = (caddr_t)iov[i].iov_base;
    214  1.1  rearnsha 
    215  1.1  rearnsha 		error = integrator_bus_dmamap_load_buffer(t, map, addr, minlen,
    216  1.1  rearnsha 		    p, flags, &lastaddr, &seg, first);
    217  1.1  rearnsha 		first = 0;
    218  1.1  rearnsha 
    219  1.1  rearnsha 		resid -= minlen;
    220  1.1  rearnsha 	}
    221  1.1  rearnsha 	if (error == 0) {
    222  1.1  rearnsha 		map->dm_mapsize = uio->uio_resid;
    223  1.1  rearnsha 		map->dm_nsegs = seg + 1;
    224  1.1  rearnsha 	}
    225  1.1  rearnsha 	return (error);
    226  1.1  rearnsha }
    227  1.1  rearnsha 
    228  1.1  rearnsha /*
    229  1.1  rearnsha  * Common function for DMA-safe memory allocation.  May be called
    230  1.1  rearnsha  * by bus-specific DMA memory allocation functions.
    231  1.1  rearnsha  */
    232  1.1  rearnsha 
    233  1.1  rearnsha extern vm_offset_t physical_start;
    234  1.1  rearnsha extern vm_offset_t physical_freestart;
    235  1.1  rearnsha extern vm_offset_t physical_freeend;
    236  1.1  rearnsha extern vm_offset_t physical_end;
    237  1.1  rearnsha 
    238  1.1  rearnsha int
    239  1.1  rearnsha integrator_bus_dmamem_alloc(t, size, alignment, boundary, segs, nsegs, rsegs, flags)
    240  1.1  rearnsha 	bus_dma_tag_t t;
    241  1.1  rearnsha 	bus_size_t size, alignment, boundary;
    242  1.1  rearnsha 	bus_dma_segment_t *segs;
    243  1.1  rearnsha 	int nsegs;
    244  1.1  rearnsha 	int *rsegs;
    245  1.1  rearnsha 	int flags;
    246  1.1  rearnsha {
    247  1.1  rearnsha 	int error;
    248  1.1  rearnsha #ifdef DEBUG_DMA
    249  1.1  rearnsha 	printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x\n",
    250  1.1  rearnsha 	    t, size, alignment, boundary, segs, nsegs, rsegs, flags);
    251  1.1  rearnsha #endif	/* DEBUG_DMA */
    252  1.1  rearnsha 	error =  (integrator_bus_dmamem_alloc_range(t, size, alignment, boundary,
    253  1.1  rearnsha 	    segs, nsegs, rsegs, flags, trunc_page(physical_start), trunc_page(physical_end)));
    254  1.1  rearnsha #ifdef DEBUG_DMA
    255  1.1  rearnsha 	printf("dmamem_alloc: =%d\n", error);
    256  1.1  rearnsha #endif	/* DEBUG_DMA */
    257  1.1  rearnsha 	return(error);
    258  1.1  rearnsha }
    259  1.1  rearnsha 
    260  1.1  rearnsha /*
    261  1.1  rearnsha  * Common function for freeing DMA-safe memory.  May be called by
    262  1.1  rearnsha  * bus-specific DMA memory free functions.
    263  1.1  rearnsha  */
    264  1.1  rearnsha void
    265  1.1  rearnsha integrator_bus_dmamem_free(t, segs, nsegs)
    266  1.1  rearnsha 	bus_dma_tag_t t;
    267  1.1  rearnsha 	bus_dma_segment_t *segs;
    268  1.1  rearnsha 	int nsegs;
    269  1.1  rearnsha {
    270  1.1  rearnsha 	struct vm_page *m;
    271  1.1  rearnsha 	bus_addr_t addr;
    272  1.1  rearnsha 	struct pglist mlist;
    273  1.1  rearnsha 	int curseg;
    274  1.1  rearnsha 
    275  1.1  rearnsha #ifdef DEBUG_DMA
    276  1.1  rearnsha 	printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
    277  1.1  rearnsha #endif	/* DEBUG_DMA */
    278  1.1  rearnsha 
    279  1.1  rearnsha 	/*
    280  1.1  rearnsha 	 * Build a list of pages to free back to the VM system.
    281  1.1  rearnsha 	 */
    282  1.1  rearnsha 	TAILQ_INIT(&mlist);
    283  1.1  rearnsha 	for (curseg = 0; curseg < nsegs; curseg++) {
    284  1.1  rearnsha 		for (addr = segs[curseg].ds_addr;
    285  1.1  rearnsha 		    addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
    286  1.1  rearnsha 		    addr += PAGE_SIZE) {
    287  1.1  rearnsha 			m = PHYS_TO_VM_PAGE(CM_ALIAS_TO_LOCAL(addr));
    288  1.1  rearnsha 			TAILQ_INSERT_TAIL(&mlist, m, pageq);
    289  1.1  rearnsha 		}
    290  1.1  rearnsha 	}
    291  1.1  rearnsha 	uvm_pglistfree(&mlist);
    292  1.1  rearnsha }
    293  1.1  rearnsha 
    294  1.1  rearnsha /*
    295  1.1  rearnsha  * Common function for mapping DMA-safe memory.  May be called by
    296  1.1  rearnsha  * bus-specific DMA memory map functions.
    297  1.1  rearnsha  */
    298  1.1  rearnsha int
    299  1.1  rearnsha integrator_bus_dmamem_map(t, segs, nsegs, size, kvap, flags)
    300  1.1  rearnsha 	bus_dma_tag_t t;
    301  1.1  rearnsha 	bus_dma_segment_t *segs;
    302  1.1  rearnsha 	int nsegs;
    303  1.1  rearnsha 	size_t size;
    304  1.1  rearnsha 	caddr_t *kvap;
    305  1.1  rearnsha 	int flags;
    306  1.1  rearnsha {
    307  1.1  rearnsha 	vm_offset_t va;
    308  1.1  rearnsha 	bus_addr_t addr;
    309  1.1  rearnsha 	int curseg;
    310  1.1  rearnsha 	pt_entry_t *ptep/*, pte*/;
    311  1.1  rearnsha 
    312  1.1  rearnsha #ifdef DEBUG_DMA
    313  1.1  rearnsha 	printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
    314  1.1  rearnsha 	    segs, nsegs, (unsigned long)size, flags);
    315  1.1  rearnsha #endif	/* DEBUG_DMA */
    316  1.1  rearnsha 
    317  1.1  rearnsha 	size = round_page(size);
    318  1.1  rearnsha 	va = uvm_km_valloc(kernel_map, size);
    319  1.1  rearnsha 
    320  1.1  rearnsha 	if (va == 0)
    321  1.1  rearnsha 		return (ENOMEM);
    322  1.1  rearnsha 
    323  1.1  rearnsha 	*kvap = (caddr_t)va;
    324  1.1  rearnsha 
    325  1.1  rearnsha 	for (curseg = 0; curseg < nsegs; curseg++) {
    326  1.1  rearnsha 		for (addr = segs[curseg].ds_addr;
    327  1.1  rearnsha 		    addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
    328  1.1  rearnsha 		    addr += NBPG, va += NBPG, size -= NBPG) {
    329  1.1  rearnsha #ifdef DEBUG_DMA
    330  1.1  rearnsha 			printf("wiring p%lx to v%lx", CM_ALIAS_TO_LOCAL(addr),
    331  1.1  rearnsha 			    va);
    332  1.1  rearnsha #endif	/* DEBUG_DMA */
    333  1.1  rearnsha 			if (size == 0)
    334  1.1  rearnsha 				panic("integrator_bus_dmamem_map: size botch");
    335  1.1  rearnsha 			pmap_enter(pmap_kernel(), va, CM_ALIAS_TO_LOCAL(addr),
    336  1.1  rearnsha 			    VM_PROT_READ | VM_PROT_WRITE,
    337  1.1  rearnsha 			    VM_PROT_READ | VM_PROT_WRITE | PMAP_WIRED);
    338  1.1  rearnsha 			/*
    339  1.1  rearnsha 			 * If the memory must remain coherent with the
    340  1.1  rearnsha 			 * cache then we must make the memory uncacheable
    341  1.1  rearnsha 			 * in order to maintain virtual cache coherency.
    342  1.1  rearnsha 			 * We must also guarentee the cache does not already
    343  1.1  rearnsha 			 * contain the virtal addresses we are making
    344  1.1  rearnsha 			 * uncacheable.
    345  1.1  rearnsha 			 */
    346  1.1  rearnsha 			if (flags & BUS_DMA_COHERENT) {
    347  1.1  rearnsha 				cpu_cache_purgeD_rng(va, NBPG);
    348  1.1  rearnsha 				cpu_drain_writebuf();
    349  1.1  rearnsha 				ptep = vtopte(va);
    350  1.1  rearnsha 				*ptep = ((*ptep) & (~PT_C | PT_B));
    351  1.1  rearnsha 				tlb_flush();
    352  1.1  rearnsha 			}
    353  1.1  rearnsha #ifdef DEBUG_DMA
    354  1.1  rearnsha 			ptep = vtopte(va);
    355  1.1  rearnsha 			printf(" pte=v%p *pte=%x\n", ptep, *ptep);
    356  1.1  rearnsha #endif	/* DEBUG_DMA */
    357  1.1  rearnsha 		}
    358  1.1  rearnsha 	}
    359  1.1  rearnsha 	pmap_update(pmap_kernel());
    360  1.1  rearnsha #ifdef DEBUG_DMA
    361  1.1  rearnsha 	printf("dmamem_map: =%p\n", *kvap);
    362  1.1  rearnsha #endif	/* DEBUG_DMA */
    363  1.1  rearnsha 	return (0);
    364  1.1  rearnsha }
    365  1.1  rearnsha 
    366  1.1  rearnsha /*
    367  1.1  rearnsha  * Common functin for mmap(2)'ing DMA-safe memory.  May be called by
    368  1.1  rearnsha  * bus-specific DMA mmap(2)'ing functions.
    369  1.1  rearnsha  */
    370  1.1  rearnsha paddr_t
    371  1.1  rearnsha integrator_bus_dmamem_mmap(t, segs, nsegs, off, prot, flags)
    372  1.1  rearnsha 	bus_dma_tag_t t;
    373  1.1  rearnsha 	bus_dma_segment_t *segs;
    374  1.1  rearnsha 	int nsegs;
    375  1.1  rearnsha 	off_t off;
    376  1.1  rearnsha 	int prot, flags;
    377  1.1  rearnsha {
    378  1.1  rearnsha 	int i;
    379  1.1  rearnsha 
    380  1.1  rearnsha 	for (i = 0; i < nsegs; i++) {
    381  1.1  rearnsha #ifdef DIAGNOSTIC
    382  1.1  rearnsha 		if (off & PGOFSET)
    383  1.1  rearnsha 			panic("integrator_bus_dmamem_mmap: offset unaligned");
    384  1.1  rearnsha 		if (segs[i].ds_addr & PGOFSET)
    385  1.1  rearnsha 			panic("integrator_bus_dmamem_mmap: segment unaligned");
    386  1.1  rearnsha 		if (segs[i].ds_len & PGOFSET)
    387  1.1  rearnsha 			panic("integrator_bus_dmamem_mmap: segment size not multiple"
    388  1.1  rearnsha 			    " of page size");
    389  1.1  rearnsha #endif	/* DIAGNOSTIC */
    390  1.1  rearnsha 		if (off >= segs[i].ds_len) {
    391  1.1  rearnsha 			off -= segs[i].ds_len;
    392  1.1  rearnsha 			continue;
    393  1.1  rearnsha 		}
    394  1.1  rearnsha 
    395  1.1  rearnsha 		return arm_byte_to_page((u_long)CM_ALIAS_TO_LOCAL(segs[i].ds_addr) + off);
    396  1.1  rearnsha 	}
    397  1.1  rearnsha 
    398  1.1  rearnsha 	/* Page not found. */
    399  1.1  rearnsha 	return -1;
    400  1.1  rearnsha }
    401  1.1  rearnsha 
    402  1.1  rearnsha /**********************************************************************
    403  1.1  rearnsha  * DMA utility functions
    404  1.1  rearnsha  **********************************************************************/
    405  1.1  rearnsha 
    406  1.1  rearnsha /*
    407  1.1  rearnsha  * Utility function to load a linear buffer.  lastaddrp holds state
    408  1.1  rearnsha  * between invocations (for multiple-buffer loads).  segp contains
    409  1.1  rearnsha  * the starting segment on entrace, and the ending segment on exit.
    410  1.1  rearnsha  * first indicates if this is the first invocation of this function.
    411  1.1  rearnsha  */
    412  1.1  rearnsha static int
    413  1.1  rearnsha integrator_bus_dmamap_load_buffer(t, map, buf, buflen, p, flags, lastaddrp,
    414  1.1  rearnsha     segp, first)
    415  1.1  rearnsha 	bus_dma_tag_t t;
    416  1.1  rearnsha 	bus_dmamap_t map;
    417  1.1  rearnsha 	void *buf;
    418  1.1  rearnsha 	bus_size_t buflen;
    419  1.1  rearnsha 	struct proc *p;
    420  1.1  rearnsha 	int flags;
    421  1.1  rearnsha 	vm_offset_t *lastaddrp;
    422  1.1  rearnsha 	int *segp;
    423  1.1  rearnsha 	int first;
    424  1.1  rearnsha {
    425  1.1  rearnsha 	bus_size_t sgsize;
    426  1.1  rearnsha 	bus_addr_t curaddr, lastaddr, baddr, bmask;
    427  1.1  rearnsha 	vm_offset_t vaddr = (vm_offset_t)buf;
    428  1.1  rearnsha 	int seg;
    429  1.1  rearnsha 	pmap_t pmap;
    430  1.1  rearnsha 
    431  1.1  rearnsha #ifdef DEBUG_DMA
    432  1.1  rearnsha 	printf("integrator_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d, 1st=%d)\n",
    433  1.1  rearnsha 	    buf, buflen, flags, first);
    434  1.1  rearnsha #endif	/* DEBUG_DMA */
    435  1.1  rearnsha 
    436  1.1  rearnsha 	if (p != NULL)
    437  1.1  rearnsha 		pmap = p->p_vmspace->vm_map.pmap;
    438  1.1  rearnsha 	else
    439  1.1  rearnsha 		pmap = pmap_kernel();
    440  1.1  rearnsha 
    441  1.1  rearnsha 	lastaddr = *lastaddrp;
    442  1.1  rearnsha 	bmask  = ~(map->_dm_boundary - 1);
    443  1.1  rearnsha 
    444  1.1  rearnsha 	for (seg = *segp; buflen > 0; ) {
    445  1.1  rearnsha 		/*
    446  1.1  rearnsha 		 * Get the physical address for this segment.
    447  1.1  rearnsha 		 */
    448  1.1  rearnsha 		(void) pmap_extract(pmap, (vaddr_t)vaddr, &curaddr);
    449  1.1  rearnsha 
    450  1.1  rearnsha 		/*
    451  1.1  rearnsha 		 * Make sure we're in an allowed DMA range.
    452  1.1  rearnsha 		 */
    453  1.1  rearnsha 		if (t->_ranges != NULL &&
    454  1.1  rearnsha 		    integrator_bus_dma_inrange(t->_ranges, t->_nranges, curaddr) == 0)
    455  1.1  rearnsha 			return (EINVAL);
    456  1.1  rearnsha 
    457  1.1  rearnsha 		/*
    458  1.1  rearnsha 		 * Compute the segment size, and adjust counts.
    459  1.1  rearnsha 		 */
    460  1.1  rearnsha 		sgsize = NBPG - ((u_long)vaddr & PGOFSET);
    461  1.1  rearnsha 		if (buflen < sgsize)
    462  1.1  rearnsha 			sgsize = buflen;
    463  1.1  rearnsha 
    464  1.1  rearnsha 		/*
    465  1.1  rearnsha 		 * Make sure we don't cross any boundaries.
    466  1.1  rearnsha 		 */
    467  1.1  rearnsha 		if (map->_dm_boundary > 0) {
    468  1.1  rearnsha 			baddr = (curaddr + map->_dm_boundary) & bmask;
    469  1.1  rearnsha 			if (sgsize > (baddr - curaddr))
    470  1.1  rearnsha 				sgsize = (baddr - curaddr);
    471  1.1  rearnsha 		}
    472  1.1  rearnsha 
    473  1.1  rearnsha 		/*
    474  1.1  rearnsha 		 * Insert chunk into a segment, coalescing with
    475  1.1  rearnsha 		 * previous segment if possible.
    476  1.1  rearnsha 		 */
    477  1.1  rearnsha 		if (first) {
    478  1.1  rearnsha 			map->dm_segs[seg].ds_addr = LOCAL_TO_CM_ALIAS(curaddr);
    479  1.1  rearnsha 			map->dm_segs[seg].ds_len = sgsize;
    480  1.1  rearnsha 			map->dm_segs[seg]._ds_vaddr = vaddr;
    481  1.1  rearnsha 			first = 0;
    482  1.1  rearnsha 		} else {
    483  1.1  rearnsha 			if (curaddr == lastaddr &&
    484  1.1  rearnsha 			    (map->dm_segs[seg].ds_len + sgsize) <=
    485  1.1  rearnsha 			     map->_dm_maxsegsz &&
    486  1.1  rearnsha 			    (map->_dm_boundary == 0 ||
    487  1.1  rearnsha 			     (map->dm_segs[seg].ds_addr & bmask) ==
    488  1.1  rearnsha 			     (LOCAL_TO_CM_ALIAS(curaddr) & bmask)))
    489  1.1  rearnsha 				map->dm_segs[seg].ds_len += sgsize;
    490  1.1  rearnsha 			else {
    491  1.1  rearnsha 				if (++seg >= map->_dm_segcnt)
    492  1.1  rearnsha 					break;
    493  1.1  rearnsha 				map->dm_segs[seg].ds_addr = LOCAL_TO_CM_ALIAS(curaddr);
    494  1.1  rearnsha 				map->dm_segs[seg].ds_len = sgsize;
    495  1.1  rearnsha 				map->dm_segs[seg]._ds_vaddr = vaddr;
    496  1.1  rearnsha 			}
    497  1.1  rearnsha 		}
    498  1.1  rearnsha 
    499  1.1  rearnsha 		lastaddr = curaddr + sgsize;
    500  1.1  rearnsha 		vaddr += sgsize;
    501  1.1  rearnsha 		buflen -= sgsize;
    502  1.1  rearnsha 	}
    503  1.1  rearnsha 
    504  1.1  rearnsha 	*segp = seg;
    505  1.1  rearnsha 	*lastaddrp = lastaddr;
    506  1.1  rearnsha 
    507  1.1  rearnsha 	/*
    508  1.1  rearnsha 	 * Did we fit?
    509  1.1  rearnsha 	 */
    510  1.1  rearnsha 	if (buflen != 0)
    511  1.1  rearnsha 		return (EFBIG);		/* XXX better return value here? */
    512  1.1  rearnsha 	return (0);
    513  1.1  rearnsha }
    514  1.1  rearnsha 
    515  1.1  rearnsha /*
    516  1.1  rearnsha  * Check to see if the specified page is in an allowed DMA range.
    517  1.1  rearnsha  */
    518  1.1  rearnsha static int
    519  1.1  rearnsha integrator_bus_dma_inrange(ranges, nranges, curaddr)
    520  1.1  rearnsha 	bus_dma_segment_t *ranges;
    521  1.1  rearnsha 	int nranges;
    522  1.1  rearnsha 	bus_addr_t curaddr;
    523  1.1  rearnsha {
    524  1.1  rearnsha 	bus_dma_segment_t *ds;
    525  1.1  rearnsha 	int i;
    526  1.1  rearnsha 
    527  1.1  rearnsha 	for (i = 0, ds = ranges; i < nranges; i++, ds++) {
    528  1.1  rearnsha 		if (curaddr >= CM_ALIAS_TO_LOCAL(ds->ds_addr) &&
    529  1.1  rearnsha 		    round_page(curaddr) <= (CM_ALIAS_TO_LOCAL(ds->ds_addr) + ds->ds_len))
    530  1.1  rearnsha 			return (1);
    531  1.1  rearnsha 	}
    532  1.1  rearnsha 
    533  1.1  rearnsha 	return (0);
    534  1.1  rearnsha }
    535  1.1  rearnsha 
    536  1.1  rearnsha /*
    537  1.1  rearnsha  * Allocate physical memory from the given physical address range.
    538  1.1  rearnsha  * Called by DMA-safe memory allocation methods.
    539  1.1  rearnsha  */
    540  1.1  rearnsha int
    541  1.1  rearnsha integrator_bus_dmamem_alloc_range(t, size, alignment, boundary, segs, nsegs, rsegs,
    542  1.1  rearnsha     flags, low, high)
    543  1.1  rearnsha 	bus_dma_tag_t t;
    544  1.1  rearnsha 	bus_size_t size, alignment, boundary;
    545  1.1  rearnsha 	bus_dma_segment_t *segs;
    546  1.1  rearnsha 	int nsegs;
    547  1.1  rearnsha 	int *rsegs;
    548  1.1  rearnsha 	int flags;
    549  1.1  rearnsha 	vm_offset_t low;
    550  1.1  rearnsha 	vm_offset_t high;
    551  1.1  rearnsha {
    552  1.1  rearnsha 	vm_offset_t curaddr, lastaddr;
    553  1.1  rearnsha 	struct vm_page *m;
    554  1.1  rearnsha 	struct pglist mlist;
    555  1.1  rearnsha 	int curseg, error;
    556  1.1  rearnsha 
    557  1.1  rearnsha #ifdef DEBUG_DMA
    558  1.1  rearnsha 	printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
    559  1.1  rearnsha 	    t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
    560  1.1  rearnsha #endif	/* DEBUG_DMA */
    561  1.1  rearnsha 
    562  1.1  rearnsha 	/* Always round the size. */
    563  1.1  rearnsha 	size = round_page(size);
    564  1.1  rearnsha 
    565  1.1  rearnsha 	/*
    566  1.1  rearnsha 	 * Allocate pages from the VM system.
    567  1.1  rearnsha 	 */
    568  1.1  rearnsha 	TAILQ_INIT(&mlist);
    569  1.1  rearnsha 	error = uvm_pglistalloc(size, low, high, alignment, boundary,
    570  1.1  rearnsha 	    &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
    571  1.1  rearnsha 	if (error)
    572  1.1  rearnsha 		return (error);
    573  1.1  rearnsha 
    574  1.1  rearnsha 	/*
    575  1.1  rearnsha 	 * Compute the location, size, and number of segments actually
    576  1.1  rearnsha 	 * returned by the VM code.
    577  1.1  rearnsha 	 */
    578  1.1  rearnsha 	m = mlist.tqh_first;
    579  1.1  rearnsha 	curseg = 0;
    580  1.1  rearnsha 	lastaddr = VM_PAGE_TO_PHYS(m);
    581  1.1  rearnsha 	segs[curseg].ds_addr = LOCAL_TO_CM_ALIAS(lastaddr);
    582  1.1  rearnsha 	segs[curseg].ds_len = PAGE_SIZE;
    583  1.1  rearnsha #ifdef DEBUG_DMA
    584  1.1  rearnsha 		printf("alloc: page %lx\n", lastaddr);
    585  1.1  rearnsha #endif	/* DEBUG_DMA */
    586  1.1  rearnsha 	m = m->pageq.tqe_next;
    587  1.1  rearnsha 
    588  1.1  rearnsha 	for (; m != NULL; m = m->pageq.tqe_next) {
    589  1.1  rearnsha 		curaddr = VM_PAGE_TO_PHYS(m);
    590  1.1  rearnsha #ifdef DIAGNOSTIC
    591  1.1  rearnsha 		if (curaddr < low || curaddr >= high) {
    592  1.1  rearnsha 			printf("uvm_pglistalloc returned non-sensical"
    593  1.1  rearnsha 			    " address 0x%lx\n", curaddr);
    594  1.1  rearnsha 			panic("integrator_bus_dmamem_alloc_range");
    595  1.1  rearnsha 		}
    596  1.1  rearnsha #endif	/* DIAGNOSTIC */
    597  1.1  rearnsha #ifdef DEBUG_DMA
    598  1.1  rearnsha 		printf("alloc: page %lx\n", curaddr);
    599  1.1  rearnsha #endif	/* DEBUG_DMA */
    600  1.1  rearnsha 		if (curaddr == (lastaddr + PAGE_SIZE))
    601  1.1  rearnsha 			segs[curseg].ds_len += PAGE_SIZE;
    602  1.1  rearnsha 		else {
    603  1.1  rearnsha 			curseg++;
    604  1.1  rearnsha 			segs[curseg].ds_addr = LOCAL_TO_CM_ALIAS(curaddr);
    605  1.1  rearnsha 			segs[curseg].ds_len = PAGE_SIZE;
    606  1.1  rearnsha 		}
    607  1.1  rearnsha 		lastaddr = curaddr;
    608  1.1  rearnsha 	}
    609  1.1  rearnsha 
    610  1.1  rearnsha 	*rsegs = curseg + 1;
    611  1.1  rearnsha 
    612  1.1  rearnsha 	return (0);
    613  1.1  rearnsha }
    614