Home | History | Annotate | Line # | Download | only in integrator
integrator_machdep.c revision 1.1
      1  1.1  rearnsha /*	$NetBSD: integrator_machdep.c,v 1.1 2001/10/27 16:17:52 rearnsha Exp $	*/
      2  1.1  rearnsha 
      3  1.1  rearnsha /*
      4  1.1  rearnsha  * Copyright (c) 2001 ARM Ltd
      5  1.1  rearnsha  * All rights reserved.
      6  1.1  rearnsha  *
      7  1.1  rearnsha  * Redistribution and use in source and binary forms, with or without
      8  1.1  rearnsha  * modification, are permitted provided that the following conditions
      9  1.1  rearnsha  * are met:
     10  1.1  rearnsha  * 1. Redistributions of source code must retain the above copyright
     11  1.1  rearnsha  *    notice, this list of conditions and the following disclaimer.
     12  1.1  rearnsha  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.1  rearnsha  *    notice, this list of conditions and the following disclaimer in the
     14  1.1  rearnsha  *    documentation and/or other materials provided with the distribution.
     15  1.1  rearnsha  * 3. The name of the company may not be used to endorse or promote
     16  1.1  rearnsha  *    products derived from this software without specific prior written
     17  1.1  rearnsha  *    permission.
     18  1.1  rearnsha  *
     19  1.1  rearnsha  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     20  1.1  rearnsha  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     21  1.1  rearnsha  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     22  1.1  rearnsha  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     23  1.1  rearnsha  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     24  1.1  rearnsha  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  1.1  rearnsha  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  1.1  rearnsha  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  1.1  rearnsha  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  1.1  rearnsha  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  1.1  rearnsha  * SUCH DAMAGE.
     30  1.1  rearnsha  *
     31  1.1  rearnsha  * Copyright (c) 1997,1998 Mark Brinicombe.
     32  1.1  rearnsha  * Copyright (c) 1997,1998 Causality Limited.
     33  1.1  rearnsha  * All rights reserved.
     34  1.1  rearnsha  *
     35  1.1  rearnsha  * Redistribution and use in source and binary forms, with or without
     36  1.1  rearnsha  * modification, are permitted provided that the following conditions
     37  1.1  rearnsha  * are met:
     38  1.1  rearnsha  * 1. Redistributions of source code must retain the above copyright
     39  1.1  rearnsha  *    notice, this list of conditions and the following disclaimer.
     40  1.1  rearnsha  * 2. Redistributions in binary form must reproduce the above copyright
     41  1.1  rearnsha  *    notice, this list of conditions and the following disclaimer in the
     42  1.1  rearnsha  *    documentation and/or other materials provided with the distribution.
     43  1.1  rearnsha  * 3. All advertising materials mentioning features or use of this software
     44  1.1  rearnsha  *    must display the following acknowledgement:
     45  1.1  rearnsha  *	This product includes software developed by Mark Brinicombe
     46  1.1  rearnsha  *	for the NetBSD Project.
     47  1.1  rearnsha  * 4. The name of the company nor the name of the author may be used to
     48  1.1  rearnsha  *    endorse or promote products derived from this software without specific
     49  1.1  rearnsha  *    prior written permission.
     50  1.1  rearnsha  *
     51  1.1  rearnsha  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     52  1.1  rearnsha  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     53  1.1  rearnsha  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     54  1.1  rearnsha  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     55  1.1  rearnsha  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     56  1.1  rearnsha  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     57  1.1  rearnsha  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  1.1  rearnsha  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  1.1  rearnsha  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  1.1  rearnsha  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  1.1  rearnsha  * SUCH DAMAGE.
     62  1.1  rearnsha  *
     63  1.1  rearnsha  * Machine dependant functions for kernel setup for integrator board
     64  1.1  rearnsha  *
     65  1.1  rearnsha  * Created      : 24/11/97
     66  1.1  rearnsha  */
     67  1.1  rearnsha 
     68  1.1  rearnsha #include "opt_ddb.h"
     69  1.1  rearnsha #include "opt_pmap_debug.h"
     70  1.1  rearnsha 
     71  1.1  rearnsha #include <sys/param.h>
     72  1.1  rearnsha #include <sys/device.h>
     73  1.1  rearnsha #include <sys/systm.h>
     74  1.1  rearnsha #include <sys/kernel.h>
     75  1.1  rearnsha #include <sys/exec.h>
     76  1.1  rearnsha #include <sys/proc.h>
     77  1.1  rearnsha #include <sys/msgbuf.h>
     78  1.1  rearnsha #include <sys/reboot.h>
     79  1.1  rearnsha #include <sys/termios.h>
     80  1.1  rearnsha 
     81  1.1  rearnsha #include <dev/cons.h>
     82  1.1  rearnsha 
     83  1.1  rearnsha #include <machine/db_machdep.h>
     84  1.1  rearnsha #include <ddb/db_sym.h>
     85  1.1  rearnsha #include <ddb/db_extern.h>
     86  1.1  rearnsha 
     87  1.1  rearnsha #include <machine/bootconfig.h>
     88  1.1  rearnsha #include <machine/bus.h>
     89  1.1  rearnsha #include <machine/cpu.h>
     90  1.1  rearnsha #include <machine/frame.h>
     91  1.1  rearnsha #include <machine/intr.h>
     92  1.1  rearnsha #include <machine/pte.h>
     93  1.1  rearnsha #include <machine/undefined.h>
     94  1.1  rearnsha 
     95  1.1  rearnsha #include <evbarm/integrator/integrator_boot.h>
     96  1.1  rearnsha 
     97  1.1  rearnsha #include "opt_ipkdb.h"
     98  1.1  rearnsha #include "pci.h"
     99  1.1  rearnsha 
    100  1.1  rearnsha void ifpga_reset(void) __attribute__((noreturn));
    101  1.1  rearnsha /*
    102  1.1  rearnsha  * Address to call from cpu_reset() to reset the machine.
    103  1.1  rearnsha  * This is machine architecture dependant as it varies depending
    104  1.1  rearnsha  * on where the ROM appears when you turn the MMU off.
    105  1.1  rearnsha  */
    106  1.1  rearnsha 
    107  1.1  rearnsha u_int cpu_reset_address = (u_int) ifpga_reset;
    108  1.1  rearnsha 
    109  1.1  rearnsha /* Define various stack sizes in pages */
    110  1.1  rearnsha #define IRQ_STACK_SIZE	1
    111  1.1  rearnsha #define ABT_STACK_SIZE	1
    112  1.1  rearnsha #ifdef IPKDB
    113  1.1  rearnsha #define UND_STACK_SIZE	2
    114  1.1  rearnsha #else
    115  1.1  rearnsha #define UND_STACK_SIZE	1
    116  1.1  rearnsha #endif
    117  1.1  rearnsha 
    118  1.1  rearnsha struct intbootinfo intbootinfo;
    119  1.1  rearnsha BootConfig bootconfig;		/* Boot config storage */
    120  1.1  rearnsha static char bootargs[MAX_BOOT_STRING + 1];
    121  1.1  rearnsha char *boot_args = NULL;
    122  1.1  rearnsha char *boot_file = NULL;
    123  1.1  rearnsha 
    124  1.1  rearnsha vm_offset_t physical_start;
    125  1.1  rearnsha vm_offset_t physical_freestart;
    126  1.1  rearnsha vm_offset_t physical_freeend;
    127  1.1  rearnsha vm_offset_t physical_end;
    128  1.1  rearnsha u_int free_pages;
    129  1.1  rearnsha vm_offset_t pagetables_start;
    130  1.1  rearnsha int physmem = 0;
    131  1.1  rearnsha 
    132  1.1  rearnsha /*int debug_flags;*/
    133  1.1  rearnsha #ifndef PMAP_STATIC_L1S
    134  1.1  rearnsha int max_processes = 64;			/* Default number */
    135  1.1  rearnsha #endif	/* !PMAP_STATIC_L1S */
    136  1.1  rearnsha 
    137  1.1  rearnsha /* Physical and virtual addresses for some global pages */
    138  1.1  rearnsha pv_addr_t systempage;
    139  1.1  rearnsha pv_addr_t irqstack;
    140  1.1  rearnsha pv_addr_t undstack;
    141  1.1  rearnsha pv_addr_t abtstack;
    142  1.1  rearnsha pv_addr_t kernelstack;
    143  1.1  rearnsha 
    144  1.1  rearnsha vm_offset_t msgbufphys;
    145  1.1  rearnsha 
    146  1.1  rearnsha extern u_int data_abort_handler_address;
    147  1.1  rearnsha extern u_int prefetch_abort_handler_address;
    148  1.1  rearnsha extern u_int undefined_handler_address;
    149  1.1  rearnsha 
    150  1.1  rearnsha #ifdef PMAP_DEBUG
    151  1.1  rearnsha extern int pmap_debug_level;
    152  1.1  rearnsha #endif
    153  1.1  rearnsha 
    154  1.1  rearnsha #define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
    155  1.1  rearnsha #define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
    156  1.1  rearnsha #define KERNEL_PT_VMDATA	2	/* Page tables for mapping kernel VM */
    157  1.1  rearnsha #define	KERNEL_PT_VMDATA_NUM	(KERNEL_VM_SIZE >> (PDSHIFT + 2))
    158  1.1  rearnsha #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    159  1.1  rearnsha 
    160  1.1  rearnsha pt_entry_t kernel_pt_table[NUM_KERNEL_PTS];
    161  1.1  rearnsha 
    162  1.1  rearnsha struct user *proc0paddr;
    163  1.1  rearnsha 
    164  1.1  rearnsha /* Prototypes */
    165  1.1  rearnsha 
    166  1.1  rearnsha void consinit		__P((void));
    167  1.1  rearnsha 
    168  1.1  rearnsha void map_section	__P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa,
    169  1.1  rearnsha 			     int cacheable));
    170  1.1  rearnsha void map_pagetable	__P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
    171  1.1  rearnsha void map_entry		__P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
    172  1.1  rearnsha void map_entry_nc	__P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
    173  1.1  rearnsha void map_entry_ro	__P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
    174  1.1  rearnsha vm_size_t map_chunk	__P((vm_offset_t pd, vm_offset_t pt, vm_offset_t va,
    175  1.1  rearnsha 			     vm_offset_t pa, vm_size_t size, u_int acc,
    176  1.1  rearnsha 			     u_int flg));
    177  1.1  rearnsha 
    178  1.1  rearnsha void process_kernel_args	__P((char *));
    179  1.1  rearnsha void data_abort_handler		__P((trapframe_t *frame));
    180  1.1  rearnsha void prefetch_abort_handler	__P((trapframe_t *frame));
    181  1.1  rearnsha void undefinedinstruction_bounce	__P((trapframe_t *frame));
    182  1.1  rearnsha void zero_page_readonly		__P((void));
    183  1.1  rearnsha void zero_page_readwrite	__P((void));
    184  1.1  rearnsha extern void configure		__P((void));
    185  1.1  rearnsha extern void db_machine_init	__P((void));
    186  1.1  rearnsha extern void parse_mi_bootargs	__P((char *args));
    187  1.1  rearnsha extern void dumpsys		__P((void));
    188  1.1  rearnsha 
    189  1.1  rearnsha /* A load of console goo. */
    190  1.1  rearnsha #include "vga.h"
    191  1.1  rearnsha #if (NVGA > 0)
    192  1.1  rearnsha #include <dev/ic/mc6845reg.h>
    193  1.1  rearnsha #include <dev/ic/pcdisplayvar.h>
    194  1.1  rearnsha #include <dev/ic/vgareg.h>
    195  1.1  rearnsha #include <dev/ic/vgavar.h>
    196  1.1  rearnsha #endif
    197  1.1  rearnsha 
    198  1.1  rearnsha #include "pckbc.h"
    199  1.1  rearnsha #if (NPCKBC > 0)
    200  1.1  rearnsha #include <dev/ic/i8042reg.h>
    201  1.1  rearnsha #include <dev/ic/pckbcvar.h>
    202  1.1  rearnsha #endif
    203  1.1  rearnsha 
    204  1.1  rearnsha #include "com.h"
    205  1.1  rearnsha #if (NCOM > 0)
    206  1.1  rearnsha #include <dev/ic/comreg.h>
    207  1.1  rearnsha #include <dev/ic/comvar.h>
    208  1.1  rearnsha #ifndef CONCOMADDR
    209  1.1  rearnsha #define CONCOMADDR 0x3f8
    210  1.1  rearnsha #endif
    211  1.1  rearnsha #endif
    212  1.1  rearnsha 
    213  1.1  rearnsha #define CONSPEED B115200
    214  1.1  rearnsha #ifndef CONSPEED
    215  1.1  rearnsha #define CONSPEED B9600	/* TTYDEF_SPEED */
    216  1.1  rearnsha #endif
    217  1.1  rearnsha #ifndef CONMODE
    218  1.1  rearnsha #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    219  1.1  rearnsha #endif
    220  1.1  rearnsha 
    221  1.1  rearnsha int comcnspeed = CONSPEED;
    222  1.1  rearnsha int comcnmode = CONMODE;
    223  1.1  rearnsha 
    224  1.1  rearnsha #include "plcom.h"
    225  1.1  rearnsha #if (NPLCOM > 0)
    226  1.1  rearnsha #include <evbarm/dev/plcomreg.h>
    227  1.1  rearnsha #include <evbarm/dev/plcomvar.h>
    228  1.1  rearnsha 
    229  1.1  rearnsha #include <evbarm/ifpga/ifpgamem.h>
    230  1.1  rearnsha #include <evbarm/ifpga/ifpgareg.h>
    231  1.1  rearnsha #include <evbarm/ifpga/ifpgavar.h>
    232  1.1  rearnsha #endif
    233  1.1  rearnsha 
    234  1.1  rearnsha #ifndef CONSDEVNAME
    235  1.1  rearnsha #define CONSDEVNAME "plcom"
    236  1.1  rearnsha #endif
    237  1.1  rearnsha 
    238  1.1  rearnsha #ifndef PLCONSPEED
    239  1.1  rearnsha #define PLCONSPEED B38400
    240  1.1  rearnsha #endif
    241  1.1  rearnsha #ifndef PLCONMODE
    242  1.1  rearnsha #define PLCONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    243  1.1  rearnsha #endif
    244  1.1  rearnsha #ifndef PLCOMCNUNIT
    245  1.1  rearnsha #define PLCOMCNUNIT -1
    246  1.1  rearnsha #endif
    247  1.1  rearnsha 
    248  1.1  rearnsha int plcomcnspeed = PLCONSPEED;
    249  1.1  rearnsha int plcomcnmode = PLCONMODE;
    250  1.1  rearnsha 
    251  1.1  rearnsha #if 0
    252  1.1  rearnsha extern struct consdev kcomcons;
    253  1.1  rearnsha static void kcomcnputc(dev_t, int);
    254  1.1  rearnsha #endif
    255  1.1  rearnsha 
    256  1.1  rearnsha /*
    257  1.1  rearnsha  * void cpu_reboot(int howto, char *bootstr)
    258  1.1  rearnsha  *
    259  1.1  rearnsha  * Reboots the system
    260  1.1  rearnsha  *
    261  1.1  rearnsha  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    262  1.1  rearnsha  * then reset the CPU.
    263  1.1  rearnsha  */
    264  1.1  rearnsha 
    265  1.1  rearnsha void
    266  1.1  rearnsha cpu_reboot(howto, bootstr)
    267  1.1  rearnsha 	int howto;
    268  1.1  rearnsha 	char *bootstr;
    269  1.1  rearnsha {
    270  1.1  rearnsha #ifdef DIAGNOSTIC
    271  1.1  rearnsha 	/* info */
    272  1.1  rearnsha 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
    273  1.1  rearnsha #endif
    274  1.1  rearnsha 
    275  1.1  rearnsha 	/*
    276  1.1  rearnsha 	 * If we are still cold then hit the air brakes
    277  1.1  rearnsha 	 * and crash to earth fast
    278  1.1  rearnsha 	 */
    279  1.1  rearnsha 	if (cold) {
    280  1.1  rearnsha 		doshutdownhooks();
    281  1.1  rearnsha 		printf("The operating system has halted.\n");
    282  1.1  rearnsha 		printf("Please press any key to reboot.\n\n");
    283  1.1  rearnsha 		cngetc();
    284  1.1  rearnsha 		printf("rebooting...\n");
    285  1.1  rearnsha 		ifpga_reset();
    286  1.1  rearnsha 		/*NOTREACHED*/
    287  1.1  rearnsha 	}
    288  1.1  rearnsha 
    289  1.1  rearnsha 	/* Disable console buffering */
    290  1.1  rearnsha /*	cnpollc(1);*/
    291  1.1  rearnsha 
    292  1.1  rearnsha 	/*
    293  1.1  rearnsha 	 * If RB_NOSYNC was not specified sync the discs.
    294  1.1  rearnsha 	 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
    295  1.1  rearnsha 	 * It looks like syslogd is getting woken up only to find that it cannot
    296  1.1  rearnsha 	 * page part of the binary in as the filesystem has been unmounted.
    297  1.1  rearnsha 	 */
    298  1.1  rearnsha 	if (!(howto & RB_NOSYNC))
    299  1.1  rearnsha 		bootsync();
    300  1.1  rearnsha 
    301  1.1  rearnsha 	/* Say NO to interrupts */
    302  1.1  rearnsha 	splhigh();
    303  1.1  rearnsha 
    304  1.1  rearnsha 	/* Do a dump if requested. */
    305  1.1  rearnsha 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    306  1.1  rearnsha 		dumpsys();
    307  1.1  rearnsha 
    308  1.1  rearnsha 	/* Run any shutdown hooks */
    309  1.1  rearnsha 	doshutdownhooks();
    310  1.1  rearnsha 
    311  1.1  rearnsha 	/* Make sure IRQ's are disabled */
    312  1.1  rearnsha 	IRQdisable;
    313  1.1  rearnsha 
    314  1.1  rearnsha 	if (howto & RB_HALT) {
    315  1.1  rearnsha 		printf("The operating system has halted.\n");
    316  1.1  rearnsha 		printf("Please press any key to reboot.\n\n");
    317  1.1  rearnsha 		cngetc();
    318  1.1  rearnsha 	}
    319  1.1  rearnsha 
    320  1.1  rearnsha 	printf("rebooting...\n");
    321  1.1  rearnsha 	ifpga_reset();
    322  1.1  rearnsha 	/*NOTREACHED*/
    323  1.1  rearnsha }
    324  1.1  rearnsha 
    325  1.1  rearnsha /*
    326  1.1  rearnsha  * Mapping table for core kernel memory. This memory is mapped at init
    327  1.1  rearnsha  * time with section mappings.
    328  1.1  rearnsha  */
    329  1.1  rearnsha struct l1_sec_map {
    330  1.1  rearnsha 	vm_offset_t	va;
    331  1.1  rearnsha 	vm_offset_t	pa;
    332  1.1  rearnsha 	vm_size_t	size;
    333  1.1  rearnsha 	int		flags;
    334  1.1  rearnsha } l1_sec_table[] = {
    335  1.1  rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
    336  1.1  rearnsha 	{ UART0_BOOT_BASE, IFPGA_IO_BASE + IFPGA_UART0, 1024 * 1024, 0},
    337  1.1  rearnsha 	{ UART1_BOOT_BASE, IFPGA_IO_BASE + IFPGA_UART1, 1024 * 1024, 0},
    338  1.1  rearnsha #endif
    339  1.1  rearnsha #if NPCI > 0
    340  1.1  rearnsha 	{ IFPGA_PCI_IO_VBASE, IFPGA_PCI_IO_BASE, IFPGA_PCI_IO_VSIZE, 0},
    341  1.1  rearnsha 	{ IFPGA_PCI_CONF_VBASE, IFPGA_PCI_CONF_BASE, IFPGA_PCI_CONF_VSIZE, 0},
    342  1.1  rearnsha #endif
    343  1.1  rearnsha 
    344  1.1  rearnsha 	{ 0, 0, 0, 0 }
    345  1.1  rearnsha };
    346  1.1  rearnsha 
    347  1.1  rearnsha /*
    348  1.1  rearnsha  * u_int initarm(struct ebsaboot *bootinfo)
    349  1.1  rearnsha  *
    350  1.1  rearnsha  * Initial entry point on startup. This gets called before main() is
    351  1.1  rearnsha  * entered.
    352  1.1  rearnsha  * It should be responsible for setting up everything that must be
    353  1.1  rearnsha  * in place when main is called.
    354  1.1  rearnsha  * This includes
    355  1.1  rearnsha  *   Taking a copy of the boot configuration structure.
    356  1.1  rearnsha  *   Initialising the physical console so characters can be printed.
    357  1.1  rearnsha  *   Setting up page tables for the kernel
    358  1.1  rearnsha  *   Relocating the kernel to the bottom of physical memory
    359  1.1  rearnsha  */
    360  1.1  rearnsha 
    361  1.1  rearnsha u_int
    362  1.1  rearnsha initarm(bootinfo)
    363  1.1  rearnsha 	struct intbootinfo *bootinfo;
    364  1.1  rearnsha {
    365  1.1  rearnsha 	int loop;
    366  1.1  rearnsha 	int loop1;
    367  1.1  rearnsha 	u_int l1pagetable;
    368  1.1  rearnsha 	u_int l2pagetable;
    369  1.1  rearnsha 	extern char page0[], page0_end[];
    370  1.1  rearnsha 	extern int etext asm ("_etext");
    371  1.1  rearnsha 	extern int end asm ("_end");
    372  1.1  rearnsha 	pv_addr_t kernel_l1pt;
    373  1.1  rearnsha 	pv_addr_t kernel_ptpt;
    374  1.1  rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
    375  1.1  rearnsha 	static struct bus_space plcom_bus_space;
    376  1.1  rearnsha #endif
    377  1.1  rearnsha 
    378  1.1  rearnsha 
    379  1.1  rearnsha #if 0
    380  1.1  rearnsha 	cn_tab = &kcomcons;
    381  1.1  rearnsha #endif
    382  1.1  rearnsha 	/*
    383  1.1  rearnsha 	 * Heads up ... Setup the CPU / MMU / TLB functions
    384  1.1  rearnsha 	 */
    385  1.1  rearnsha 	if (set_cpufuncs())
    386  1.1  rearnsha 		panic("cpu not recognized!");
    387  1.1  rearnsha 
    388  1.1  rearnsha 	/*    - intbootinfo.bt_memstart) / NBPG */;
    389  1.1  rearnsha 
    390  1.1  rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
    391  1.1  rearnsha 	/*
    392  1.1  rearnsha 	 * Initialise the diagnostic serial console
    393  1.1  rearnsha 	 * This allows a means of generating output during initarm().
    394  1.1  rearnsha 	 * Once all the memory map changes are complete we can call consinit()
    395  1.1  rearnsha 	 * and not have to worry about things moving.
    396  1.1  rearnsha 	 */
    397  1.1  rearnsha 
    398  1.1  rearnsha 	if (PLCOMCNUNIT == 0) {
    399  1.1  rearnsha 		ifpga_create_io_bs_tag(&plcom_bus_space, (void*)0xfd600000);
    400  1.1  rearnsha 		plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
    401  1.1  rearnsha 		    IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT);
    402  1.1  rearnsha 	} else if (PLCOMCNUNIT == 1) {
    403  1.1  rearnsha 		ifpga_create_io_bs_tag(&plcom_bus_space, (void*)0xfd700000);
    404  1.1  rearnsha 		plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
    405  1.1  rearnsha 		    IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT);
    406  1.1  rearnsha 	}
    407  1.1  rearnsha #endif
    408  1.1  rearnsha 
    409  1.1  rearnsha 	/* Talk to the user */
    410  1.1  rearnsha 	printf("\nNetBSD/integrator booting ...\n");
    411  1.1  rearnsha 
    412  1.1  rearnsha #if 0
    413  1.1  rearnsha 	if (intbootinfo.bt_magic != BT_MAGIC_NUMBER_EBSA
    414  1.1  rearnsha 	    && intbootinfo.bt_magic != BT_MAGIC_NUMBER_CATS)
    415  1.1  rearnsha 		panic("Incompatible magic number passed in boot args\n");
    416  1.1  rearnsha #endif
    417  1.1  rearnsha 
    418  1.1  rearnsha /*	{
    419  1.1  rearnsha 	int loop;
    420  1.1  rearnsha 	for (loop = 0; loop < 8; ++loop) {
    421  1.1  rearnsha 		printf("%08x\n", *(((int *)bootinfo)+loop));
    422  1.1  rearnsha 	}
    423  1.1  rearnsha 	}*/
    424  1.1  rearnsha 
    425  1.1  rearnsha 	/*
    426  1.1  rearnsha 	 * Ok we have the following memory map
    427  1.1  rearnsha 	 *
    428  1.1  rearnsha 	 * virtual address == physical address apart from the areas:
    429  1.1  rearnsha 	 * 0x00000000 -> 0x000fffff which is mapped to
    430  1.1  rearnsha 	 * top 1MB of physical memory
    431  1.1  rearnsha 	 * 0x00100000 -> 0x0fffffff which is mapped to
    432  1.1  rearnsha 	 * physical addresses 0x00100000 -> 0x0fffffff
    433  1.1  rearnsha 	 * 0x10000000 -> 0x1fffffff which is mapped to
    434  1.1  rearnsha 	 * physical addresses 0x00000000 -> 0x0fffffff
    435  1.1  rearnsha 	 * 0x20000000 -> 0xefffffff which is mapped to
    436  1.1  rearnsha 	 * physical addresses 0x20000000 -> 0xefffffff
    437  1.1  rearnsha 	 * 0xf0000000 -> 0xf03fffff which is mapped to
    438  1.1  rearnsha 	 * physical addresses 0x00000000 -> 0x003fffff
    439  1.1  rearnsha 	 *
    440  1.1  rearnsha 	 * This means that the kernel is mapped suitably for continuing
    441  1.1  rearnsha 	 * execution, all I/O is mapped 1:1 virtual to physical and
    442  1.1  rearnsha 	 * physical memory is accessible.
    443  1.1  rearnsha 	 *
    444  1.1  rearnsha 	 * The initarm() has the responsibility for creating the kernel
    445  1.1  rearnsha 	 * page tables.
    446  1.1  rearnsha 	 * It must also set up various memory pointers that are used
    447  1.1  rearnsha 	 * by pmap etc.
    448  1.1  rearnsha 	 */
    449  1.1  rearnsha 
    450  1.1  rearnsha 	/*
    451  1.1  rearnsha 	 * Examine the boot args string for options we need to know about
    452  1.1  rearnsha 	 * now.
    453  1.1  rearnsha 	 */
    454  1.1  rearnsha #if 0
    455  1.1  rearnsha 	process_kernel_args((char *)intbootinfo.bt_args);
    456  1.1  rearnsha #endif
    457  1.1  rearnsha 
    458  1.1  rearnsha 	printf("initarm: Configuring system ...\n");
    459  1.1  rearnsha 
    460  1.1  rearnsha 	/*
    461  1.1  rearnsha 	 * Set up the variables that define the availablilty of
    462  1.1  rearnsha 	 * physical memory
    463  1.1  rearnsha 	 */
    464  1.1  rearnsha 	physical_start = 0 /*intbootinfo.bt_memstart*/;
    465  1.1  rearnsha 	physical_freestart = physical_start;
    466  1.1  rearnsha 
    467  1.1  rearnsha #if 0
    468  1.1  rearnsha 	physical_end = /*intbootinfo.bt_memend*/ /*intbootinfo.bi_nrpages * NBPG */ 32*1024*1024;
    469  1.1  rearnsha #else
    470  1.1  rearnsha 	{
    471  1.1  rearnsha 		volatile unsigned long *cm_sdram
    472  1.1  rearnsha 		    = (volatile unsigned long *)0x10000020;
    473  1.1  rearnsha 
    474  1.1  rearnsha 		switch ((*cm_sdram >> 2) & 0x7)
    475  1.1  rearnsha 		{
    476  1.1  rearnsha 		case 0:
    477  1.1  rearnsha 			physical_end = 16 * 1024 * 1024;
    478  1.1  rearnsha 			break;
    479  1.1  rearnsha 		case 1:
    480  1.1  rearnsha 			physical_end = 32 * 1024 * 1024;
    481  1.1  rearnsha 			break;
    482  1.1  rearnsha 		case 2:
    483  1.1  rearnsha 			physical_end = 64 * 1024 * 1024;
    484  1.1  rearnsha 			break;
    485  1.1  rearnsha 		case 3:
    486  1.1  rearnsha 			physical_end = 128 * 1024 * 1024;
    487  1.1  rearnsha 			break;
    488  1.1  rearnsha 		case 4:
    489  1.1  rearnsha 			physical_end = 256 * 1024 * 1024;
    490  1.1  rearnsha 			break;
    491  1.1  rearnsha 		default:
    492  1.1  rearnsha 			printf("CM_SDRAM retuns unknown value, using 16M\n");
    493  1.1  rearnsha 			physical_end = 16 * 1024 * 1024;
    494  1.1  rearnsha 			break;
    495  1.1  rearnsha 		}
    496  1.1  rearnsha 	}
    497  1.1  rearnsha #endif
    498  1.1  rearnsha 
    499  1.1  rearnsha 	physical_freeend = physical_end;
    500  1.1  rearnsha 	free_pages = (physical_end - physical_start) / NBPG;
    501  1.1  rearnsha 
    502  1.1  rearnsha 	/* Set up the bootconfig structure for the benefit of pmap.c */
    503  1.1  rearnsha 	bootconfig.dramblocks = 1;
    504  1.1  rearnsha 	bootconfig.dram[0].address = physical_start;
    505  1.1  rearnsha 	bootconfig.dram[0].pages = free_pages;
    506  1.1  rearnsha 
    507  1.1  rearnsha 	physmem = (physical_end - physical_start) / NBPG;
    508  1.1  rearnsha 
    509  1.1  rearnsha 	/* Tell the user about the memory */
    510  1.1  rearnsha 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    511  1.1  rearnsha 	    physical_start, physical_end - 1);
    512  1.1  rearnsha 
    513  1.1  rearnsha 	/*
    514  1.1  rearnsha 	 * Ok the kernel occupies the bottom of physical memory.
    515  1.1  rearnsha 	 * The first free page after the kernel can be found in
    516  1.1  rearnsha 	 * intbootinfo->bt_memavail
    517  1.1  rearnsha 	 * We now need to allocate some fixed page tables to get the kernel
    518  1.1  rearnsha 	 * going.
    519  1.1  rearnsha 	 * We allocate one page directory and a number page tables and store
    520  1.1  rearnsha 	 * the physical addresses in the kernel_pt_table array.
    521  1.1  rearnsha 	 *
    522  1.1  rearnsha 	 * Ok the next bit of physical allocation may look complex but it is
    523  1.1  rearnsha 	 * simple really. I have done it like this so that no memory gets
    524  1.1  rearnsha 	 * wasted during the allocation of various pages and tables that are
    525  1.1  rearnsha 	 * all different sizes.
    526  1.1  rearnsha 	 * The start addresses will be page aligned.
    527  1.1  rearnsha 	 * We allocate the kernel page directory on the first free 16KB boundry
    528  1.1  rearnsha 	 * we find.
    529  1.1  rearnsha 	 * We allocate the kernel page tables on the first 4KB boundry we find.
    530  1.1  rearnsha 	 * Since we allocate at least 3 L2 pagetables we know that we must
    531  1.1  rearnsha 	 * encounter at least one 16KB aligned address.
    532  1.1  rearnsha 	 */
    533  1.1  rearnsha 
    534  1.1  rearnsha #ifdef VERBOSE_INIT_ARM
    535  1.1  rearnsha 	printf("Allocating page tables\n");
    536  1.1  rearnsha #endif
    537  1.1  rearnsha 
    538  1.1  rearnsha 	/* Update the address of the first free 16KB chunk of physical memory */
    539  1.1  rearnsha         physical_freestart = ((uintptr_t) &end - KERNEL_TEXT_BASE + PGOFSET)
    540  1.1  rearnsha 	    & ~PGOFSET;
    541  1.1  rearnsha #if 0
    542  1.1  rearnsha         physical_freestart += (kernexec->a_syms + sizeof(int)
    543  1.1  rearnsha 		    + *(u_int *)((int)end + kernexec->a_syms + sizeof(int))
    544  1.1  rearnsha 		    + (NBPG - 1)) & ~(NBPG - 1);
    545  1.1  rearnsha #endif
    546  1.1  rearnsha 
    547  1.1  rearnsha 	free_pages -= (physical_freestart - physical_start) / NBPG;
    548  1.1  rearnsha #ifdef VERBOSE_INIT_ARM
    549  1.1  rearnsha 	printf("freestart = %#lx, free_pages = %d (%#x)\n",
    550  1.1  rearnsha 	       physical_freestart, free_pages, free_pages);
    551  1.1  rearnsha #endif
    552  1.1  rearnsha 
    553  1.1  rearnsha 	/* Define a macro to simplify memory allocation */
    554  1.1  rearnsha #define	valloc_pages(var, np)			\
    555  1.1  rearnsha 	alloc_pages((var).pv_pa, (np));		\
    556  1.1  rearnsha 	(var).pv_va = KERNEL_TEXT_BASE + (var).pv_pa - physical_start;
    557  1.1  rearnsha 
    558  1.1  rearnsha #define alloc_pages(var, np)			\
    559  1.1  rearnsha 	(var) = physical_freestart;		\
    560  1.1  rearnsha 	physical_freestart += ((np) * NBPG);	\
    561  1.1  rearnsha 	free_pages -= (np);			\
    562  1.1  rearnsha 	memset((char *)(var), 0, ((np) * NBPG));
    563  1.1  rearnsha 
    564  1.1  rearnsha 	loop1 = 0;
    565  1.1  rearnsha 	kernel_l1pt.pv_pa = 0;
    566  1.1  rearnsha 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    567  1.1  rearnsha 		/* Are we 16KB aligned for an L1 ? */
    568  1.1  rearnsha 		if ((physical_freestart & (PD_SIZE - 1)) == 0
    569  1.1  rearnsha 		    && kernel_l1pt.pv_pa == 0) {
    570  1.1  rearnsha 			valloc_pages(kernel_l1pt, PD_SIZE / NBPG);
    571  1.1  rearnsha 		} else {
    572  1.1  rearnsha 			alloc_pages(kernel_pt_table[loop1], PT_SIZE / NBPG);
    573  1.1  rearnsha 			++loop1;
    574  1.1  rearnsha 		}
    575  1.1  rearnsha 	}
    576  1.1  rearnsha 
    577  1.1  rearnsha 	/* This should never be able to happen but better confirm that. */
    578  1.1  rearnsha 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (PD_SIZE-1)) != 0)
    579  1.1  rearnsha 		panic("initarm: Failed to align the kernel page directory\n");
    580  1.1  rearnsha 
    581  1.1  rearnsha 	/*
    582  1.1  rearnsha 	 * Allocate a page for the system page mapped to V0x00000000
    583  1.1  rearnsha 	 * This page will just contain the system vectors and can be
    584  1.1  rearnsha 	 * shared by all processes.
    585  1.1  rearnsha 	 */
    586  1.1  rearnsha 	alloc_pages(systempage.pv_pa, 1);
    587  1.1  rearnsha 
    588  1.1  rearnsha 	/* Allocate a page for the page table to map kernel page tables*/
    589  1.1  rearnsha 	valloc_pages(kernel_ptpt, PT_SIZE / NBPG);
    590  1.1  rearnsha 
    591  1.1  rearnsha 	/* Allocate stacks for all modes */
    592  1.1  rearnsha 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    593  1.1  rearnsha 	valloc_pages(abtstack, ABT_STACK_SIZE);
    594  1.1  rearnsha 	valloc_pages(undstack, UND_STACK_SIZE);
    595  1.1  rearnsha 	valloc_pages(kernelstack, UPAGES);
    596  1.1  rearnsha 
    597  1.1  rearnsha #ifdef VERBOSE_INIT_ARM
    598  1.1  rearnsha 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va);
    599  1.1  rearnsha 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va);
    600  1.1  rearnsha 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va);
    601  1.1  rearnsha 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va);
    602  1.1  rearnsha #endif
    603  1.1  rearnsha 
    604  1.1  rearnsha 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / NBPG);
    605  1.1  rearnsha 
    606  1.1  rearnsha 	/*
    607  1.1  rearnsha 	 * Ok we have allocated physical pages for the primary kernel
    608  1.1  rearnsha 	 * page tables
    609  1.1  rearnsha 	 */
    610  1.1  rearnsha 
    611  1.1  rearnsha #ifdef VERBOSE_INIT_ARM
    612  1.1  rearnsha 	printf("Creating L1 page table at %#lx\n", kernel_l1pt.pv_pa);
    613  1.1  rearnsha #endif
    614  1.1  rearnsha 
    615  1.1  rearnsha 	/*
    616  1.1  rearnsha 	 * Now we start consturction of the L1 page table
    617  1.1  rearnsha 	 * We start by mapping the L2 page tables into the L1.
    618  1.1  rearnsha 	 * This means that we can replace L1 mappings later on if necessary
    619  1.1  rearnsha 	 */
    620  1.1  rearnsha 	l1pagetable = kernel_l1pt.pv_pa;
    621  1.1  rearnsha 
    622  1.1  rearnsha 	/* Map the L2 pages tables in the L1 page table */
    623  1.1  rearnsha 	map_pagetable(l1pagetable, 0x00000000,
    624  1.1  rearnsha 	    kernel_pt_table[KERNEL_PT_SYS]);
    625  1.1  rearnsha 	map_pagetable(l1pagetable, KERNEL_BASE,
    626  1.1  rearnsha 	    kernel_pt_table[KERNEL_PT_KERNEL]);
    627  1.1  rearnsha 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
    628  1.1  rearnsha 		map_pagetable(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    629  1.1  rearnsha 		    kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    630  1.1  rearnsha 	map_pagetable(l1pagetable, PROCESS_PAGE_TBLS_BASE,
    631  1.1  rearnsha 	    kernel_ptpt.pv_pa);
    632  1.1  rearnsha 
    633  1.1  rearnsha #ifdef VERBOSE_INIT_ARM
    634  1.1  rearnsha 	printf("Mapping kernel\n");
    635  1.1  rearnsha #endif
    636  1.1  rearnsha 
    637  1.1  rearnsha 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    638  1.1  rearnsha 	l2pagetable = kernel_pt_table[KERNEL_PT_KERNEL];
    639  1.1  rearnsha 
    640  1.1  rearnsha 	{
    641  1.1  rearnsha 		u_int logical;
    642  1.1  rearnsha 		size_t textsize = (uintptr_t) &etext - KERNEL_TEXT_BASE;
    643  1.1  rearnsha 		size_t totalsize = (uintptr_t) &end - KERNEL_TEXT_BASE;
    644  1.1  rearnsha 
    645  1.1  rearnsha 		/* Round down text size and round up total size
    646  1.1  rearnsha 		 */
    647  1.1  rearnsha 		textsize = textsize & ~PGOFSET;
    648  1.1  rearnsha 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    649  1.1  rearnsha 		/* logical  = map_chunk(l1pagetable, l2pagetable, KERNEL_BASE,
    650  1.1  rearnsha 		    physical_start, KERNEL_TEXT_BASE - KERNEL_BASE,
    651  1.1  rearnsha 		    AP_KRW, PT_CACHEABLE); */
    652  1.1  rearnsha 		logical = map_chunk(l1pagetable, l2pagetable,
    653  1.1  rearnsha 		    KERNEL_TEXT_BASE, physical_start, textsize,
    654  1.1  rearnsha 		    AP_KRW, PT_CACHEABLE);
    655  1.1  rearnsha 		logical += map_chunk(l1pagetable, l2pagetable,
    656  1.1  rearnsha 		    KERNEL_TEXT_BASE + logical, physical_start + logical,
    657  1.1  rearnsha 		    totalsize - textsize, AP_KRW, PT_CACHEABLE);
    658  1.1  rearnsha #if 0
    659  1.1  rearnsha 		logical += map_chunk(0, l2pagetable, KERNEL_BASE + logical,
    660  1.1  rearnsha 		    physical_start + logical, kernexec->a_syms + sizeof(int)
    661  1.1  rearnsha 		    + *(u_int *)((int)end + kernexec->a_syms + sizeof(int)),
    662  1.1  rearnsha 		    AP_KRW, PT_CACHEABLE);
    663  1.1  rearnsha #endif
    664  1.1  rearnsha 	}
    665  1.1  rearnsha 
    666  1.1  rearnsha #ifdef VERBOSE_INIT_ARM
    667  1.1  rearnsha 	printf("Constructing L2 page tables\n");
    668  1.1  rearnsha #endif
    669  1.1  rearnsha 
    670  1.1  rearnsha 	/* Map the boot arguments page */
    671  1.1  rearnsha #if 0
    672  1.1  rearnsha 	map_entry_ro(l2pagetable, intbootinfo.bt_vargp, intbootinfo.bt_pargp);
    673  1.1  rearnsha #endif
    674  1.1  rearnsha 
    675  1.1  rearnsha 	/* Map the stack pages */
    676  1.1  rearnsha 	map_chunk(0, l2pagetable, irqstack.pv_va, irqstack.pv_pa,
    677  1.1  rearnsha 	    IRQ_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
    678  1.1  rearnsha 	map_chunk(0, l2pagetable, abtstack.pv_va, abtstack.pv_pa,
    679  1.1  rearnsha 	    ABT_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
    680  1.1  rearnsha 	map_chunk(0, l2pagetable, undstack.pv_va, undstack.pv_pa,
    681  1.1  rearnsha 	    UND_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
    682  1.1  rearnsha 	map_chunk(0, l2pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    683  1.1  rearnsha 	    UPAGES * NBPG, AP_KRW, PT_CACHEABLE);
    684  1.1  rearnsha 	map_chunk(0, l2pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    685  1.1  rearnsha 	    PD_SIZE, AP_KRW, 0);
    686  1.1  rearnsha 
    687  1.1  rearnsha 	/* Map the page table that maps the kernel pages */
    688  1.1  rearnsha 	map_entry_nc(l2pagetable, kernel_ptpt.pv_pa, kernel_ptpt.pv_pa);
    689  1.1  rearnsha 
    690  1.1  rearnsha 	/*
    691  1.1  rearnsha 	 * Map entries in the page table used to map PTE's
    692  1.1  rearnsha 	 * Basically every kernel page table gets mapped here
    693  1.1  rearnsha 	 */
    694  1.1  rearnsha 	/* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */
    695  1.1  rearnsha 	l2pagetable = kernel_ptpt.pv_pa;
    696  1.1  rearnsha 	map_entry_nc(l2pagetable, (KERNEL_BASE >> (PGSHIFT-2)),
    697  1.1  rearnsha 	    kernel_pt_table[KERNEL_PT_KERNEL]);
    698  1.1  rearnsha 	map_entry_nc(l2pagetable, (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT-2)),
    699  1.1  rearnsha 	    kernel_ptpt.pv_pa);
    700  1.1  rearnsha 	map_entry_nc(l2pagetable, (0x00000000 >> (PGSHIFT-2)),
    701  1.1  rearnsha 	    kernel_pt_table[KERNEL_PT_SYS]);
    702  1.1  rearnsha 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
    703  1.1  rearnsha 		map_entry_nc(l2pagetable, ((KERNEL_VM_BASE +
    704  1.1  rearnsha 		    (loop * 0x00400000)) >> (PGSHIFT-2)),
    705  1.1  rearnsha 		    kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    706  1.1  rearnsha 
    707  1.1  rearnsha 	/*
    708  1.1  rearnsha 	 * Map the system page in the kernel page table for the bottom 1Meg
    709  1.1  rearnsha 	 * of the virtual memory map.
    710  1.1  rearnsha 	 */
    711  1.1  rearnsha 	l2pagetable = kernel_pt_table[KERNEL_PT_SYS];
    712  1.1  rearnsha #if 1
    713  1.1  rearnsha 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download
    714  1.1  rearnsha 	   the cache-clean code there.  */
    715  1.1  rearnsha 	map_entry_nc(l2pagetable, 0x00000000, systempage.pv_pa);
    716  1.1  rearnsha #else
    717  1.1  rearnsha 	map_entry_nc(l2pagetable, 0x00000000, systempage.pv_pa);
    718  1.1  rearnsha #endif
    719  1.1  rearnsha 	/* Map the core memory needed before autoconfig */
    720  1.1  rearnsha 	loop = 0;
    721  1.1  rearnsha 	while (l1_sec_table[loop].size) {
    722  1.1  rearnsha 		vm_size_t sz;
    723  1.1  rearnsha 
    724  1.1  rearnsha #ifdef VERBOSE_INIT_ARM
    725  1.1  rearnsha 		printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
    726  1.1  rearnsha 		    l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
    727  1.1  rearnsha 		    l1_sec_table[loop].va);
    728  1.1  rearnsha #endif
    729  1.1  rearnsha 		for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_SEC_SIZE)
    730  1.1  rearnsha 			map_section(l1pagetable, l1_sec_table[loop].va + sz,
    731  1.1  rearnsha 			    l1_sec_table[loop].pa + sz,
    732  1.1  rearnsha 			    l1_sec_table[loop].flags);
    733  1.1  rearnsha 		++loop;
    734  1.1  rearnsha 	}
    735  1.1  rearnsha 
    736  1.1  rearnsha 	/*
    737  1.1  rearnsha 	 * Now we have the real page tables in place so we can switch to them.
    738  1.1  rearnsha 	 * Once this is done we will be running with the REAL kernel page tables.
    739  1.1  rearnsha 	 */
    740  1.1  rearnsha 
    741  1.1  rearnsha 	/* Switch tables */
    742  1.1  rearnsha #ifdef VERBOSE_INIT_ARM
    743  1.1  rearnsha 	printf("freestart = %#lx, free_pages = %d (%#x)\n",
    744  1.1  rearnsha 	       physical_freestart, free_pages, free_pages);
    745  1.1  rearnsha 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    746  1.1  rearnsha #endif
    747  1.1  rearnsha 
    748  1.1  rearnsha 	setttb(kernel_l1pt.pv_pa);
    749  1.1  rearnsha 
    750  1.1  rearnsha #ifdef VERBOSE_INIT_ARM
    751  1.1  rearnsha 	printf("done!\n");
    752  1.1  rearnsha #endif
    753  1.1  rearnsha 
    754  1.1  rearnsha #ifdef PLCONSOLE
    755  1.1  rearnsha 	/*
    756  1.1  rearnsha 	 * The IFPGA registers have just moved.
    757  1.1  rearnsha 	 * Detach the diagnostic serial port and reattach at the new address.
    758  1.1  rearnsha 	 */
    759  1.1  rearnsha 	plcomcndetach();
    760  1.1  rearnsha #endif
    761  1.1  rearnsha 
    762  1.1  rearnsha 	/*
    763  1.1  rearnsha 	 * XXX this should only be done in main() but it useful to
    764  1.1  rearnsha 	 * have output earlier ...
    765  1.1  rearnsha 	 */
    766  1.1  rearnsha 	consinit();
    767  1.1  rearnsha 
    768  1.1  rearnsha #ifdef VERBOSE_INIT_ARM
    769  1.1  rearnsha 	printf("bootstrap done.\n");
    770  1.1  rearnsha #endif
    771  1.1  rearnsha 
    772  1.1  rearnsha 	/* Right set up the vectors at the bottom of page 0 */
    773  1.1  rearnsha 	memcpy((char *)0x00000000, page0, page0_end - page0);
    774  1.1  rearnsha 
    775  1.1  rearnsha 	/* We have modified a text page so sync the icache */
    776  1.1  rearnsha 	cpu_cache_syncI();
    777  1.1  rearnsha 
    778  1.1  rearnsha 	/*
    779  1.1  rearnsha 	 * Pages were allocated during the secondary bootstrap for the
    780  1.1  rearnsha 	 * stacks for different CPU modes.
    781  1.1  rearnsha 	 * We must now set the r13 registers in the different CPU modes to
    782  1.1  rearnsha 	 * point to these stacks.
    783  1.1  rearnsha 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    784  1.1  rearnsha 	 * of the stack memory.
    785  1.1  rearnsha 	 */
    786  1.1  rearnsha 	printf("init subsystems: stacks ");
    787  1.1  rearnsha 
    788  1.1  rearnsha 	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * NBPG);
    789  1.1  rearnsha 	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * NBPG);
    790  1.1  rearnsha 	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * NBPG);
    791  1.1  rearnsha 
    792  1.1  rearnsha 	/*
    793  1.1  rearnsha 	 * Well we should set a data abort handler.
    794  1.1  rearnsha 	 * Once things get going this will change as we will need a proper handler.
    795  1.1  rearnsha 	 * Until then we will use a handler that just panics but tells us
    796  1.1  rearnsha 	 * why.
    797  1.1  rearnsha 	 * Initialisation of the vectors will just panic on a data abort.
    798  1.1  rearnsha 	 * This just fills in a slighly better one.
    799  1.1  rearnsha 	 */
    800  1.1  rearnsha 	printf("vectors ");
    801  1.1  rearnsha 	data_abort_handler_address = (u_int)data_abort_handler;
    802  1.1  rearnsha 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    803  1.1  rearnsha 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    804  1.1  rearnsha 
    805  1.1  rearnsha 	/* At last !
    806  1.1  rearnsha 	 * We now have the kernel in physical memory from the bottom upwards.
    807  1.1  rearnsha 	 * Kernel page tables are physically above this.
    808  1.1  rearnsha 	 * The kernel is mapped to KERNEL_TEXT_BASE
    809  1.1  rearnsha 	 * The kernel data PTs will handle the mapping of 0xf1000000-0xf3ffffff
    810  1.1  rearnsha 	 * The page tables are mapped to 0xefc00000
    811  1.1  rearnsha 	 */
    812  1.1  rearnsha 
    813  1.1  rearnsha 	/* Initialise the undefined instruction handlers */
    814  1.1  rearnsha 	printf("undefined ");
    815  1.1  rearnsha 	undefined_init();
    816  1.1  rearnsha 
    817  1.1  rearnsha 	/* Boot strap pmap telling it where the kernel page table is */
    818  1.1  rearnsha 	printf("pmap ");
    819  1.1  rearnsha 	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, kernel_ptpt);
    820  1.1  rearnsha 
    821  1.1  rearnsha 	/* Setup the IRQ system */
    822  1.1  rearnsha 	printf("irq ");
    823  1.1  rearnsha 	irq_init();
    824  1.1  rearnsha 
    825  1.1  rearnsha 	printf("done.\n");
    826  1.1  rearnsha 
    827  1.1  rearnsha #ifdef IPKDB
    828  1.1  rearnsha 	/* Initialise ipkdb */
    829  1.1  rearnsha 	ipkdb_init();
    830  1.1  rearnsha 	if (boothowto & RB_KDB)
    831  1.1  rearnsha 		ipkdb_connect(0);
    832  1.1  rearnsha #endif
    833  1.1  rearnsha 
    834  1.1  rearnsha #ifdef DDB
    835  1.1  rearnsha 	printf("ddb: ");
    836  1.1  rearnsha 	db_machine_init();
    837  1.1  rearnsha #if 0
    838  1.1  rearnsha 	ddb_init(end[0], end + 1, esym);
    839  1.1  rearnsha #endif
    840  1.1  rearnsha 
    841  1.1  rearnsha 	if (boothowto & RB_KDB)
    842  1.1  rearnsha 		Debugger();
    843  1.1  rearnsha #endif
    844  1.1  rearnsha 
    845  1.1  rearnsha 	/* We return the new stack pointer address */
    846  1.1  rearnsha 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    847  1.1  rearnsha }
    848  1.1  rearnsha 
    849  1.1  rearnsha void
    850  1.1  rearnsha process_kernel_args(args)
    851  1.1  rearnsha 	char *args;
    852  1.1  rearnsha {
    853  1.1  rearnsha 
    854  1.1  rearnsha 	boothowto = 0;
    855  1.1  rearnsha 
    856  1.1  rearnsha 	/* Make a local copy of the bootargs */
    857  1.1  rearnsha 	strncpy(bootargs, args, MAX_BOOT_STRING);
    858  1.1  rearnsha 
    859  1.1  rearnsha 	args = bootargs;
    860  1.1  rearnsha 	boot_file = bootargs;
    861  1.1  rearnsha 
    862  1.1  rearnsha 	/* Skip the kernel image filename */
    863  1.1  rearnsha 	while (*args != ' ' && *args != 0)
    864  1.1  rearnsha 		++args;
    865  1.1  rearnsha 
    866  1.1  rearnsha 	if (*args != 0)
    867  1.1  rearnsha 		*args++ = 0;
    868  1.1  rearnsha 
    869  1.1  rearnsha 	while (*args == ' ')
    870  1.1  rearnsha 		++args;
    871  1.1  rearnsha 
    872  1.1  rearnsha 	boot_args = args;
    873  1.1  rearnsha 
    874  1.1  rearnsha 	printf("bootfile: %s\n", boot_file);
    875  1.1  rearnsha 	printf("bootargs: %s\n", boot_args);
    876  1.1  rearnsha 
    877  1.1  rearnsha 	parse_mi_bootargs(boot_args);
    878  1.1  rearnsha }
    879  1.1  rearnsha 
    880  1.1  rearnsha void
    881  1.1  rearnsha consinit(void)
    882  1.1  rearnsha {
    883  1.1  rearnsha 	static int consinit_called = 0;
    884  1.1  rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
    885  1.1  rearnsha 	static struct bus_space plcom_bus_space;
    886  1.1  rearnsha #endif
    887  1.1  rearnsha #if 0
    888  1.1  rearnsha 	char *console = CONSDEVNAME;
    889  1.1  rearnsha #endif
    890  1.1  rearnsha 
    891  1.1  rearnsha 	if (consinit_called != 0)
    892  1.1  rearnsha 		return;
    893  1.1  rearnsha 
    894  1.1  rearnsha 	consinit_called = 1;
    895  1.1  rearnsha 
    896  1.1  rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
    897  1.1  rearnsha 	if (PLCOMCNUNIT == 0) {
    898  1.1  rearnsha 		ifpga_create_io_bs_tag(&plcom_bus_space,
    899  1.1  rearnsha 		    (void*)UART0_BOOT_BASE);
    900  1.1  rearnsha 		if (plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
    901  1.1  rearnsha 		    IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT))
    902  1.1  rearnsha 			panic("can't init serial console");
    903  1.1  rearnsha 		return;
    904  1.1  rearnsha 	} else if (PLCOMCNUNIT == 1) {
    905  1.1  rearnsha 		ifpga_create_io_bs_tag(&plcom_bus_space,
    906  1.1  rearnsha 		    (void*)UART0_BOOT_BASE);
    907  1.1  rearnsha 		if (plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
    908  1.1  rearnsha 		    IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT))
    909  1.1  rearnsha 			panic("can't init serial console");
    910  1.1  rearnsha 		return;
    911  1.1  rearnsha 	}
    912  1.1  rearnsha #endif
    913  1.1  rearnsha #if (NCOM > 0)
    914  1.1  rearnsha 	if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
    915  1.1  rearnsha 	    COM_FREQ, comcnmode))
    916  1.1  rearnsha 		panic("can't init serial console @%x", CONCOMADDR);
    917  1.1  rearnsha 	return;
    918  1.1  rearnsha #endif
    919  1.1  rearnsha 	panic("No serial console configured");
    920  1.1  rearnsha }
    921  1.1  rearnsha 
    922  1.1  rearnsha #if 0
    923  1.1  rearnsha static bus_space_handle_t kcom_base = (bus_space_handle_t) (DC21285_PCI_IO_VBASE + CONCOMADDR);
    924  1.1  rearnsha 
    925  1.1  rearnsha u_int8_t footbridge_bs_r_1(void *, bus_space_handle_t, bus_size_t);
    926  1.1  rearnsha void footbridge_bs_w_1(void *, bus_space_handle_t, bus_size_t, u_int8_t);
    927  1.1  rearnsha 
    928  1.1  rearnsha #define	KCOM_GETBYTE(r)		footbridge_bs_r_1(0, kcom_base, (r))
    929  1.1  rearnsha #define	KCOM_PUTBYTE(r,v)	footbridge_bs_w_1(0, kcom_base, (r), (v))
    930  1.1  rearnsha 
    931  1.1  rearnsha static int
    932  1.1  rearnsha kcomcngetc(dev_t dev)
    933  1.1  rearnsha {
    934  1.1  rearnsha 	int stat, c;
    935  1.1  rearnsha 
    936  1.1  rearnsha 	/* block until a character becomes available */
    937  1.1  rearnsha 	while (!ISSET(stat = KCOM_GETBYTE(com_lsr), LSR_RXRDY))
    938  1.1  rearnsha 		;
    939  1.1  rearnsha 
    940  1.1  rearnsha 	c = KCOM_GETBYTE(com_data);
    941  1.1  rearnsha 	stat = KCOM_GETBYTE(com_iir);
    942  1.1  rearnsha 	return c;
    943  1.1  rearnsha }
    944  1.1  rearnsha 
    945  1.1  rearnsha /*
    946  1.1  rearnsha  * Console kernel output character routine.
    947  1.1  rearnsha  */
    948  1.1  rearnsha static void
    949  1.1  rearnsha kcomcnputc(dev_t dev, int c)
    950  1.1  rearnsha {
    951  1.1  rearnsha 	int timo;
    952  1.1  rearnsha 
    953  1.1  rearnsha 	/* wait for any pending transmission to finish */
    954  1.1  rearnsha 	timo = 150000;
    955  1.1  rearnsha 	while (!ISSET(KCOM_GETBYTE(com_lsr), LSR_TXRDY) && --timo)
    956  1.1  rearnsha 		continue;
    957  1.1  rearnsha 
    958  1.1  rearnsha 	KCOM_PUTBYTE(com_data, c);
    959  1.1  rearnsha 
    960  1.1  rearnsha 	/* wait for this transmission to complete */
    961  1.1  rearnsha 	timo = 1500000;
    962  1.1  rearnsha 	while (!ISSET(KCOM_GETBYTE(com_lsr), LSR_TXRDY) && --timo)
    963  1.1  rearnsha 		continue;
    964  1.1  rearnsha }
    965  1.1  rearnsha 
    966  1.1  rearnsha static void
    967  1.1  rearnsha kcomcnpollc(dev_t dev, int on)
    968  1.1  rearnsha {
    969  1.1  rearnsha }
    970  1.1  rearnsha 
    971  1.1  rearnsha struct consdev kcomcons = {
    972  1.1  rearnsha 	NULL, NULL, kcomcngetc, kcomcnputc, kcomcnpollc, NULL,
    973  1.1  rearnsha 	NODEV, CN_NORMAL
    974  1.1  rearnsha };
    975  1.1  rearnsha 
    976  1.1  rearnsha #endif
    977