integrator_machdep.c revision 1.33 1 1.33 thorpej /* $NetBSD: integrator_machdep.c,v 1.33 2003/05/03 00:39:22 thorpej Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.23 rearnsha * Copyright (c) 2001,2002 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.23 rearnsha * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
20 1.23 rearnsha * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.23 rearnsha * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.23 rearnsha * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD
23 1.23 rearnsha * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.23 rearnsha * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.23 rearnsha * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.23 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.23 rearnsha * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.23 rearnsha * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.23 rearnsha * POSSIBILITY OF SUCH DAMAGE.
30 1.23 rearnsha */
31 1.23 rearnsha
32 1.23 rearnsha /*
33 1.1 rearnsha * Copyright (c) 1997,1998 Mark Brinicombe.
34 1.1 rearnsha * Copyright (c) 1997,1998 Causality Limited.
35 1.1 rearnsha * All rights reserved.
36 1.1 rearnsha *
37 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
38 1.1 rearnsha * modification, are permitted provided that the following conditions
39 1.1 rearnsha * are met:
40 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
41 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
42 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
44 1.1 rearnsha * documentation and/or other materials provided with the distribution.
45 1.1 rearnsha * 3. All advertising materials mentioning features or use of this software
46 1.1 rearnsha * must display the following acknowledgement:
47 1.1 rearnsha * This product includes software developed by Mark Brinicombe
48 1.1 rearnsha * for the NetBSD Project.
49 1.1 rearnsha * 4. The name of the company nor the name of the author may be used to
50 1.1 rearnsha * endorse or promote products derived from this software without specific
51 1.1 rearnsha * prior written permission.
52 1.1 rearnsha *
53 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 1.1 rearnsha * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 1.1 rearnsha * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 1.1 rearnsha * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 1.1 rearnsha * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 1.1 rearnsha * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 1.1 rearnsha * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 rearnsha * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 rearnsha * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 rearnsha * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 rearnsha * SUCH DAMAGE.
64 1.1 rearnsha *
65 1.1 rearnsha * Machine dependant functions for kernel setup for integrator board
66 1.1 rearnsha *
67 1.1 rearnsha * Created : 24/11/97
68 1.1 rearnsha */
69 1.1 rearnsha
70 1.1 rearnsha #include "opt_ddb.h"
71 1.1 rearnsha #include "opt_pmap_debug.h"
72 1.1 rearnsha
73 1.1 rearnsha #include <sys/param.h>
74 1.1 rearnsha #include <sys/device.h>
75 1.1 rearnsha #include <sys/systm.h>
76 1.1 rearnsha #include <sys/kernel.h>
77 1.1 rearnsha #include <sys/exec.h>
78 1.1 rearnsha #include <sys/proc.h>
79 1.1 rearnsha #include <sys/msgbuf.h>
80 1.1 rearnsha #include <sys/reboot.h>
81 1.1 rearnsha #include <sys/termios.h>
82 1.32 ragge #include <sys/ksyms.h>
83 1.1 rearnsha
84 1.31 thorpej #include <uvm/uvm_extern.h>
85 1.31 thorpej
86 1.1 rearnsha #include <dev/cons.h>
87 1.1 rearnsha
88 1.1 rearnsha #include <machine/db_machdep.h>
89 1.1 rearnsha #include <ddb/db_sym.h>
90 1.1 rearnsha #include <ddb/db_extern.h>
91 1.1 rearnsha
92 1.1 rearnsha #include <machine/bootconfig.h>
93 1.1 rearnsha #include <machine/bus.h>
94 1.1 rearnsha #include <machine/cpu.h>
95 1.1 rearnsha #include <machine/frame.h>
96 1.1 rearnsha #include <machine/intr.h>
97 1.8 thorpej #include <evbarm/ifpga/irqhandler.h> /* XXX XXX XXX */
98 1.6 thorpej #include <arm/undefined.h>
99 1.1 rearnsha
100 1.23 rearnsha #include <arm/arm32/machdep.h>
101 1.23 rearnsha
102 1.1 rearnsha #include <evbarm/integrator/integrator_boot.h>
103 1.1 rearnsha
104 1.1 rearnsha #include "opt_ipkdb.h"
105 1.1 rearnsha #include "pci.h"
106 1.32 ragge #include "ksyms.h"
107 1.1 rearnsha
108 1.1 rearnsha void ifpga_reset(void) __attribute__((noreturn));
109 1.1 rearnsha /*
110 1.1 rearnsha * Address to call from cpu_reset() to reset the machine.
111 1.1 rearnsha * This is machine architecture dependant as it varies depending
112 1.1 rearnsha * on where the ROM appears when you turn the MMU off.
113 1.1 rearnsha */
114 1.1 rearnsha
115 1.1 rearnsha u_int cpu_reset_address = (u_int) ifpga_reset;
116 1.1 rearnsha
117 1.1 rearnsha /* Define various stack sizes in pages */
118 1.1 rearnsha #define IRQ_STACK_SIZE 1
119 1.1 rearnsha #define ABT_STACK_SIZE 1
120 1.1 rearnsha #ifdef IPKDB
121 1.1 rearnsha #define UND_STACK_SIZE 2
122 1.1 rearnsha #else
123 1.1 rearnsha #define UND_STACK_SIZE 1
124 1.1 rearnsha #endif
125 1.1 rearnsha
126 1.1 rearnsha BootConfig bootconfig; /* Boot config storage */
127 1.1 rearnsha char *boot_args = NULL;
128 1.1 rearnsha char *boot_file = NULL;
129 1.1 rearnsha
130 1.1 rearnsha vm_offset_t physical_start;
131 1.1 rearnsha vm_offset_t physical_freestart;
132 1.1 rearnsha vm_offset_t physical_freeend;
133 1.1 rearnsha vm_offset_t physical_end;
134 1.1 rearnsha u_int free_pages;
135 1.1 rearnsha vm_offset_t pagetables_start;
136 1.1 rearnsha int physmem = 0;
137 1.1 rearnsha
138 1.1 rearnsha /*int debug_flags;*/
139 1.1 rearnsha #ifndef PMAP_STATIC_L1S
140 1.1 rearnsha int max_processes = 64; /* Default number */
141 1.1 rearnsha #endif /* !PMAP_STATIC_L1S */
142 1.1 rearnsha
143 1.1 rearnsha /* Physical and virtual addresses for some global pages */
144 1.1 rearnsha pv_addr_t systempage;
145 1.1 rearnsha pv_addr_t irqstack;
146 1.1 rearnsha pv_addr_t undstack;
147 1.1 rearnsha pv_addr_t abtstack;
148 1.1 rearnsha pv_addr_t kernelstack;
149 1.1 rearnsha
150 1.1 rearnsha vm_offset_t msgbufphys;
151 1.1 rearnsha
152 1.1 rearnsha extern u_int data_abort_handler_address;
153 1.1 rearnsha extern u_int prefetch_abort_handler_address;
154 1.1 rearnsha extern u_int undefined_handler_address;
155 1.1 rearnsha
156 1.1 rearnsha #ifdef PMAP_DEBUG
157 1.1 rearnsha extern int pmap_debug_level;
158 1.1 rearnsha #endif
159 1.1 rearnsha
160 1.23 rearnsha #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
161 1.23 rearnsha
162 1.23 rearnsha #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
163 1.23 rearnsha #define KERNEL_PT_KERNEL_NUM 2
164 1.23 rearnsha /* L2 tables for mapping kernel VM */
165 1.23 rearnsha #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
166 1.17 chris #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
167 1.1 rearnsha #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
168 1.1 rearnsha
169 1.14 thorpej pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
170 1.1 rearnsha
171 1.1 rearnsha struct user *proc0paddr;
172 1.1 rearnsha
173 1.1 rearnsha /* Prototypes */
174 1.1 rearnsha
175 1.23 rearnsha static void integrator_sdram_bounds (paddr_t *, psize_t *);
176 1.1 rearnsha
177 1.23 rearnsha void consinit(void);
178 1.1 rearnsha
179 1.1 rearnsha /* A load of console goo. */
180 1.1 rearnsha #include "vga.h"
181 1.23 rearnsha #if NVGA > 0
182 1.1 rearnsha #include <dev/ic/mc6845reg.h>
183 1.1 rearnsha #include <dev/ic/pcdisplayvar.h>
184 1.1 rearnsha #include <dev/ic/vgareg.h>
185 1.1 rearnsha #include <dev/ic/vgavar.h>
186 1.1 rearnsha #endif
187 1.1 rearnsha
188 1.1 rearnsha #include "pckbc.h"
189 1.23 rearnsha #if NPCKBC > 0
190 1.1 rearnsha #include <dev/ic/i8042reg.h>
191 1.1 rearnsha #include <dev/ic/pckbcvar.h>
192 1.1 rearnsha #endif
193 1.1 rearnsha
194 1.1 rearnsha #include "com.h"
195 1.23 rearnsha #if NCOM > 0
196 1.1 rearnsha #include <dev/ic/comreg.h>
197 1.1 rearnsha #include <dev/ic/comvar.h>
198 1.1 rearnsha #ifndef CONCOMADDR
199 1.1 rearnsha #define CONCOMADDR 0x3f8
200 1.1 rearnsha #endif
201 1.1 rearnsha #endif
202 1.1 rearnsha
203 1.23 rearnsha /*
204 1.23 rearnsha * Define the default console speed for the board. This is generally
205 1.23 rearnsha * what the firmware provided with the board defaults to.
206 1.23 rearnsha */
207 1.30 mycroft #ifndef CONSPEED
208 1.1 rearnsha #define CONSPEED B115200
209 1.1 rearnsha #endif
210 1.1 rearnsha #ifndef CONMODE
211 1.1 rearnsha #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
212 1.1 rearnsha #endif
213 1.1 rearnsha
214 1.1 rearnsha int comcnspeed = CONSPEED;
215 1.1 rearnsha int comcnmode = CONMODE;
216 1.1 rearnsha
217 1.1 rearnsha #include "plcom.h"
218 1.1 rearnsha #if (NPLCOM > 0)
219 1.1 rearnsha #include <evbarm/dev/plcomreg.h>
220 1.1 rearnsha #include <evbarm/dev/plcomvar.h>
221 1.1 rearnsha
222 1.1 rearnsha #include <evbarm/ifpga/ifpgamem.h>
223 1.1 rearnsha #include <evbarm/ifpga/ifpgareg.h>
224 1.1 rearnsha #include <evbarm/ifpga/ifpgavar.h>
225 1.1 rearnsha #endif
226 1.1 rearnsha
227 1.1 rearnsha #ifndef CONSDEVNAME
228 1.1 rearnsha #define CONSDEVNAME "plcom"
229 1.1 rearnsha #endif
230 1.1 rearnsha
231 1.1 rearnsha #ifndef PLCONSPEED
232 1.1 rearnsha #define PLCONSPEED B38400
233 1.1 rearnsha #endif
234 1.1 rearnsha #ifndef PLCONMODE
235 1.1 rearnsha #define PLCONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
236 1.1 rearnsha #endif
237 1.1 rearnsha #ifndef PLCOMCNUNIT
238 1.1 rearnsha #define PLCOMCNUNIT -1
239 1.1 rearnsha #endif
240 1.1 rearnsha
241 1.1 rearnsha int plcomcnspeed = PLCONSPEED;
242 1.1 rearnsha int plcomcnmode = PLCONMODE;
243 1.1 rearnsha
244 1.1 rearnsha #if 0
245 1.1 rearnsha extern struct consdev kcomcons;
246 1.1 rearnsha static void kcomcnputc(dev_t, int);
247 1.1 rearnsha #endif
248 1.1 rearnsha
249 1.1 rearnsha /*
250 1.1 rearnsha * void cpu_reboot(int howto, char *bootstr)
251 1.1 rearnsha *
252 1.1 rearnsha * Reboots the system
253 1.1 rearnsha *
254 1.1 rearnsha * Deal with any syncing, unmounting, dumping and shutdown hooks,
255 1.1 rearnsha * then reset the CPU.
256 1.1 rearnsha */
257 1.1 rearnsha void
258 1.23 rearnsha cpu_reboot(int howto, char *bootstr)
259 1.1 rearnsha {
260 1.1 rearnsha #ifdef DIAGNOSTIC
261 1.1 rearnsha /* info */
262 1.29 thorpej printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
263 1.1 rearnsha #endif
264 1.1 rearnsha
265 1.1 rearnsha /*
266 1.1 rearnsha * If we are still cold then hit the air brakes
267 1.1 rearnsha * and crash to earth fast
268 1.1 rearnsha */
269 1.1 rearnsha if (cold) {
270 1.1 rearnsha doshutdownhooks();
271 1.1 rearnsha printf("The operating system has halted.\n");
272 1.1 rearnsha printf("Please press any key to reboot.\n\n");
273 1.1 rearnsha cngetc();
274 1.1 rearnsha printf("rebooting...\n");
275 1.1 rearnsha ifpga_reset();
276 1.1 rearnsha /*NOTREACHED*/
277 1.1 rearnsha }
278 1.1 rearnsha
279 1.1 rearnsha /* Disable console buffering */
280 1.1 rearnsha
281 1.1 rearnsha /*
282 1.1 rearnsha * If RB_NOSYNC was not specified sync the discs.
283 1.23 rearnsha * Note: Unless cold is set to 1 here, syslogd will die during the
284 1.23 rearnsha * unmount. It looks like syslogd is getting woken up only to find
285 1.23 rearnsha * that it cannot page part of the binary in as the filesystem has
286 1.23 rearnsha * been unmounted.
287 1.1 rearnsha */
288 1.1 rearnsha if (!(howto & RB_NOSYNC))
289 1.1 rearnsha bootsync();
290 1.1 rearnsha
291 1.1 rearnsha /* Say NO to interrupts */
292 1.1 rearnsha splhigh();
293 1.1 rearnsha
294 1.1 rearnsha /* Do a dump if requested. */
295 1.1 rearnsha if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
296 1.1 rearnsha dumpsys();
297 1.1 rearnsha
298 1.1 rearnsha /* Run any shutdown hooks */
299 1.1 rearnsha doshutdownhooks();
300 1.1 rearnsha
301 1.1 rearnsha /* Make sure IRQ's are disabled */
302 1.1 rearnsha IRQdisable;
303 1.1 rearnsha
304 1.1 rearnsha if (howto & RB_HALT) {
305 1.1 rearnsha printf("The operating system has halted.\n");
306 1.1 rearnsha printf("Please press any key to reboot.\n\n");
307 1.1 rearnsha cngetc();
308 1.1 rearnsha }
309 1.1 rearnsha
310 1.1 rearnsha printf("rebooting...\n");
311 1.1 rearnsha ifpga_reset();
312 1.1 rearnsha /*NOTREACHED*/
313 1.1 rearnsha }
314 1.1 rearnsha
315 1.1 rearnsha /*
316 1.1 rearnsha * Mapping table for core kernel memory. This memory is mapped at init
317 1.1 rearnsha * time with section mappings.
318 1.1 rearnsha */
319 1.1 rearnsha struct l1_sec_map {
320 1.23 rearnsha vaddr_t va;
321 1.23 rearnsha vaddr_t pa;
322 1.23 rearnsha vsize_t size;
323 1.23 rearnsha vm_prot_t prot;
324 1.23 rearnsha int cache;
325 1.1 rearnsha } l1_sec_table[] = {
326 1.1 rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
327 1.23 rearnsha {
328 1.23 rearnsha UART0_BOOT_BASE,
329 1.23 rearnsha IFPGA_IO_BASE + IFPGA_UART0,
330 1.23 rearnsha 1024 * 1024,
331 1.23 rearnsha VM_PROT_READ|VM_PROT_WRITE,
332 1.23 rearnsha PTE_NOCACHE
333 1.23 rearnsha },
334 1.23 rearnsha
335 1.23 rearnsha {
336 1.23 rearnsha UART1_BOOT_BASE,
337 1.23 rearnsha IFPGA_IO_BASE + IFPGA_UART1,
338 1.23 rearnsha 1024 * 1024,
339 1.23 rearnsha VM_PROT_READ|VM_PROT_WRITE,
340 1.23 rearnsha PTE_NOCACHE
341 1.23 rearnsha },
342 1.1 rearnsha #endif
343 1.1 rearnsha #if NPCI > 0
344 1.23 rearnsha {
345 1.23 rearnsha IFPGA_PCI_IO_VBASE,
346 1.23 rearnsha IFPGA_PCI_IO_BASE,
347 1.23 rearnsha IFPGA_PCI_IO_VSIZE,
348 1.23 rearnsha VM_PROT_READ|VM_PROT_WRITE,
349 1.23 rearnsha PTE_NOCACHE
350 1.23 rearnsha },
351 1.23 rearnsha
352 1.23 rearnsha {
353 1.23 rearnsha IFPGA_PCI_CONF_VBASE,
354 1.23 rearnsha IFPGA_PCI_CONF_BASE,
355 1.23 rearnsha IFPGA_PCI_CONF_VSIZE,
356 1.23 rearnsha VM_PROT_READ|VM_PROT_WRITE,
357 1.23 rearnsha PTE_NOCACHE },
358 1.1 rearnsha #endif
359 1.1 rearnsha
360 1.23 rearnsha {
361 1.23 rearnsha 0,
362 1.23 rearnsha 0,
363 1.23 rearnsha 0,
364 1.23 rearnsha 0,
365 1.23 rearnsha 0
366 1.23 rearnsha }
367 1.1 rearnsha };
368 1.1 rearnsha
369 1.1 rearnsha /*
370 1.23 rearnsha * u_int initarm(...)
371 1.1 rearnsha *
372 1.1 rearnsha * Initial entry point on startup. This gets called before main() is
373 1.1 rearnsha * entered.
374 1.1 rearnsha * It should be responsible for setting up everything that must be
375 1.1 rearnsha * in place when main is called.
376 1.1 rearnsha * This includes
377 1.1 rearnsha * Taking a copy of the boot configuration structure.
378 1.1 rearnsha * Initialising the physical console so characters can be printed.
379 1.1 rearnsha * Setting up page tables for the kernel
380 1.1 rearnsha * Relocating the kernel to the bottom of physical memory
381 1.1 rearnsha */
382 1.1 rearnsha
383 1.1 rearnsha u_int
384 1.23 rearnsha initarm(void *arg)
385 1.1 rearnsha {
386 1.1 rearnsha int loop;
387 1.1 rearnsha int loop1;
388 1.1 rearnsha u_int l1pagetable;
389 1.1 rearnsha extern int etext asm ("_etext");
390 1.1 rearnsha extern int end asm ("_end");
391 1.1 rearnsha pv_addr_t kernel_l1pt;
392 1.33 thorpej #ifndef ARM32_PMAP_NEW
393 1.1 rearnsha pv_addr_t kernel_ptpt;
394 1.33 thorpej #endif
395 1.23 rearnsha paddr_t memstart;
396 1.23 rearnsha psize_t memsize;
397 1.1 rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
398 1.1 rearnsha static struct bus_space plcom_bus_space;
399 1.1 rearnsha #endif
400 1.1 rearnsha
401 1.1 rearnsha /*
402 1.1 rearnsha * Heads up ... Setup the CPU / MMU / TLB functions
403 1.1 rearnsha */
404 1.1 rearnsha if (set_cpufuncs())
405 1.1 rearnsha panic("cpu not recognized!");
406 1.1 rearnsha
407 1.1 rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
408 1.1 rearnsha /*
409 1.1 rearnsha * Initialise the diagnostic serial console
410 1.1 rearnsha * This allows a means of generating output during initarm().
411 1.1 rearnsha * Once all the memory map changes are complete we can call consinit()
412 1.1 rearnsha * and not have to worry about things moving.
413 1.1 rearnsha */
414 1.1 rearnsha
415 1.1 rearnsha if (PLCOMCNUNIT == 0) {
416 1.1 rearnsha ifpga_create_io_bs_tag(&plcom_bus_space, (void*)0xfd600000);
417 1.1 rearnsha plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
418 1.1 rearnsha IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT);
419 1.1 rearnsha } else if (PLCOMCNUNIT == 1) {
420 1.1 rearnsha ifpga_create_io_bs_tag(&plcom_bus_space, (void*)0xfd700000);
421 1.1 rearnsha plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
422 1.1 rearnsha IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT);
423 1.1 rearnsha }
424 1.1 rearnsha #endif
425 1.1 rearnsha
426 1.1 rearnsha /* Talk to the user */
427 1.23 rearnsha printf("\nNetBSD/evbarm (Integrator) booting ...\n");
428 1.1 rearnsha
429 1.1 rearnsha /*
430 1.1 rearnsha * Ok we have the following memory map
431 1.1 rearnsha *
432 1.23 rearnsha * XXX NO WE DON'T
433 1.23 rearnsha *
434 1.1 rearnsha * virtual address == physical address apart from the areas:
435 1.1 rearnsha * 0x00000000 -> 0x000fffff which is mapped to
436 1.1 rearnsha * top 1MB of physical memory
437 1.1 rearnsha * 0x00100000 -> 0x0fffffff which is mapped to
438 1.1 rearnsha * physical addresses 0x00100000 -> 0x0fffffff
439 1.1 rearnsha * 0x10000000 -> 0x1fffffff which is mapped to
440 1.1 rearnsha * physical addresses 0x00000000 -> 0x0fffffff
441 1.1 rearnsha * 0x20000000 -> 0xefffffff which is mapped to
442 1.1 rearnsha * physical addresses 0x20000000 -> 0xefffffff
443 1.1 rearnsha * 0xf0000000 -> 0xf03fffff which is mapped to
444 1.1 rearnsha * physical addresses 0x00000000 -> 0x003fffff
445 1.1 rearnsha *
446 1.1 rearnsha * This means that the kernel is mapped suitably for continuing
447 1.1 rearnsha * execution, all I/O is mapped 1:1 virtual to physical and
448 1.1 rearnsha * physical memory is accessible.
449 1.1 rearnsha *
450 1.1 rearnsha * The initarm() has the responsibility for creating the kernel
451 1.1 rearnsha * page tables.
452 1.1 rearnsha * It must also set up various memory pointers that are used
453 1.1 rearnsha * by pmap etc.
454 1.1 rearnsha */
455 1.1 rearnsha
456 1.1 rearnsha /*
457 1.23 rearnsha * Fetch the SDRAM start/size from the CM configuration registers.
458 1.1 rearnsha */
459 1.23 rearnsha integrator_sdram_bounds(&memstart, &memsize);
460 1.1 rearnsha
461 1.1 rearnsha printf("initarm: Configuring system ...\n");
462 1.1 rearnsha
463 1.23 rearnsha /* Fake bootconfig structure for the benefit of pmap.c */
464 1.23 rearnsha /* XXX must make the memory description h/w independent */
465 1.23 rearnsha bootconfig.dramblocks = 1;
466 1.23 rearnsha bootconfig.dram[0].address = memstart;
467 1.31 thorpej bootconfig.dram[0].pages = memsize / PAGE_SIZE;
468 1.23 rearnsha
469 1.1 rearnsha /*
470 1.1 rearnsha * Set up the variables that define the availablilty of
471 1.23 rearnsha * physical memory. For now, we're going to set
472 1.23 rearnsha * physical_freestart to 0x00200000 (where the kernel
473 1.23 rearnsha * was loaded), and allocate the memory we need downwards.
474 1.23 rearnsha * If we get too close to the L1 table that we set up, we
475 1.23 rearnsha * will panic. We will update physical_freestart and
476 1.23 rearnsha * physical_freeend later to reflect what pmap_bootstrap()
477 1.23 rearnsha * wants to see.
478 1.23 rearnsha *
479 1.23 rearnsha * XXX pmap_bootstrap() needs an enema.
480 1.1 rearnsha */
481 1.23 rearnsha physical_start = bootconfig.dram[0].address;
482 1.31 thorpej physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
483 1.1 rearnsha
484 1.23 rearnsha physical_freestart = 0x00009000UL;
485 1.23 rearnsha physical_freeend = 0x00200000UL;
486 1.1 rearnsha
487 1.31 thorpej physmem = (physical_end - physical_start) / PAGE_SIZE;
488 1.1 rearnsha
489 1.1 rearnsha /* Tell the user about the memory */
490 1.1 rearnsha printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
491 1.1 rearnsha physical_start, physical_end - 1);
492 1.1 rearnsha
493 1.1 rearnsha /*
494 1.23 rearnsha * Okay, the kernel starts 2MB in from the bottom of physical
495 1.23 rearnsha * memory. We are going to allocate our bootstrap pages downwards
496 1.23 rearnsha * from there.
497 1.1 rearnsha *
498 1.23 rearnsha * We need to allocate some fixed page tables to get the kernel
499 1.23 rearnsha * going. We allocate one page directory and a number of page
500 1.23 rearnsha * tables and store the physical addresses in the kernel_pt_table
501 1.23 rearnsha * array.
502 1.23 rearnsha *
503 1.23 rearnsha * The kernel page directory must be on a 16K boundary. The page
504 1.23 rearnsha * tables must be on 4K bounaries. What we do is allocate the
505 1.23 rearnsha * page directory on the first 16K boundary that we encounter, and
506 1.23 rearnsha * the page tables on 4K boundaries otherwise. Since we allocate
507 1.23 rearnsha * at least 3 L2 page tables, we are guaranteed to encounter at
508 1.23 rearnsha * least one 16K aligned region.
509 1.1 rearnsha */
510 1.1 rearnsha
511 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
512 1.1 rearnsha printf("Allocating page tables\n");
513 1.1 rearnsha #endif
514 1.1 rearnsha
515 1.31 thorpej free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
516 1.1 rearnsha
517 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
518 1.23 rearnsha printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
519 1.1 rearnsha physical_freestart, free_pages, free_pages);
520 1.1 rearnsha #endif
521 1.1 rearnsha
522 1.1 rearnsha /* Define a macro to simplify memory allocation */
523 1.23 rearnsha #define valloc_pages(var, np) \
524 1.23 rearnsha alloc_pages((var).pv_pa, (np)); \
525 1.23 rearnsha (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
526 1.23 rearnsha
527 1.23 rearnsha #define alloc_pages(var, np) \
528 1.31 thorpej physical_freeend -= ((np) * PAGE_SIZE); \
529 1.23 rearnsha if (physical_freeend < physical_freestart) \
530 1.23 rearnsha panic("initarm: out of memory"); \
531 1.23 rearnsha (var) = physical_freeend; \
532 1.23 rearnsha free_pages -= (np); \
533 1.31 thorpej memset((char *)(var), 0, ((np) * PAGE_SIZE));
534 1.1 rearnsha
535 1.1 rearnsha loop1 = 0;
536 1.1 rearnsha kernel_l1pt.pv_pa = 0;
537 1.1 rearnsha for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
538 1.1 rearnsha /* Are we 16KB aligned for an L1 ? */
539 1.23 rearnsha if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
540 1.1 rearnsha && kernel_l1pt.pv_pa == 0) {
541 1.31 thorpej valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
542 1.1 rearnsha } else {
543 1.33 thorpej #ifdef ARM32_PMAP_NEW
544 1.33 thorpej valloc_pages(kernel_pt_table[loop1],
545 1.33 thorpej L2_TABLE_SIZE / PAGE_SIZE);
546 1.33 thorpej #else
547 1.14 thorpej alloc_pages(kernel_pt_table[loop1].pv_pa,
548 1.31 thorpej L2_TABLE_SIZE / PAGE_SIZE);
549 1.14 thorpej kernel_pt_table[loop1].pv_va =
550 1.14 thorpej kernel_pt_table[loop1].pv_pa;
551 1.33 thorpej #endif
552 1.23 rearnsha ++loop1;
553 1.1 rearnsha }
554 1.1 rearnsha }
555 1.1 rearnsha
556 1.1 rearnsha /* This should never be able to happen but better confirm that. */
557 1.21 thorpej if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
558 1.28 provos panic("initarm: Failed to align the kernel page directory");
559 1.1 rearnsha
560 1.1 rearnsha /*
561 1.1 rearnsha * Allocate a page for the system page mapped to V0x00000000
562 1.1 rearnsha * This page will just contain the system vectors and can be
563 1.1 rearnsha * shared by all processes.
564 1.1 rearnsha */
565 1.1 rearnsha alloc_pages(systempage.pv_pa, 1);
566 1.1 rearnsha
567 1.33 thorpej #ifndef ARM32_PMAP_NEW
568 1.23 rearnsha /* Allocate a page for the page table to map kernel page tables. */
569 1.31 thorpej valloc_pages(kernel_ptpt, L2_TABLE_SIZE / PAGE_SIZE);
570 1.33 thorpej #endif
571 1.1 rearnsha
572 1.1 rearnsha /* Allocate stacks for all modes */
573 1.1 rearnsha valloc_pages(irqstack, IRQ_STACK_SIZE);
574 1.1 rearnsha valloc_pages(abtstack, ABT_STACK_SIZE);
575 1.1 rearnsha valloc_pages(undstack, UND_STACK_SIZE);
576 1.1 rearnsha valloc_pages(kernelstack, UPAGES);
577 1.1 rearnsha
578 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
579 1.23 rearnsha printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
580 1.23 rearnsha irqstack.pv_va);
581 1.23 rearnsha printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
582 1.23 rearnsha abtstack.pv_va);
583 1.23 rearnsha printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
584 1.23 rearnsha undstack.pv_va);
585 1.23 rearnsha printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
586 1.23 rearnsha kernelstack.pv_va);
587 1.1 rearnsha #endif
588 1.1 rearnsha
589 1.31 thorpej alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
590 1.1 rearnsha
591 1.1 rearnsha /*
592 1.1 rearnsha * Ok we have allocated physical pages for the primary kernel
593 1.1 rearnsha * page tables
594 1.1 rearnsha */
595 1.1 rearnsha
596 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
597 1.23 rearnsha printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
598 1.1 rearnsha #endif
599 1.1 rearnsha
600 1.1 rearnsha /*
601 1.23 rearnsha * Now we start construction of the L1 page table
602 1.1 rearnsha * We start by mapping the L2 page tables into the L1.
603 1.1 rearnsha * This means that we can replace L1 mappings later on if necessary
604 1.1 rearnsha */
605 1.1 rearnsha l1pagetable = kernel_l1pt.pv_pa;
606 1.1 rearnsha
607 1.1 rearnsha /* Map the L2 pages tables in the L1 page table */
608 1.11 thorpej pmap_link_l2pt(l1pagetable, 0x00000000,
609 1.14 thorpej &kernel_pt_table[KERNEL_PT_SYS]);
610 1.23 rearnsha for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
611 1.23 rearnsha pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
612 1.23 rearnsha &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
613 1.23 rearnsha for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
614 1.11 thorpej pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
615 1.14 thorpej &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
616 1.33 thorpej #ifndef ARM32_PMAP_NEW
617 1.23 rearnsha pmap_link_l2pt(l1pagetable, PTE_BASE, &kernel_ptpt);
618 1.33 thorpej #endif
619 1.17 chris
620 1.17 chris /* update the top of the kernel VM */
621 1.19 thorpej pmap_curmaxkvaddr =
622 1.19 thorpej KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
623 1.1 rearnsha
624 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
625 1.1 rearnsha printf("Mapping kernel\n");
626 1.1 rearnsha #endif
627 1.1 rearnsha
628 1.1 rearnsha /* Now we fill in the L2 pagetable for the kernel static code/data */
629 1.1 rearnsha {
630 1.1 rearnsha size_t textsize = (uintptr_t) &etext - KERNEL_TEXT_BASE;
631 1.1 rearnsha size_t totalsize = (uintptr_t) &end - KERNEL_TEXT_BASE;
632 1.23 rearnsha u_int logical;
633 1.1 rearnsha
634 1.23 rearnsha textsize = (textsize + PGOFSET) & ~PGOFSET;
635 1.1 rearnsha totalsize = (totalsize + PGOFSET) & ~PGOFSET;
636 1.23 rearnsha
637 1.23 rearnsha logical = 0x00200000; /* offset of kernel in RAM */
638 1.23 rearnsha
639 1.23 rearnsha logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
640 1.23 rearnsha physical_start + logical, textsize,
641 1.12 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
642 1.23 rearnsha logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
643 1.23 rearnsha physical_start + logical, totalsize - textsize,
644 1.12 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
645 1.1 rearnsha }
646 1.1 rearnsha
647 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
648 1.1 rearnsha printf("Constructing L2 page tables\n");
649 1.1 rearnsha #endif
650 1.1 rearnsha
651 1.1 rearnsha /* Map the stack pages */
652 1.14 thorpej pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
653 1.31 thorpej IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
654 1.14 thorpej pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
655 1.31 thorpej ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
656 1.14 thorpej pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
657 1.31 thorpej UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
658 1.14 thorpej pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
659 1.31 thorpej UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
660 1.13 thorpej
661 1.33 thorpej #ifndef ARM32_PMAP_NEW
662 1.14 thorpej pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
663 1.26 thorpej L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
664 1.33 thorpej #else
665 1.33 thorpej pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
666 1.33 thorpej L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
667 1.1 rearnsha
668 1.33 thorpej for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
669 1.33 thorpej pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
670 1.33 thorpej kernel_pt_table[loop].pv_va, L2_TABLE_SIZE,
671 1.33 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
672 1.33 thorpej }
673 1.33 thorpej #endif
674 1.33 thorpej
675 1.33 thorpej #ifndef ARM32_PMAP_NEW
676 1.1 rearnsha /* Map the page table that maps the kernel pages */
677 1.16 thorpej pmap_map_entry(l1pagetable, kernel_ptpt.pv_va, kernel_ptpt.pv_pa,
678 1.10 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
679 1.1 rearnsha
680 1.1 rearnsha /*
681 1.1 rearnsha * Map entries in the page table used to map PTE's
682 1.1 rearnsha * Basically every kernel page table gets mapped here
683 1.1 rearnsha */
684 1.1 rearnsha /* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */
685 1.23 rearnsha for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) {
686 1.23 rearnsha pmap_map_entry(l1pagetable,
687 1.23 rearnsha PTE_BASE + ((KERNEL_BASE +
688 1.23 rearnsha (loop * 0x00400000)) >> (PGSHIFT-2)),
689 1.23 rearnsha kernel_pt_table[KERNEL_PT_KERNEL + loop].pv_pa,
690 1.27 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
691 1.23 rearnsha }
692 1.15 thorpej pmap_map_entry(l1pagetable,
693 1.18 thorpej PTE_BASE + (PTE_BASE >> (PGSHIFT-2)),
694 1.23 rearnsha kernel_ptpt.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
695 1.15 thorpej pmap_map_entry(l1pagetable,
696 1.18 thorpej PTE_BASE + (0x00000000 >> (PGSHIFT-2)),
697 1.14 thorpej kernel_pt_table[KERNEL_PT_SYS].pv_pa,
698 1.27 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
699 1.23 rearnsha for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
700 1.15 thorpej pmap_map_entry(l1pagetable,
701 1.18 thorpej PTE_BASE + ((KERNEL_VM_BASE +
702 1.1 rearnsha (loop * 0x00400000)) >> (PGSHIFT-2)),
703 1.14 thorpej kernel_pt_table[KERNEL_PT_VMDATA + loop].pv_pa,
704 1.27 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
705 1.33 thorpej #endif
706 1.1 rearnsha
707 1.20 thorpej /* Map the vector page. */
708 1.1 rearnsha #if 1
709 1.1 rearnsha /* MULTI-ICE requires that page 0 is NC/NB so that it can download
710 1.1 rearnsha the cache-clean code there. */
711 1.20 thorpej pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
712 1.10 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
713 1.1 rearnsha #else
714 1.20 thorpej pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
715 1.20 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
716 1.1 rearnsha #endif
717 1.1 rearnsha /* Map the core memory needed before autoconfig */
718 1.1 rearnsha loop = 0;
719 1.1 rearnsha while (l1_sec_table[loop].size) {
720 1.1 rearnsha vm_size_t sz;
721 1.1 rearnsha
722 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
723 1.1 rearnsha printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
724 1.1 rearnsha l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
725 1.1 rearnsha l1_sec_table[loop].va);
726 1.1 rearnsha #endif
727 1.21 thorpej for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
728 1.9 thorpej pmap_map_section(l1pagetable,
729 1.9 thorpej l1_sec_table[loop].va + sz,
730 1.1 rearnsha l1_sec_table[loop].pa + sz,
731 1.9 thorpej l1_sec_table[loop].prot,
732 1.9 thorpej l1_sec_table[loop].cache);
733 1.1 rearnsha ++loop;
734 1.1 rearnsha }
735 1.1 rearnsha
736 1.1 rearnsha /*
737 1.1 rearnsha * Now we have the real page tables in place so we can switch to them.
738 1.23 rearnsha * Once this is done we will be running with the REAL kernel page
739 1.23 rearnsha * tables.
740 1.23 rearnsha */
741 1.23 rearnsha
742 1.23 rearnsha /*
743 1.23 rearnsha * Update the physical_freestart/physical_freeend/free_pages
744 1.23 rearnsha * variables.
745 1.1 rearnsha */
746 1.23 rearnsha {
747 1.23 rearnsha physical_freestart = physical_start +
748 1.23 rearnsha (((((uintptr_t) &end) + PGOFSET) & ~PGOFSET) -
749 1.23 rearnsha KERNEL_BASE);
750 1.23 rearnsha physical_freeend = physical_end;
751 1.31 thorpej free_pages =
752 1.31 thorpej (physical_freeend - physical_freestart) / PAGE_SIZE;
753 1.23 rearnsha }
754 1.1 rearnsha
755 1.1 rearnsha /* Switch tables */
756 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
757 1.23 rearnsha printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
758 1.1 rearnsha physical_freestart, free_pages, free_pages);
759 1.1 rearnsha printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
760 1.1 rearnsha #endif
761 1.33 thorpej #ifdef ARM32_PMAP_NEW
762 1.33 thorpej cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
763 1.33 thorpej #endif
764 1.1 rearnsha setttb(kernel_l1pt.pv_pa);
765 1.23 rearnsha cpu_tlb_flushID();
766 1.33 thorpej #ifdef ARM32_PMAP_NEW
767 1.33 thorpej cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
768 1.33 thorpej
769 1.33 thorpej /*
770 1.33 thorpej * Moved from cpu_startup() as data_abort_handler() references
771 1.33 thorpej * this during uvm init
772 1.33 thorpej */
773 1.33 thorpej proc0paddr = (struct user *)kernelstack.pv_va;
774 1.33 thorpej lwp0.l_addr = proc0paddr;
775 1.33 thorpej #endif
776 1.1 rearnsha
777 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
778 1.1 rearnsha printf("done!\n");
779 1.1 rearnsha #endif
780 1.1 rearnsha
781 1.1 rearnsha #ifdef PLCONSOLE
782 1.1 rearnsha /*
783 1.1 rearnsha * The IFPGA registers have just moved.
784 1.1 rearnsha * Detach the diagnostic serial port and reattach at the new address.
785 1.1 rearnsha */
786 1.1 rearnsha plcomcndetach();
787 1.1 rearnsha #endif
788 1.1 rearnsha
789 1.1 rearnsha /*
790 1.1 rearnsha * XXX this should only be done in main() but it useful to
791 1.1 rearnsha * have output earlier ...
792 1.1 rearnsha */
793 1.1 rearnsha consinit();
794 1.1 rearnsha
795 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
796 1.1 rearnsha printf("bootstrap done.\n");
797 1.1 rearnsha #endif
798 1.1 rearnsha
799 1.20 thorpej arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
800 1.1 rearnsha
801 1.1 rearnsha /*
802 1.1 rearnsha * Pages were allocated during the secondary bootstrap for the
803 1.1 rearnsha * stacks for different CPU modes.
804 1.1 rearnsha * We must now set the r13 registers in the different CPU modes to
805 1.1 rearnsha * point to these stacks.
806 1.1 rearnsha * Since the ARM stacks use STMFD etc. we must set r13 to the top end
807 1.1 rearnsha * of the stack memory.
808 1.1 rearnsha */
809 1.1 rearnsha printf("init subsystems: stacks ");
810 1.1 rearnsha
811 1.31 thorpej set_stackptr(PSR_IRQ32_MODE,
812 1.31 thorpej irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
813 1.31 thorpej set_stackptr(PSR_ABT32_MODE,
814 1.31 thorpej abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
815 1.31 thorpej set_stackptr(PSR_UND32_MODE,
816 1.31 thorpej undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
817 1.1 rearnsha
818 1.1 rearnsha /*
819 1.1 rearnsha * Well we should set a data abort handler.
820 1.23 rearnsha * Once things get going this will change as we will need a proper
821 1.23 rearnsha * handler.
822 1.1 rearnsha * Until then we will use a handler that just panics but tells us
823 1.1 rearnsha * why.
824 1.1 rearnsha * Initialisation of the vectors will just panic on a data abort.
825 1.1 rearnsha * This just fills in a slighly better one.
826 1.1 rearnsha */
827 1.1 rearnsha printf("vectors ");
828 1.1 rearnsha data_abort_handler_address = (u_int)data_abort_handler;
829 1.1 rearnsha prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
830 1.1 rearnsha undefined_handler_address = (u_int)undefinedinstruction_bounce;
831 1.1 rearnsha
832 1.1 rearnsha /* Initialise the undefined instruction handlers */
833 1.1 rearnsha printf("undefined ");
834 1.1 rearnsha undefined_init();
835 1.1 rearnsha
836 1.25 thorpej /* Load memory into UVM. */
837 1.25 thorpej printf("page ");
838 1.25 thorpej uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
839 1.25 thorpej uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
840 1.25 thorpej atop(physical_freestart), atop(physical_freeend),
841 1.25 thorpej VM_FREELIST_DEFAULT);
842 1.25 thorpej
843 1.1 rearnsha /* Boot strap pmap telling it where the kernel page table is */
844 1.1 rearnsha printf("pmap ");
845 1.33 thorpej #ifdef ARM32_PMAP_NEW
846 1.33 thorpej pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va);
847 1.33 thorpej #else
848 1.1 rearnsha pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, kernel_ptpt);
849 1.33 thorpej #endif
850 1.1 rearnsha
851 1.1 rearnsha /* Setup the IRQ system */
852 1.1 rearnsha printf("irq ");
853 1.1 rearnsha irq_init();
854 1.1 rearnsha
855 1.1 rearnsha printf("done.\n");
856 1.1 rearnsha
857 1.1 rearnsha #ifdef IPKDB
858 1.1 rearnsha /* Initialise ipkdb */
859 1.1 rearnsha ipkdb_init();
860 1.1 rearnsha if (boothowto & RB_KDB)
861 1.1 rearnsha ipkdb_connect(0);
862 1.1 rearnsha #endif
863 1.1 rearnsha
864 1.32 ragge #if NKSYMS || defined(DDB) || defined(LKM)
865 1.32 ragge /* Firmware doesn't load symbols. */
866 1.32 ragge ksyms_init(0, NULL, NULL);
867 1.32 ragge #endif
868 1.32 ragge
869 1.1 rearnsha #ifdef DDB
870 1.1 rearnsha db_machine_init();
871 1.1 rearnsha if (boothowto & RB_KDB)
872 1.1 rearnsha Debugger();
873 1.1 rearnsha #endif
874 1.1 rearnsha
875 1.1 rearnsha /* We return the new stack pointer address */
876 1.1 rearnsha return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
877 1.1 rearnsha }
878 1.1 rearnsha
879 1.1 rearnsha void
880 1.1 rearnsha consinit(void)
881 1.1 rearnsha {
882 1.1 rearnsha static int consinit_called = 0;
883 1.1 rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
884 1.1 rearnsha static struct bus_space plcom_bus_space;
885 1.1 rearnsha #endif
886 1.1 rearnsha #if 0
887 1.1 rearnsha char *console = CONSDEVNAME;
888 1.1 rearnsha #endif
889 1.1 rearnsha
890 1.1 rearnsha if (consinit_called != 0)
891 1.1 rearnsha return;
892 1.1 rearnsha
893 1.1 rearnsha consinit_called = 1;
894 1.1 rearnsha
895 1.1 rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
896 1.1 rearnsha if (PLCOMCNUNIT == 0) {
897 1.1 rearnsha ifpga_create_io_bs_tag(&plcom_bus_space,
898 1.1 rearnsha (void*)UART0_BOOT_BASE);
899 1.1 rearnsha if (plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
900 1.1 rearnsha IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT))
901 1.1 rearnsha panic("can't init serial console");
902 1.1 rearnsha return;
903 1.1 rearnsha } else if (PLCOMCNUNIT == 1) {
904 1.1 rearnsha ifpga_create_io_bs_tag(&plcom_bus_space,
905 1.1 rearnsha (void*)UART0_BOOT_BASE);
906 1.1 rearnsha if (plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
907 1.1 rearnsha IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT))
908 1.1 rearnsha panic("can't init serial console");
909 1.1 rearnsha return;
910 1.1 rearnsha }
911 1.1 rearnsha #endif
912 1.1 rearnsha #if (NCOM > 0)
913 1.1 rearnsha if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
914 1.1 rearnsha COM_FREQ, comcnmode))
915 1.1 rearnsha panic("can't init serial console @%x", CONCOMADDR);
916 1.1 rearnsha return;
917 1.1 rearnsha #endif
918 1.1 rearnsha panic("No serial console configured");
919 1.23 rearnsha }
920 1.23 rearnsha
921 1.23 rearnsha static void
922 1.23 rearnsha integrator_sdram_bounds(paddr_t *memstart, psize_t *memsize)
923 1.23 rearnsha {
924 1.23 rearnsha volatile unsigned long *cm_sdram
925 1.23 rearnsha = (volatile unsigned long *)0x10000020;
926 1.23 rearnsha
927 1.23 rearnsha *memstart = 0;
928 1.23 rearnsha
929 1.23 rearnsha switch ((*cm_sdram >> 2) & 0x7)
930 1.23 rearnsha {
931 1.23 rearnsha case 0:
932 1.23 rearnsha *memsize = 16 * 1024 * 1024;
933 1.23 rearnsha break;
934 1.23 rearnsha case 1:
935 1.23 rearnsha *memsize = 32 * 1024 * 1024;
936 1.23 rearnsha break;
937 1.23 rearnsha case 2:
938 1.23 rearnsha *memsize = 64 * 1024 * 1024;
939 1.23 rearnsha break;
940 1.23 rearnsha case 3:
941 1.23 rearnsha *memsize = 128 * 1024 * 1024;
942 1.23 rearnsha break;
943 1.23 rearnsha case 4:
944 1.23 rearnsha *memsize = 256 * 1024 * 1024;
945 1.23 rearnsha break;
946 1.23 rearnsha default:
947 1.23 rearnsha printf("CM_SDRAM retuns unknown value, using 16M\n");
948 1.23 rearnsha *memsize = 16 * 1024 * 1024;
949 1.23 rearnsha break;
950 1.23 rearnsha }
951 1.1 rearnsha }
952