integrator_machdep.c revision 1.41 1 1.41 thorpej /* $NetBSD: integrator_machdep.c,v 1.41 2003/06/14 17:01:10 thorpej Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.23 rearnsha * Copyright (c) 2001,2002 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.23 rearnsha * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
20 1.23 rearnsha * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.23 rearnsha * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.23 rearnsha * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD
23 1.23 rearnsha * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.23 rearnsha * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.23 rearnsha * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.23 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.23 rearnsha * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.23 rearnsha * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.23 rearnsha * POSSIBILITY OF SUCH DAMAGE.
30 1.23 rearnsha */
31 1.23 rearnsha
32 1.23 rearnsha /*
33 1.1 rearnsha * Copyright (c) 1997,1998 Mark Brinicombe.
34 1.1 rearnsha * Copyright (c) 1997,1998 Causality Limited.
35 1.1 rearnsha * All rights reserved.
36 1.1 rearnsha *
37 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
38 1.1 rearnsha * modification, are permitted provided that the following conditions
39 1.1 rearnsha * are met:
40 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
41 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
42 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
44 1.1 rearnsha * documentation and/or other materials provided with the distribution.
45 1.1 rearnsha * 3. All advertising materials mentioning features or use of this software
46 1.1 rearnsha * must display the following acknowledgement:
47 1.1 rearnsha * This product includes software developed by Mark Brinicombe
48 1.1 rearnsha * for the NetBSD Project.
49 1.1 rearnsha * 4. The name of the company nor the name of the author may be used to
50 1.1 rearnsha * endorse or promote products derived from this software without specific
51 1.1 rearnsha * prior written permission.
52 1.1 rearnsha *
53 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 1.1 rearnsha * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 1.1 rearnsha * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 1.1 rearnsha * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 1.1 rearnsha * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 1.1 rearnsha * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 1.1 rearnsha * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 rearnsha * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 rearnsha * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 rearnsha * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 rearnsha * SUCH DAMAGE.
64 1.1 rearnsha *
65 1.1 rearnsha * Machine dependant functions for kernel setup for integrator board
66 1.1 rearnsha *
67 1.1 rearnsha * Created : 24/11/97
68 1.1 rearnsha */
69 1.1 rearnsha
70 1.1 rearnsha #include "opt_ddb.h"
71 1.1 rearnsha #include "opt_pmap_debug.h"
72 1.1 rearnsha
73 1.1 rearnsha #include <sys/param.h>
74 1.1 rearnsha #include <sys/device.h>
75 1.1 rearnsha #include <sys/systm.h>
76 1.1 rearnsha #include <sys/kernel.h>
77 1.1 rearnsha #include <sys/exec.h>
78 1.1 rearnsha #include <sys/proc.h>
79 1.1 rearnsha #include <sys/msgbuf.h>
80 1.1 rearnsha #include <sys/reboot.h>
81 1.1 rearnsha #include <sys/termios.h>
82 1.32 ragge #include <sys/ksyms.h>
83 1.1 rearnsha
84 1.31 thorpej #include <uvm/uvm_extern.h>
85 1.31 thorpej
86 1.1 rearnsha #include <dev/cons.h>
87 1.1 rearnsha
88 1.1 rearnsha #include <machine/db_machdep.h>
89 1.1 rearnsha #include <ddb/db_sym.h>
90 1.1 rearnsha #include <ddb/db_extern.h>
91 1.1 rearnsha
92 1.1 rearnsha #include <machine/bootconfig.h>
93 1.1 rearnsha #include <machine/bus.h>
94 1.1 rearnsha #include <machine/cpu.h>
95 1.1 rearnsha #include <machine/frame.h>
96 1.1 rearnsha #include <machine/intr.h>
97 1.8 thorpej #include <evbarm/ifpga/irqhandler.h> /* XXX XXX XXX */
98 1.6 thorpej #include <arm/undefined.h>
99 1.1 rearnsha
100 1.23 rearnsha #include <arm/arm32/machdep.h>
101 1.23 rearnsha
102 1.1 rearnsha #include <evbarm/integrator/integrator_boot.h>
103 1.1 rearnsha
104 1.1 rearnsha #include "opt_ipkdb.h"
105 1.1 rearnsha #include "pci.h"
106 1.32 ragge #include "ksyms.h"
107 1.1 rearnsha
108 1.1 rearnsha void ifpga_reset(void) __attribute__((noreturn));
109 1.36 thorpej
110 1.36 thorpej /* Kernel text starts 2MB in from the bottom of the kernel address space. */
111 1.36 thorpej #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
112 1.39 thorpej #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
113 1.40 thorpej
114 1.40 thorpej /*
115 1.40 thorpej * The range 0xc1000000 - 0xccffffff is available for kernel VM space
116 1.40 thorpej * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
117 1.40 thorpej */
118 1.40 thorpej #define KERNEL_VM_SIZE 0x0C000000
119 1.36 thorpej
120 1.1 rearnsha /*
121 1.1 rearnsha * Address to call from cpu_reset() to reset the machine.
122 1.1 rearnsha * This is machine architecture dependant as it varies depending
123 1.1 rearnsha * on where the ROM appears when you turn the MMU off.
124 1.1 rearnsha */
125 1.1 rearnsha
126 1.1 rearnsha u_int cpu_reset_address = (u_int) ifpga_reset;
127 1.1 rearnsha
128 1.1 rearnsha /* Define various stack sizes in pages */
129 1.1 rearnsha #define IRQ_STACK_SIZE 1
130 1.1 rearnsha #define ABT_STACK_SIZE 1
131 1.1 rearnsha #ifdef IPKDB
132 1.1 rearnsha #define UND_STACK_SIZE 2
133 1.1 rearnsha #else
134 1.1 rearnsha #define UND_STACK_SIZE 1
135 1.1 rearnsha #endif
136 1.1 rearnsha
137 1.1 rearnsha BootConfig bootconfig; /* Boot config storage */
138 1.1 rearnsha char *boot_args = NULL;
139 1.1 rearnsha char *boot_file = NULL;
140 1.1 rearnsha
141 1.1 rearnsha vm_offset_t physical_start;
142 1.1 rearnsha vm_offset_t physical_freestart;
143 1.1 rearnsha vm_offset_t physical_freeend;
144 1.1 rearnsha vm_offset_t physical_end;
145 1.1 rearnsha u_int free_pages;
146 1.1 rearnsha vm_offset_t pagetables_start;
147 1.1 rearnsha int physmem = 0;
148 1.1 rearnsha
149 1.1 rearnsha /*int debug_flags;*/
150 1.1 rearnsha #ifndef PMAP_STATIC_L1S
151 1.1 rearnsha int max_processes = 64; /* Default number */
152 1.1 rearnsha #endif /* !PMAP_STATIC_L1S */
153 1.1 rearnsha
154 1.1 rearnsha /* Physical and virtual addresses for some global pages */
155 1.1 rearnsha pv_addr_t systempage;
156 1.1 rearnsha pv_addr_t irqstack;
157 1.1 rearnsha pv_addr_t undstack;
158 1.1 rearnsha pv_addr_t abtstack;
159 1.1 rearnsha pv_addr_t kernelstack;
160 1.1 rearnsha
161 1.1 rearnsha vm_offset_t msgbufphys;
162 1.1 rearnsha
163 1.1 rearnsha extern u_int data_abort_handler_address;
164 1.1 rearnsha extern u_int prefetch_abort_handler_address;
165 1.1 rearnsha extern u_int undefined_handler_address;
166 1.1 rearnsha
167 1.1 rearnsha #ifdef PMAP_DEBUG
168 1.1 rearnsha extern int pmap_debug_level;
169 1.1 rearnsha #endif
170 1.1 rearnsha
171 1.23 rearnsha #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
172 1.23 rearnsha
173 1.23 rearnsha #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
174 1.23 rearnsha #define KERNEL_PT_KERNEL_NUM 2
175 1.23 rearnsha /* L2 tables for mapping kernel VM */
176 1.23 rearnsha #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
177 1.17 chris #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
178 1.1 rearnsha #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
179 1.1 rearnsha
180 1.14 thorpej pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
181 1.1 rearnsha
182 1.1 rearnsha struct user *proc0paddr;
183 1.1 rearnsha
184 1.1 rearnsha /* Prototypes */
185 1.1 rearnsha
186 1.23 rearnsha static void integrator_sdram_bounds (paddr_t *, psize_t *);
187 1.1 rearnsha
188 1.23 rearnsha void consinit(void);
189 1.1 rearnsha
190 1.1 rearnsha /* A load of console goo. */
191 1.1 rearnsha #include "vga.h"
192 1.23 rearnsha #if NVGA > 0
193 1.1 rearnsha #include <dev/ic/mc6845reg.h>
194 1.1 rearnsha #include <dev/ic/pcdisplayvar.h>
195 1.1 rearnsha #include <dev/ic/vgareg.h>
196 1.1 rearnsha #include <dev/ic/vgavar.h>
197 1.1 rearnsha #endif
198 1.1 rearnsha
199 1.1 rearnsha #include "pckbc.h"
200 1.23 rearnsha #if NPCKBC > 0
201 1.1 rearnsha #include <dev/ic/i8042reg.h>
202 1.1 rearnsha #include <dev/ic/pckbcvar.h>
203 1.1 rearnsha #endif
204 1.1 rearnsha
205 1.1 rearnsha #include "com.h"
206 1.23 rearnsha #if NCOM > 0
207 1.1 rearnsha #include <dev/ic/comreg.h>
208 1.1 rearnsha #include <dev/ic/comvar.h>
209 1.1 rearnsha #ifndef CONCOMADDR
210 1.1 rearnsha #define CONCOMADDR 0x3f8
211 1.1 rearnsha #endif
212 1.1 rearnsha #endif
213 1.1 rearnsha
214 1.23 rearnsha /*
215 1.23 rearnsha * Define the default console speed for the board. This is generally
216 1.23 rearnsha * what the firmware provided with the board defaults to.
217 1.23 rearnsha */
218 1.30 mycroft #ifndef CONSPEED
219 1.1 rearnsha #define CONSPEED B115200
220 1.1 rearnsha #endif
221 1.1 rearnsha #ifndef CONMODE
222 1.1 rearnsha #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
223 1.1 rearnsha #endif
224 1.1 rearnsha
225 1.1 rearnsha int comcnspeed = CONSPEED;
226 1.1 rearnsha int comcnmode = CONMODE;
227 1.1 rearnsha
228 1.1 rearnsha #include "plcom.h"
229 1.1 rearnsha #if (NPLCOM > 0)
230 1.1 rearnsha #include <evbarm/dev/plcomreg.h>
231 1.1 rearnsha #include <evbarm/dev/plcomvar.h>
232 1.1 rearnsha
233 1.1 rearnsha #include <evbarm/ifpga/ifpgamem.h>
234 1.1 rearnsha #include <evbarm/ifpga/ifpgareg.h>
235 1.1 rearnsha #include <evbarm/ifpga/ifpgavar.h>
236 1.1 rearnsha #endif
237 1.1 rearnsha
238 1.1 rearnsha #ifndef CONSDEVNAME
239 1.1 rearnsha #define CONSDEVNAME "plcom"
240 1.1 rearnsha #endif
241 1.1 rearnsha
242 1.1 rearnsha #ifndef PLCONSPEED
243 1.1 rearnsha #define PLCONSPEED B38400
244 1.1 rearnsha #endif
245 1.1 rearnsha #ifndef PLCONMODE
246 1.1 rearnsha #define PLCONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
247 1.1 rearnsha #endif
248 1.1 rearnsha #ifndef PLCOMCNUNIT
249 1.1 rearnsha #define PLCOMCNUNIT -1
250 1.1 rearnsha #endif
251 1.1 rearnsha
252 1.1 rearnsha int plcomcnspeed = PLCONSPEED;
253 1.1 rearnsha int plcomcnmode = PLCONMODE;
254 1.1 rearnsha
255 1.1 rearnsha #if 0
256 1.1 rearnsha extern struct consdev kcomcons;
257 1.1 rearnsha static void kcomcnputc(dev_t, int);
258 1.1 rearnsha #endif
259 1.1 rearnsha
260 1.1 rearnsha /*
261 1.1 rearnsha * void cpu_reboot(int howto, char *bootstr)
262 1.1 rearnsha *
263 1.1 rearnsha * Reboots the system
264 1.1 rearnsha *
265 1.1 rearnsha * Deal with any syncing, unmounting, dumping and shutdown hooks,
266 1.1 rearnsha * then reset the CPU.
267 1.1 rearnsha */
268 1.1 rearnsha void
269 1.23 rearnsha cpu_reboot(int howto, char *bootstr)
270 1.1 rearnsha {
271 1.1 rearnsha
272 1.1 rearnsha /*
273 1.1 rearnsha * If we are still cold then hit the air brakes
274 1.1 rearnsha * and crash to earth fast
275 1.1 rearnsha */
276 1.1 rearnsha if (cold) {
277 1.1 rearnsha doshutdownhooks();
278 1.1 rearnsha printf("The operating system has halted.\n");
279 1.1 rearnsha printf("Please press any key to reboot.\n\n");
280 1.1 rearnsha cngetc();
281 1.1 rearnsha printf("rebooting...\n");
282 1.1 rearnsha ifpga_reset();
283 1.1 rearnsha /*NOTREACHED*/
284 1.1 rearnsha }
285 1.1 rearnsha
286 1.1 rearnsha /* Disable console buffering */
287 1.1 rearnsha
288 1.1 rearnsha /*
289 1.1 rearnsha * If RB_NOSYNC was not specified sync the discs.
290 1.23 rearnsha * Note: Unless cold is set to 1 here, syslogd will die during the
291 1.23 rearnsha * unmount. It looks like syslogd is getting woken up only to find
292 1.23 rearnsha * that it cannot page part of the binary in as the filesystem has
293 1.23 rearnsha * been unmounted.
294 1.1 rearnsha */
295 1.1 rearnsha if (!(howto & RB_NOSYNC))
296 1.1 rearnsha bootsync();
297 1.1 rearnsha
298 1.1 rearnsha /* Say NO to interrupts */
299 1.1 rearnsha splhigh();
300 1.1 rearnsha
301 1.1 rearnsha /* Do a dump if requested. */
302 1.1 rearnsha if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
303 1.1 rearnsha dumpsys();
304 1.1 rearnsha
305 1.1 rearnsha /* Run any shutdown hooks */
306 1.1 rearnsha doshutdownhooks();
307 1.1 rearnsha
308 1.1 rearnsha /* Make sure IRQ's are disabled */
309 1.1 rearnsha IRQdisable;
310 1.1 rearnsha
311 1.1 rearnsha if (howto & RB_HALT) {
312 1.1 rearnsha printf("The operating system has halted.\n");
313 1.1 rearnsha printf("Please press any key to reboot.\n\n");
314 1.1 rearnsha cngetc();
315 1.1 rearnsha }
316 1.1 rearnsha
317 1.1 rearnsha printf("rebooting...\n");
318 1.1 rearnsha ifpga_reset();
319 1.1 rearnsha /*NOTREACHED*/
320 1.1 rearnsha }
321 1.1 rearnsha
322 1.1 rearnsha /*
323 1.1 rearnsha * Mapping table for core kernel memory. This memory is mapped at init
324 1.1 rearnsha * time with section mappings.
325 1.1 rearnsha */
326 1.1 rearnsha struct l1_sec_map {
327 1.23 rearnsha vaddr_t va;
328 1.23 rearnsha vaddr_t pa;
329 1.23 rearnsha vsize_t size;
330 1.23 rearnsha vm_prot_t prot;
331 1.23 rearnsha int cache;
332 1.1 rearnsha } l1_sec_table[] = {
333 1.1 rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
334 1.23 rearnsha {
335 1.23 rearnsha UART0_BOOT_BASE,
336 1.23 rearnsha IFPGA_IO_BASE + IFPGA_UART0,
337 1.23 rearnsha 1024 * 1024,
338 1.23 rearnsha VM_PROT_READ|VM_PROT_WRITE,
339 1.23 rearnsha PTE_NOCACHE
340 1.23 rearnsha },
341 1.23 rearnsha
342 1.23 rearnsha {
343 1.23 rearnsha UART1_BOOT_BASE,
344 1.23 rearnsha IFPGA_IO_BASE + IFPGA_UART1,
345 1.23 rearnsha 1024 * 1024,
346 1.23 rearnsha VM_PROT_READ|VM_PROT_WRITE,
347 1.23 rearnsha PTE_NOCACHE
348 1.23 rearnsha },
349 1.1 rearnsha #endif
350 1.1 rearnsha #if NPCI > 0
351 1.23 rearnsha {
352 1.23 rearnsha IFPGA_PCI_IO_VBASE,
353 1.23 rearnsha IFPGA_PCI_IO_BASE,
354 1.23 rearnsha IFPGA_PCI_IO_VSIZE,
355 1.23 rearnsha VM_PROT_READ|VM_PROT_WRITE,
356 1.23 rearnsha PTE_NOCACHE
357 1.23 rearnsha },
358 1.23 rearnsha
359 1.23 rearnsha {
360 1.23 rearnsha IFPGA_PCI_CONF_VBASE,
361 1.23 rearnsha IFPGA_PCI_CONF_BASE,
362 1.23 rearnsha IFPGA_PCI_CONF_VSIZE,
363 1.23 rearnsha VM_PROT_READ|VM_PROT_WRITE,
364 1.23 rearnsha PTE_NOCACHE },
365 1.1 rearnsha #endif
366 1.1 rearnsha
367 1.23 rearnsha {
368 1.23 rearnsha 0,
369 1.23 rearnsha 0,
370 1.23 rearnsha 0,
371 1.23 rearnsha 0,
372 1.23 rearnsha 0
373 1.23 rearnsha }
374 1.1 rearnsha };
375 1.1 rearnsha
376 1.1 rearnsha /*
377 1.23 rearnsha * u_int initarm(...)
378 1.1 rearnsha *
379 1.1 rearnsha * Initial entry point on startup. This gets called before main() is
380 1.1 rearnsha * entered.
381 1.1 rearnsha * It should be responsible for setting up everything that must be
382 1.1 rearnsha * in place when main is called.
383 1.1 rearnsha * This includes
384 1.1 rearnsha * Taking a copy of the boot configuration structure.
385 1.1 rearnsha * Initialising the physical console so characters can be printed.
386 1.1 rearnsha * Setting up page tables for the kernel
387 1.1 rearnsha * Relocating the kernel to the bottom of physical memory
388 1.1 rearnsha */
389 1.1 rearnsha
390 1.1 rearnsha u_int
391 1.23 rearnsha initarm(void *arg)
392 1.1 rearnsha {
393 1.1 rearnsha int loop;
394 1.1 rearnsha int loop1;
395 1.1 rearnsha u_int l1pagetable;
396 1.1 rearnsha extern int etext asm ("_etext");
397 1.1 rearnsha extern int end asm ("_end");
398 1.1 rearnsha pv_addr_t kernel_l1pt;
399 1.23 rearnsha paddr_t memstart;
400 1.23 rearnsha psize_t memsize;
401 1.1 rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
402 1.1 rearnsha static struct bus_space plcom_bus_space;
403 1.1 rearnsha #endif
404 1.1 rearnsha
405 1.1 rearnsha /*
406 1.1 rearnsha * Heads up ... Setup the CPU / MMU / TLB functions
407 1.1 rearnsha */
408 1.1 rearnsha if (set_cpufuncs())
409 1.1 rearnsha panic("cpu not recognized!");
410 1.1 rearnsha
411 1.1 rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
412 1.1 rearnsha /*
413 1.1 rearnsha * Initialise the diagnostic serial console
414 1.1 rearnsha * This allows a means of generating output during initarm().
415 1.1 rearnsha * Once all the memory map changes are complete we can call consinit()
416 1.1 rearnsha * and not have to worry about things moving.
417 1.1 rearnsha */
418 1.1 rearnsha
419 1.1 rearnsha if (PLCOMCNUNIT == 0) {
420 1.1 rearnsha ifpga_create_io_bs_tag(&plcom_bus_space, (void*)0xfd600000);
421 1.1 rearnsha plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
422 1.1 rearnsha IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT);
423 1.1 rearnsha } else if (PLCOMCNUNIT == 1) {
424 1.1 rearnsha ifpga_create_io_bs_tag(&plcom_bus_space, (void*)0xfd700000);
425 1.1 rearnsha plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
426 1.1 rearnsha IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT);
427 1.1 rearnsha }
428 1.1 rearnsha #endif
429 1.1 rearnsha
430 1.38 thorpej #ifdef VERBOSE_INIT_ARM
431 1.1 rearnsha /* Talk to the user */
432 1.23 rearnsha printf("\nNetBSD/evbarm (Integrator) booting ...\n");
433 1.38 thorpej #endif
434 1.1 rearnsha
435 1.1 rearnsha /*
436 1.1 rearnsha * Ok we have the following memory map
437 1.1 rearnsha *
438 1.23 rearnsha * XXX NO WE DON'T
439 1.23 rearnsha *
440 1.1 rearnsha * virtual address == physical address apart from the areas:
441 1.1 rearnsha * 0x00000000 -> 0x000fffff which is mapped to
442 1.1 rearnsha * top 1MB of physical memory
443 1.1 rearnsha * 0x00100000 -> 0x0fffffff which is mapped to
444 1.1 rearnsha * physical addresses 0x00100000 -> 0x0fffffff
445 1.1 rearnsha * 0x10000000 -> 0x1fffffff which is mapped to
446 1.1 rearnsha * physical addresses 0x00000000 -> 0x0fffffff
447 1.1 rearnsha * 0x20000000 -> 0xefffffff which is mapped to
448 1.1 rearnsha * physical addresses 0x20000000 -> 0xefffffff
449 1.1 rearnsha * 0xf0000000 -> 0xf03fffff which is mapped to
450 1.1 rearnsha * physical addresses 0x00000000 -> 0x003fffff
451 1.1 rearnsha *
452 1.1 rearnsha * This means that the kernel is mapped suitably for continuing
453 1.1 rearnsha * execution, all I/O is mapped 1:1 virtual to physical and
454 1.1 rearnsha * physical memory is accessible.
455 1.1 rearnsha *
456 1.1 rearnsha * The initarm() has the responsibility for creating the kernel
457 1.1 rearnsha * page tables.
458 1.1 rearnsha * It must also set up various memory pointers that are used
459 1.1 rearnsha * by pmap etc.
460 1.1 rearnsha */
461 1.1 rearnsha
462 1.1 rearnsha /*
463 1.23 rearnsha * Fetch the SDRAM start/size from the CM configuration registers.
464 1.1 rearnsha */
465 1.23 rearnsha integrator_sdram_bounds(&memstart, &memsize);
466 1.1 rearnsha
467 1.38 thorpej #ifdef VERBOSE_INIT_ARM
468 1.1 rearnsha printf("initarm: Configuring system ...\n");
469 1.38 thorpej #endif
470 1.1 rearnsha
471 1.23 rearnsha /* Fake bootconfig structure for the benefit of pmap.c */
472 1.23 rearnsha /* XXX must make the memory description h/w independent */
473 1.23 rearnsha bootconfig.dramblocks = 1;
474 1.23 rearnsha bootconfig.dram[0].address = memstart;
475 1.31 thorpej bootconfig.dram[0].pages = memsize / PAGE_SIZE;
476 1.23 rearnsha
477 1.1 rearnsha /*
478 1.1 rearnsha * Set up the variables that define the availablilty of
479 1.23 rearnsha * physical memory. For now, we're going to set
480 1.23 rearnsha * physical_freestart to 0x00200000 (where the kernel
481 1.23 rearnsha * was loaded), and allocate the memory we need downwards.
482 1.23 rearnsha * If we get too close to the L1 table that we set up, we
483 1.23 rearnsha * will panic. We will update physical_freestart and
484 1.23 rearnsha * physical_freeend later to reflect what pmap_bootstrap()
485 1.23 rearnsha * wants to see.
486 1.23 rearnsha *
487 1.23 rearnsha * XXX pmap_bootstrap() needs an enema.
488 1.1 rearnsha */
489 1.23 rearnsha physical_start = bootconfig.dram[0].address;
490 1.31 thorpej physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
491 1.1 rearnsha
492 1.23 rearnsha physical_freestart = 0x00009000UL;
493 1.23 rearnsha physical_freeend = 0x00200000UL;
494 1.1 rearnsha
495 1.31 thorpej physmem = (physical_end - physical_start) / PAGE_SIZE;
496 1.1 rearnsha
497 1.38 thorpej #ifdef VERBOSE_INIT_ARM
498 1.1 rearnsha /* Tell the user about the memory */
499 1.1 rearnsha printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
500 1.1 rearnsha physical_start, physical_end - 1);
501 1.38 thorpej #endif
502 1.1 rearnsha
503 1.1 rearnsha /*
504 1.23 rearnsha * Okay, the kernel starts 2MB in from the bottom of physical
505 1.23 rearnsha * memory. We are going to allocate our bootstrap pages downwards
506 1.23 rearnsha * from there.
507 1.1 rearnsha *
508 1.23 rearnsha * We need to allocate some fixed page tables to get the kernel
509 1.23 rearnsha * going. We allocate one page directory and a number of page
510 1.23 rearnsha * tables and store the physical addresses in the kernel_pt_table
511 1.23 rearnsha * array.
512 1.23 rearnsha *
513 1.23 rearnsha * The kernel page directory must be on a 16K boundary. The page
514 1.23 rearnsha * tables must be on 4K bounaries. What we do is allocate the
515 1.23 rearnsha * page directory on the first 16K boundary that we encounter, and
516 1.23 rearnsha * the page tables on 4K boundaries otherwise. Since we allocate
517 1.23 rearnsha * at least 3 L2 page tables, we are guaranteed to encounter at
518 1.23 rearnsha * least one 16K aligned region.
519 1.1 rearnsha */
520 1.1 rearnsha
521 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
522 1.1 rearnsha printf("Allocating page tables\n");
523 1.1 rearnsha #endif
524 1.1 rearnsha
525 1.31 thorpej free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
526 1.1 rearnsha
527 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
528 1.23 rearnsha printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
529 1.1 rearnsha physical_freestart, free_pages, free_pages);
530 1.1 rearnsha #endif
531 1.1 rearnsha
532 1.1 rearnsha /* Define a macro to simplify memory allocation */
533 1.23 rearnsha #define valloc_pages(var, np) \
534 1.23 rearnsha alloc_pages((var).pv_pa, (np)); \
535 1.23 rearnsha (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
536 1.23 rearnsha
537 1.23 rearnsha #define alloc_pages(var, np) \
538 1.31 thorpej physical_freeend -= ((np) * PAGE_SIZE); \
539 1.23 rearnsha if (physical_freeend < physical_freestart) \
540 1.23 rearnsha panic("initarm: out of memory"); \
541 1.23 rearnsha (var) = physical_freeend; \
542 1.23 rearnsha free_pages -= (np); \
543 1.31 thorpej memset((char *)(var), 0, ((np) * PAGE_SIZE));
544 1.1 rearnsha
545 1.1 rearnsha loop1 = 0;
546 1.1 rearnsha kernel_l1pt.pv_pa = 0;
547 1.1 rearnsha for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
548 1.1 rearnsha /* Are we 16KB aligned for an L1 ? */
549 1.23 rearnsha if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
550 1.1 rearnsha && kernel_l1pt.pv_pa == 0) {
551 1.31 thorpej valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
552 1.1 rearnsha } else {
553 1.33 thorpej valloc_pages(kernel_pt_table[loop1],
554 1.33 thorpej L2_TABLE_SIZE / PAGE_SIZE);
555 1.23 rearnsha ++loop1;
556 1.1 rearnsha }
557 1.1 rearnsha }
558 1.1 rearnsha
559 1.1 rearnsha /* This should never be able to happen but better confirm that. */
560 1.21 thorpej if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
561 1.28 provos panic("initarm: Failed to align the kernel page directory");
562 1.1 rearnsha
563 1.1 rearnsha /*
564 1.1 rearnsha * Allocate a page for the system page mapped to V0x00000000
565 1.1 rearnsha * This page will just contain the system vectors and can be
566 1.1 rearnsha * shared by all processes.
567 1.1 rearnsha */
568 1.1 rearnsha alloc_pages(systempage.pv_pa, 1);
569 1.1 rearnsha
570 1.1 rearnsha /* Allocate stacks for all modes */
571 1.1 rearnsha valloc_pages(irqstack, IRQ_STACK_SIZE);
572 1.1 rearnsha valloc_pages(abtstack, ABT_STACK_SIZE);
573 1.1 rearnsha valloc_pages(undstack, UND_STACK_SIZE);
574 1.1 rearnsha valloc_pages(kernelstack, UPAGES);
575 1.1 rearnsha
576 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
577 1.23 rearnsha printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
578 1.23 rearnsha irqstack.pv_va);
579 1.23 rearnsha printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
580 1.23 rearnsha abtstack.pv_va);
581 1.23 rearnsha printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
582 1.23 rearnsha undstack.pv_va);
583 1.23 rearnsha printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
584 1.23 rearnsha kernelstack.pv_va);
585 1.1 rearnsha #endif
586 1.1 rearnsha
587 1.31 thorpej alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
588 1.1 rearnsha
589 1.1 rearnsha /*
590 1.1 rearnsha * Ok we have allocated physical pages for the primary kernel
591 1.1 rearnsha * page tables
592 1.1 rearnsha */
593 1.1 rearnsha
594 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
595 1.23 rearnsha printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
596 1.1 rearnsha #endif
597 1.1 rearnsha
598 1.1 rearnsha /*
599 1.23 rearnsha * Now we start construction of the L1 page table
600 1.1 rearnsha * We start by mapping the L2 page tables into the L1.
601 1.1 rearnsha * This means that we can replace L1 mappings later on if necessary
602 1.1 rearnsha */
603 1.1 rearnsha l1pagetable = kernel_l1pt.pv_pa;
604 1.1 rearnsha
605 1.1 rearnsha /* Map the L2 pages tables in the L1 page table */
606 1.11 thorpej pmap_link_l2pt(l1pagetable, 0x00000000,
607 1.14 thorpej &kernel_pt_table[KERNEL_PT_SYS]);
608 1.23 rearnsha for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
609 1.23 rearnsha pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
610 1.23 rearnsha &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
611 1.23 rearnsha for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
612 1.11 thorpej pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
613 1.14 thorpej &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
614 1.17 chris
615 1.17 chris /* update the top of the kernel VM */
616 1.19 thorpej pmap_curmaxkvaddr =
617 1.19 thorpej KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
618 1.1 rearnsha
619 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
620 1.1 rearnsha printf("Mapping kernel\n");
621 1.1 rearnsha #endif
622 1.1 rearnsha
623 1.1 rearnsha /* Now we fill in the L2 pagetable for the kernel static code/data */
624 1.1 rearnsha {
625 1.1 rearnsha size_t textsize = (uintptr_t) &etext - KERNEL_TEXT_BASE;
626 1.1 rearnsha size_t totalsize = (uintptr_t) &end - KERNEL_TEXT_BASE;
627 1.23 rearnsha u_int logical;
628 1.1 rearnsha
629 1.23 rearnsha textsize = (textsize + PGOFSET) & ~PGOFSET;
630 1.1 rearnsha totalsize = (totalsize + PGOFSET) & ~PGOFSET;
631 1.23 rearnsha
632 1.23 rearnsha logical = 0x00200000; /* offset of kernel in RAM */
633 1.23 rearnsha
634 1.23 rearnsha logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
635 1.23 rearnsha physical_start + logical, textsize,
636 1.12 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
637 1.23 rearnsha logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
638 1.23 rearnsha physical_start + logical, totalsize - textsize,
639 1.12 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
640 1.1 rearnsha }
641 1.1 rearnsha
642 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
643 1.1 rearnsha printf("Constructing L2 page tables\n");
644 1.1 rearnsha #endif
645 1.1 rearnsha
646 1.1 rearnsha /* Map the stack pages */
647 1.14 thorpej pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
648 1.31 thorpej IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
649 1.14 thorpej pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
650 1.31 thorpej ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
651 1.14 thorpej pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
652 1.31 thorpej UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
653 1.14 thorpej pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
654 1.31 thorpej UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
655 1.13 thorpej
656 1.33 thorpej pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
657 1.33 thorpej L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
658 1.1 rearnsha
659 1.33 thorpej for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
660 1.33 thorpej pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
661 1.33 thorpej kernel_pt_table[loop].pv_va, L2_TABLE_SIZE,
662 1.33 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
663 1.33 thorpej }
664 1.1 rearnsha
665 1.20 thorpej /* Map the vector page. */
666 1.1 rearnsha #if 1
667 1.1 rearnsha /* MULTI-ICE requires that page 0 is NC/NB so that it can download
668 1.1 rearnsha the cache-clean code there. */
669 1.20 thorpej pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
670 1.10 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
671 1.1 rearnsha #else
672 1.20 thorpej pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
673 1.20 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
674 1.1 rearnsha #endif
675 1.1 rearnsha /* Map the core memory needed before autoconfig */
676 1.1 rearnsha loop = 0;
677 1.1 rearnsha while (l1_sec_table[loop].size) {
678 1.1 rearnsha vm_size_t sz;
679 1.1 rearnsha
680 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
681 1.1 rearnsha printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
682 1.1 rearnsha l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
683 1.1 rearnsha l1_sec_table[loop].va);
684 1.1 rearnsha #endif
685 1.21 thorpej for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
686 1.9 thorpej pmap_map_section(l1pagetable,
687 1.9 thorpej l1_sec_table[loop].va + sz,
688 1.1 rearnsha l1_sec_table[loop].pa + sz,
689 1.9 thorpej l1_sec_table[loop].prot,
690 1.9 thorpej l1_sec_table[loop].cache);
691 1.1 rearnsha ++loop;
692 1.1 rearnsha }
693 1.1 rearnsha
694 1.1 rearnsha /*
695 1.1 rearnsha * Now we have the real page tables in place so we can switch to them.
696 1.23 rearnsha * Once this is done we will be running with the REAL kernel page
697 1.23 rearnsha * tables.
698 1.23 rearnsha */
699 1.23 rearnsha
700 1.23 rearnsha /*
701 1.23 rearnsha * Update the physical_freestart/physical_freeend/free_pages
702 1.23 rearnsha * variables.
703 1.1 rearnsha */
704 1.23 rearnsha {
705 1.23 rearnsha physical_freestart = physical_start +
706 1.23 rearnsha (((((uintptr_t) &end) + PGOFSET) & ~PGOFSET) -
707 1.23 rearnsha KERNEL_BASE);
708 1.23 rearnsha physical_freeend = physical_end;
709 1.31 thorpej free_pages =
710 1.31 thorpej (physical_freeend - physical_freestart) / PAGE_SIZE;
711 1.23 rearnsha }
712 1.1 rearnsha
713 1.1 rearnsha /* Switch tables */
714 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
715 1.23 rearnsha printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
716 1.1 rearnsha physical_freestart, free_pages, free_pages);
717 1.1 rearnsha printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
718 1.1 rearnsha #endif
719 1.33 thorpej cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
720 1.1 rearnsha setttb(kernel_l1pt.pv_pa);
721 1.23 rearnsha cpu_tlb_flushID();
722 1.33 thorpej cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
723 1.33 thorpej
724 1.33 thorpej /*
725 1.33 thorpej * Moved from cpu_startup() as data_abort_handler() references
726 1.33 thorpej * this during uvm init
727 1.33 thorpej */
728 1.33 thorpej proc0paddr = (struct user *)kernelstack.pv_va;
729 1.33 thorpej lwp0.l_addr = proc0paddr;
730 1.1 rearnsha
731 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
732 1.1 rearnsha printf("done!\n");
733 1.1 rearnsha #endif
734 1.1 rearnsha
735 1.1 rearnsha #ifdef PLCONSOLE
736 1.1 rearnsha /*
737 1.1 rearnsha * The IFPGA registers have just moved.
738 1.1 rearnsha * Detach the diagnostic serial port and reattach at the new address.
739 1.1 rearnsha */
740 1.1 rearnsha plcomcndetach();
741 1.1 rearnsha #endif
742 1.1 rearnsha
743 1.1 rearnsha /*
744 1.1 rearnsha * XXX this should only be done in main() but it useful to
745 1.1 rearnsha * have output earlier ...
746 1.1 rearnsha */
747 1.1 rearnsha consinit();
748 1.1 rearnsha
749 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
750 1.1 rearnsha printf("bootstrap done.\n");
751 1.1 rearnsha #endif
752 1.1 rearnsha
753 1.20 thorpej arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
754 1.1 rearnsha
755 1.1 rearnsha /*
756 1.1 rearnsha * Pages were allocated during the secondary bootstrap for the
757 1.1 rearnsha * stacks for different CPU modes.
758 1.1 rearnsha * We must now set the r13 registers in the different CPU modes to
759 1.1 rearnsha * point to these stacks.
760 1.1 rearnsha * Since the ARM stacks use STMFD etc. we must set r13 to the top end
761 1.1 rearnsha * of the stack memory.
762 1.1 rearnsha */
763 1.38 thorpej #ifdef VERBOSE_INIT_ARM
764 1.1 rearnsha printf("init subsystems: stacks ");
765 1.38 thorpej #endif
766 1.1 rearnsha
767 1.31 thorpej set_stackptr(PSR_IRQ32_MODE,
768 1.31 thorpej irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
769 1.31 thorpej set_stackptr(PSR_ABT32_MODE,
770 1.31 thorpej abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
771 1.31 thorpej set_stackptr(PSR_UND32_MODE,
772 1.31 thorpej undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
773 1.1 rearnsha
774 1.1 rearnsha /*
775 1.1 rearnsha * Well we should set a data abort handler.
776 1.23 rearnsha * Once things get going this will change as we will need a proper
777 1.23 rearnsha * handler.
778 1.1 rearnsha * Until then we will use a handler that just panics but tells us
779 1.1 rearnsha * why.
780 1.1 rearnsha * Initialisation of the vectors will just panic on a data abort.
781 1.1 rearnsha * This just fills in a slighly better one.
782 1.1 rearnsha */
783 1.38 thorpej #ifdef VERBOSE_INIT_ARM
784 1.1 rearnsha printf("vectors ");
785 1.38 thorpej #endif
786 1.1 rearnsha data_abort_handler_address = (u_int)data_abort_handler;
787 1.1 rearnsha prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
788 1.1 rearnsha undefined_handler_address = (u_int)undefinedinstruction_bounce;
789 1.1 rearnsha
790 1.1 rearnsha /* Initialise the undefined instruction handlers */
791 1.38 thorpej #ifdef VERBOSE_INIT_ARM
792 1.1 rearnsha printf("undefined ");
793 1.38 thorpej #endif
794 1.1 rearnsha undefined_init();
795 1.1 rearnsha
796 1.25 thorpej /* Load memory into UVM. */
797 1.38 thorpej #ifdef VERBOSE_INIT_ARM
798 1.25 thorpej printf("page ");
799 1.38 thorpej #endif
800 1.25 thorpej uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
801 1.25 thorpej uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
802 1.25 thorpej atop(physical_freestart), atop(physical_freeend),
803 1.25 thorpej VM_FREELIST_DEFAULT);
804 1.25 thorpej
805 1.1 rearnsha /* Boot strap pmap telling it where the kernel page table is */
806 1.38 thorpej #ifdef VERBOSE_INIT_ARM
807 1.1 rearnsha printf("pmap ");
808 1.38 thorpej #endif
809 1.35 thorpej pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
810 1.35 thorpej KERNEL_VM_BASE + KERNEL_VM_SIZE);
811 1.1 rearnsha
812 1.1 rearnsha /* Setup the IRQ system */
813 1.38 thorpej #ifdef VERBOSE_INIT_ARM
814 1.1 rearnsha printf("irq ");
815 1.38 thorpej #endif
816 1.1 rearnsha irq_init();
817 1.1 rearnsha
818 1.38 thorpej #ifdef VERBOSE_INIT_ARM
819 1.1 rearnsha printf("done.\n");
820 1.38 thorpej #endif
821 1.1 rearnsha
822 1.1 rearnsha #ifdef IPKDB
823 1.1 rearnsha /* Initialise ipkdb */
824 1.1 rearnsha ipkdb_init();
825 1.1 rearnsha if (boothowto & RB_KDB)
826 1.1 rearnsha ipkdb_connect(0);
827 1.1 rearnsha #endif
828 1.1 rearnsha
829 1.32 ragge #if NKSYMS || defined(DDB) || defined(LKM)
830 1.32 ragge /* Firmware doesn't load symbols. */
831 1.32 ragge ksyms_init(0, NULL, NULL);
832 1.32 ragge #endif
833 1.32 ragge
834 1.1 rearnsha #ifdef DDB
835 1.1 rearnsha db_machine_init();
836 1.1 rearnsha if (boothowto & RB_KDB)
837 1.1 rearnsha Debugger();
838 1.1 rearnsha #endif
839 1.1 rearnsha
840 1.1 rearnsha /* We return the new stack pointer address */
841 1.1 rearnsha return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
842 1.1 rearnsha }
843 1.1 rearnsha
844 1.1 rearnsha void
845 1.1 rearnsha consinit(void)
846 1.1 rearnsha {
847 1.1 rearnsha static int consinit_called = 0;
848 1.1 rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
849 1.1 rearnsha static struct bus_space plcom_bus_space;
850 1.1 rearnsha #endif
851 1.1 rearnsha #if 0
852 1.1 rearnsha char *console = CONSDEVNAME;
853 1.1 rearnsha #endif
854 1.1 rearnsha
855 1.1 rearnsha if (consinit_called != 0)
856 1.1 rearnsha return;
857 1.1 rearnsha
858 1.1 rearnsha consinit_called = 1;
859 1.1 rearnsha
860 1.1 rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
861 1.1 rearnsha if (PLCOMCNUNIT == 0) {
862 1.1 rearnsha ifpga_create_io_bs_tag(&plcom_bus_space,
863 1.1 rearnsha (void*)UART0_BOOT_BASE);
864 1.1 rearnsha if (plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
865 1.1 rearnsha IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT))
866 1.1 rearnsha panic("can't init serial console");
867 1.1 rearnsha return;
868 1.1 rearnsha } else if (PLCOMCNUNIT == 1) {
869 1.1 rearnsha ifpga_create_io_bs_tag(&plcom_bus_space,
870 1.1 rearnsha (void*)UART0_BOOT_BASE);
871 1.1 rearnsha if (plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
872 1.1 rearnsha IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT))
873 1.1 rearnsha panic("can't init serial console");
874 1.1 rearnsha return;
875 1.1 rearnsha }
876 1.1 rearnsha #endif
877 1.1 rearnsha #if (NCOM > 0)
878 1.1 rearnsha if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
879 1.41 thorpej COM_FREQ, COM_TYPE_NORMAL, comcnmode))
880 1.1 rearnsha panic("can't init serial console @%x", CONCOMADDR);
881 1.1 rearnsha return;
882 1.1 rearnsha #endif
883 1.1 rearnsha panic("No serial console configured");
884 1.23 rearnsha }
885 1.23 rearnsha
886 1.23 rearnsha static void
887 1.23 rearnsha integrator_sdram_bounds(paddr_t *memstart, psize_t *memsize)
888 1.23 rearnsha {
889 1.23 rearnsha volatile unsigned long *cm_sdram
890 1.23 rearnsha = (volatile unsigned long *)0x10000020;
891 1.23 rearnsha
892 1.23 rearnsha *memstart = 0;
893 1.23 rearnsha
894 1.23 rearnsha switch ((*cm_sdram >> 2) & 0x7)
895 1.23 rearnsha {
896 1.23 rearnsha case 0:
897 1.23 rearnsha *memsize = 16 * 1024 * 1024;
898 1.23 rearnsha break;
899 1.23 rearnsha case 1:
900 1.23 rearnsha *memsize = 32 * 1024 * 1024;
901 1.23 rearnsha break;
902 1.23 rearnsha case 2:
903 1.23 rearnsha *memsize = 64 * 1024 * 1024;
904 1.23 rearnsha break;
905 1.23 rearnsha case 3:
906 1.23 rearnsha *memsize = 128 * 1024 * 1024;
907 1.23 rearnsha break;
908 1.23 rearnsha case 4:
909 1.23 rearnsha *memsize = 256 * 1024 * 1024;
910 1.23 rearnsha break;
911 1.23 rearnsha default:
912 1.23 rearnsha printf("CM_SDRAM retuns unknown value, using 16M\n");
913 1.23 rearnsha *memsize = 16 * 1024 * 1024;
914 1.23 rearnsha break;
915 1.23 rearnsha }
916 1.1 rearnsha }
917