integrator_machdep.c revision 1.43 1 1.43 lukem /* $NetBSD: integrator_machdep.c,v 1.43 2003/07/15 00:25:00 lukem Exp $ */
2 1.1 rearnsha
3 1.1 rearnsha /*
4 1.23 rearnsha * Copyright (c) 2001,2002 ARM Ltd
5 1.1 rearnsha * All rights reserved.
6 1.1 rearnsha *
7 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
8 1.1 rearnsha * modification, are permitted provided that the following conditions
9 1.1 rearnsha * are met:
10 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
11 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
12 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
14 1.1 rearnsha * documentation and/or other materials provided with the distribution.
15 1.1 rearnsha * 3. The name of the company may not be used to endorse or promote
16 1.1 rearnsha * products derived from this software without specific prior written
17 1.1 rearnsha * permission.
18 1.1 rearnsha *
19 1.23 rearnsha * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
20 1.23 rearnsha * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.23 rearnsha * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.23 rearnsha * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD
23 1.23 rearnsha * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.23 rearnsha * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.23 rearnsha * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.23 rearnsha * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.23 rearnsha * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.23 rearnsha * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.23 rearnsha * POSSIBILITY OF SUCH DAMAGE.
30 1.23 rearnsha */
31 1.23 rearnsha
32 1.23 rearnsha /*
33 1.1 rearnsha * Copyright (c) 1997,1998 Mark Brinicombe.
34 1.1 rearnsha * Copyright (c) 1997,1998 Causality Limited.
35 1.1 rearnsha * All rights reserved.
36 1.1 rearnsha *
37 1.1 rearnsha * Redistribution and use in source and binary forms, with or without
38 1.1 rearnsha * modification, are permitted provided that the following conditions
39 1.1 rearnsha * are met:
40 1.1 rearnsha * 1. Redistributions of source code must retain the above copyright
41 1.1 rearnsha * notice, this list of conditions and the following disclaimer.
42 1.1 rearnsha * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 rearnsha * notice, this list of conditions and the following disclaimer in the
44 1.1 rearnsha * documentation and/or other materials provided with the distribution.
45 1.1 rearnsha * 3. All advertising materials mentioning features or use of this software
46 1.1 rearnsha * must display the following acknowledgement:
47 1.1 rearnsha * This product includes software developed by Mark Brinicombe
48 1.1 rearnsha * for the NetBSD Project.
49 1.1 rearnsha * 4. The name of the company nor the name of the author may be used to
50 1.1 rearnsha * endorse or promote products derived from this software without specific
51 1.1 rearnsha * prior written permission.
52 1.1 rearnsha *
53 1.1 rearnsha * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 1.1 rearnsha * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 1.1 rearnsha * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 1.1 rearnsha * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 1.1 rearnsha * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 1.1 rearnsha * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 1.1 rearnsha * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 rearnsha * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 rearnsha * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 rearnsha * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 rearnsha * SUCH DAMAGE.
64 1.1 rearnsha *
65 1.1 rearnsha * Machine dependant functions for kernel setup for integrator board
66 1.1 rearnsha *
67 1.1 rearnsha * Created : 24/11/97
68 1.1 rearnsha */
69 1.43 lukem
70 1.43 lukem #include <sys/cdefs.h>
71 1.43 lukem __KERNEL_RCSID(0, "$NetBSD: integrator_machdep.c,v 1.43 2003/07/15 00:25:00 lukem Exp $");
72 1.1 rearnsha
73 1.1 rearnsha #include "opt_ddb.h"
74 1.1 rearnsha #include "opt_pmap_debug.h"
75 1.1 rearnsha
76 1.1 rearnsha #include <sys/param.h>
77 1.1 rearnsha #include <sys/device.h>
78 1.1 rearnsha #include <sys/systm.h>
79 1.1 rearnsha #include <sys/kernel.h>
80 1.1 rearnsha #include <sys/exec.h>
81 1.1 rearnsha #include <sys/proc.h>
82 1.1 rearnsha #include <sys/msgbuf.h>
83 1.1 rearnsha #include <sys/reboot.h>
84 1.1 rearnsha #include <sys/termios.h>
85 1.32 ragge #include <sys/ksyms.h>
86 1.1 rearnsha
87 1.31 thorpej #include <uvm/uvm_extern.h>
88 1.31 thorpej
89 1.1 rearnsha #include <dev/cons.h>
90 1.1 rearnsha
91 1.1 rearnsha #include <machine/db_machdep.h>
92 1.1 rearnsha #include <ddb/db_sym.h>
93 1.1 rearnsha #include <ddb/db_extern.h>
94 1.1 rearnsha
95 1.1 rearnsha #include <machine/bootconfig.h>
96 1.1 rearnsha #include <machine/bus.h>
97 1.1 rearnsha #include <machine/cpu.h>
98 1.1 rearnsha #include <machine/frame.h>
99 1.1 rearnsha #include <machine/intr.h>
100 1.8 thorpej #include <evbarm/ifpga/irqhandler.h> /* XXX XXX XXX */
101 1.6 thorpej #include <arm/undefined.h>
102 1.1 rearnsha
103 1.23 rearnsha #include <arm/arm32/machdep.h>
104 1.23 rearnsha
105 1.1 rearnsha #include <evbarm/integrator/integrator_boot.h>
106 1.1 rearnsha
107 1.1 rearnsha #include "opt_ipkdb.h"
108 1.1 rearnsha #include "pci.h"
109 1.32 ragge #include "ksyms.h"
110 1.1 rearnsha
111 1.1 rearnsha void ifpga_reset(void) __attribute__((noreturn));
112 1.36 thorpej
113 1.36 thorpej /* Kernel text starts 2MB in from the bottom of the kernel address space. */
114 1.36 thorpej #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
115 1.39 thorpej #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
116 1.40 thorpej
117 1.40 thorpej /*
118 1.40 thorpej * The range 0xc1000000 - 0xccffffff is available for kernel VM space
119 1.40 thorpej * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
120 1.40 thorpej */
121 1.40 thorpej #define KERNEL_VM_SIZE 0x0C000000
122 1.36 thorpej
123 1.1 rearnsha /*
124 1.1 rearnsha * Address to call from cpu_reset() to reset the machine.
125 1.1 rearnsha * This is machine architecture dependant as it varies depending
126 1.1 rearnsha * on where the ROM appears when you turn the MMU off.
127 1.1 rearnsha */
128 1.1 rearnsha
129 1.1 rearnsha u_int cpu_reset_address = (u_int) ifpga_reset;
130 1.1 rearnsha
131 1.1 rearnsha /* Define various stack sizes in pages */
132 1.1 rearnsha #define IRQ_STACK_SIZE 1
133 1.1 rearnsha #define ABT_STACK_SIZE 1
134 1.1 rearnsha #ifdef IPKDB
135 1.1 rearnsha #define UND_STACK_SIZE 2
136 1.1 rearnsha #else
137 1.1 rearnsha #define UND_STACK_SIZE 1
138 1.1 rearnsha #endif
139 1.1 rearnsha
140 1.1 rearnsha BootConfig bootconfig; /* Boot config storage */
141 1.1 rearnsha char *boot_args = NULL;
142 1.1 rearnsha char *boot_file = NULL;
143 1.1 rearnsha
144 1.1 rearnsha vm_offset_t physical_start;
145 1.1 rearnsha vm_offset_t physical_freestart;
146 1.1 rearnsha vm_offset_t physical_freeend;
147 1.1 rearnsha vm_offset_t physical_end;
148 1.1 rearnsha u_int free_pages;
149 1.1 rearnsha vm_offset_t pagetables_start;
150 1.1 rearnsha int physmem = 0;
151 1.1 rearnsha
152 1.1 rearnsha /*int debug_flags;*/
153 1.1 rearnsha #ifndef PMAP_STATIC_L1S
154 1.1 rearnsha int max_processes = 64; /* Default number */
155 1.1 rearnsha #endif /* !PMAP_STATIC_L1S */
156 1.1 rearnsha
157 1.1 rearnsha /* Physical and virtual addresses for some global pages */
158 1.1 rearnsha pv_addr_t systempage;
159 1.1 rearnsha pv_addr_t irqstack;
160 1.1 rearnsha pv_addr_t undstack;
161 1.1 rearnsha pv_addr_t abtstack;
162 1.1 rearnsha pv_addr_t kernelstack;
163 1.1 rearnsha
164 1.1 rearnsha vm_offset_t msgbufphys;
165 1.1 rearnsha
166 1.1 rearnsha extern u_int data_abort_handler_address;
167 1.1 rearnsha extern u_int prefetch_abort_handler_address;
168 1.1 rearnsha extern u_int undefined_handler_address;
169 1.1 rearnsha
170 1.1 rearnsha #ifdef PMAP_DEBUG
171 1.1 rearnsha extern int pmap_debug_level;
172 1.1 rearnsha #endif
173 1.1 rearnsha
174 1.23 rearnsha #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
175 1.23 rearnsha
176 1.23 rearnsha #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
177 1.23 rearnsha #define KERNEL_PT_KERNEL_NUM 2
178 1.23 rearnsha /* L2 tables for mapping kernel VM */
179 1.23 rearnsha #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
180 1.17 chris #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
181 1.1 rearnsha #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
182 1.1 rearnsha
183 1.14 thorpej pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
184 1.1 rearnsha
185 1.1 rearnsha struct user *proc0paddr;
186 1.1 rearnsha
187 1.1 rearnsha /* Prototypes */
188 1.1 rearnsha
189 1.23 rearnsha static void integrator_sdram_bounds (paddr_t *, psize_t *);
190 1.1 rearnsha
191 1.23 rearnsha void consinit(void);
192 1.1 rearnsha
193 1.1 rearnsha /* A load of console goo. */
194 1.1 rearnsha #include "vga.h"
195 1.23 rearnsha #if NVGA > 0
196 1.1 rearnsha #include <dev/ic/mc6845reg.h>
197 1.1 rearnsha #include <dev/ic/pcdisplayvar.h>
198 1.1 rearnsha #include <dev/ic/vgareg.h>
199 1.1 rearnsha #include <dev/ic/vgavar.h>
200 1.1 rearnsha #endif
201 1.1 rearnsha
202 1.1 rearnsha #include "pckbc.h"
203 1.23 rearnsha #if NPCKBC > 0
204 1.1 rearnsha #include <dev/ic/i8042reg.h>
205 1.1 rearnsha #include <dev/ic/pckbcvar.h>
206 1.1 rearnsha #endif
207 1.1 rearnsha
208 1.1 rearnsha #include "com.h"
209 1.23 rearnsha #if NCOM > 0
210 1.1 rearnsha #include <dev/ic/comreg.h>
211 1.1 rearnsha #include <dev/ic/comvar.h>
212 1.1 rearnsha #ifndef CONCOMADDR
213 1.1 rearnsha #define CONCOMADDR 0x3f8
214 1.1 rearnsha #endif
215 1.1 rearnsha #endif
216 1.1 rearnsha
217 1.23 rearnsha /*
218 1.23 rearnsha * Define the default console speed for the board. This is generally
219 1.23 rearnsha * what the firmware provided with the board defaults to.
220 1.23 rearnsha */
221 1.30 mycroft #ifndef CONSPEED
222 1.1 rearnsha #define CONSPEED B115200
223 1.1 rearnsha #endif
224 1.1 rearnsha #ifndef CONMODE
225 1.1 rearnsha #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
226 1.1 rearnsha #endif
227 1.1 rearnsha
228 1.1 rearnsha int comcnspeed = CONSPEED;
229 1.1 rearnsha int comcnmode = CONMODE;
230 1.1 rearnsha
231 1.1 rearnsha #include "plcom.h"
232 1.1 rearnsha #if (NPLCOM > 0)
233 1.1 rearnsha #include <evbarm/dev/plcomreg.h>
234 1.1 rearnsha #include <evbarm/dev/plcomvar.h>
235 1.1 rearnsha
236 1.1 rearnsha #include <evbarm/ifpga/ifpgamem.h>
237 1.1 rearnsha #include <evbarm/ifpga/ifpgareg.h>
238 1.1 rearnsha #include <evbarm/ifpga/ifpgavar.h>
239 1.1 rearnsha #endif
240 1.1 rearnsha
241 1.1 rearnsha #ifndef CONSDEVNAME
242 1.1 rearnsha #define CONSDEVNAME "plcom"
243 1.1 rearnsha #endif
244 1.1 rearnsha
245 1.1 rearnsha #ifndef PLCONSPEED
246 1.1 rearnsha #define PLCONSPEED B38400
247 1.1 rearnsha #endif
248 1.1 rearnsha #ifndef PLCONMODE
249 1.1 rearnsha #define PLCONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
250 1.1 rearnsha #endif
251 1.1 rearnsha #ifndef PLCOMCNUNIT
252 1.1 rearnsha #define PLCOMCNUNIT -1
253 1.1 rearnsha #endif
254 1.1 rearnsha
255 1.1 rearnsha int plcomcnspeed = PLCONSPEED;
256 1.1 rearnsha int plcomcnmode = PLCONMODE;
257 1.1 rearnsha
258 1.1 rearnsha #if 0
259 1.1 rearnsha extern struct consdev kcomcons;
260 1.1 rearnsha static void kcomcnputc(dev_t, int);
261 1.1 rearnsha #endif
262 1.1 rearnsha
263 1.1 rearnsha /*
264 1.1 rearnsha * void cpu_reboot(int howto, char *bootstr)
265 1.1 rearnsha *
266 1.1 rearnsha * Reboots the system
267 1.1 rearnsha *
268 1.1 rearnsha * Deal with any syncing, unmounting, dumping and shutdown hooks,
269 1.1 rearnsha * then reset the CPU.
270 1.1 rearnsha */
271 1.1 rearnsha void
272 1.23 rearnsha cpu_reboot(int howto, char *bootstr)
273 1.1 rearnsha {
274 1.1 rearnsha
275 1.1 rearnsha /*
276 1.1 rearnsha * If we are still cold then hit the air brakes
277 1.1 rearnsha * and crash to earth fast
278 1.1 rearnsha */
279 1.1 rearnsha if (cold) {
280 1.1 rearnsha doshutdownhooks();
281 1.1 rearnsha printf("The operating system has halted.\n");
282 1.1 rearnsha printf("Please press any key to reboot.\n\n");
283 1.1 rearnsha cngetc();
284 1.1 rearnsha printf("rebooting...\n");
285 1.1 rearnsha ifpga_reset();
286 1.1 rearnsha /*NOTREACHED*/
287 1.1 rearnsha }
288 1.1 rearnsha
289 1.1 rearnsha /* Disable console buffering */
290 1.1 rearnsha
291 1.1 rearnsha /*
292 1.1 rearnsha * If RB_NOSYNC was not specified sync the discs.
293 1.23 rearnsha * Note: Unless cold is set to 1 here, syslogd will die during the
294 1.23 rearnsha * unmount. It looks like syslogd is getting woken up only to find
295 1.23 rearnsha * that it cannot page part of the binary in as the filesystem has
296 1.23 rearnsha * been unmounted.
297 1.1 rearnsha */
298 1.1 rearnsha if (!(howto & RB_NOSYNC))
299 1.1 rearnsha bootsync();
300 1.1 rearnsha
301 1.1 rearnsha /* Say NO to interrupts */
302 1.1 rearnsha splhigh();
303 1.1 rearnsha
304 1.1 rearnsha /* Do a dump if requested. */
305 1.1 rearnsha if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
306 1.1 rearnsha dumpsys();
307 1.1 rearnsha
308 1.1 rearnsha /* Run any shutdown hooks */
309 1.1 rearnsha doshutdownhooks();
310 1.1 rearnsha
311 1.1 rearnsha /* Make sure IRQ's are disabled */
312 1.1 rearnsha IRQdisable;
313 1.1 rearnsha
314 1.1 rearnsha if (howto & RB_HALT) {
315 1.1 rearnsha printf("The operating system has halted.\n");
316 1.1 rearnsha printf("Please press any key to reboot.\n\n");
317 1.1 rearnsha cngetc();
318 1.1 rearnsha }
319 1.1 rearnsha
320 1.1 rearnsha printf("rebooting...\n");
321 1.1 rearnsha ifpga_reset();
322 1.1 rearnsha /*NOTREACHED*/
323 1.1 rearnsha }
324 1.1 rearnsha
325 1.42 thorpej /* Statically mapped devices. */
326 1.42 thorpej static const struct pmap_devmap integrator_devmap[] = {
327 1.1 rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
328 1.23 rearnsha {
329 1.23 rearnsha UART0_BOOT_BASE,
330 1.23 rearnsha IFPGA_IO_BASE + IFPGA_UART0,
331 1.23 rearnsha 1024 * 1024,
332 1.23 rearnsha VM_PROT_READ|VM_PROT_WRITE,
333 1.23 rearnsha PTE_NOCACHE
334 1.23 rearnsha },
335 1.23 rearnsha
336 1.23 rearnsha {
337 1.23 rearnsha UART1_BOOT_BASE,
338 1.23 rearnsha IFPGA_IO_BASE + IFPGA_UART1,
339 1.23 rearnsha 1024 * 1024,
340 1.23 rearnsha VM_PROT_READ|VM_PROT_WRITE,
341 1.23 rearnsha PTE_NOCACHE
342 1.23 rearnsha },
343 1.1 rearnsha #endif
344 1.1 rearnsha #if NPCI > 0
345 1.23 rearnsha {
346 1.23 rearnsha IFPGA_PCI_IO_VBASE,
347 1.23 rearnsha IFPGA_PCI_IO_BASE,
348 1.23 rearnsha IFPGA_PCI_IO_VSIZE,
349 1.23 rearnsha VM_PROT_READ|VM_PROT_WRITE,
350 1.23 rearnsha PTE_NOCACHE
351 1.23 rearnsha },
352 1.23 rearnsha
353 1.23 rearnsha {
354 1.23 rearnsha IFPGA_PCI_CONF_VBASE,
355 1.23 rearnsha IFPGA_PCI_CONF_BASE,
356 1.23 rearnsha IFPGA_PCI_CONF_VSIZE,
357 1.23 rearnsha VM_PROT_READ|VM_PROT_WRITE,
358 1.42 thorpej PTE_NOCACHE
359 1.42 thorpej },
360 1.1 rearnsha #endif
361 1.1 rearnsha
362 1.23 rearnsha {
363 1.23 rearnsha 0,
364 1.23 rearnsha 0,
365 1.23 rearnsha 0,
366 1.23 rearnsha 0,
367 1.23 rearnsha 0
368 1.23 rearnsha }
369 1.1 rearnsha };
370 1.1 rearnsha
371 1.1 rearnsha /*
372 1.23 rearnsha * u_int initarm(...)
373 1.1 rearnsha *
374 1.1 rearnsha * Initial entry point on startup. This gets called before main() is
375 1.1 rearnsha * entered.
376 1.1 rearnsha * It should be responsible for setting up everything that must be
377 1.1 rearnsha * in place when main is called.
378 1.1 rearnsha * This includes
379 1.1 rearnsha * Taking a copy of the boot configuration structure.
380 1.1 rearnsha * Initialising the physical console so characters can be printed.
381 1.1 rearnsha * Setting up page tables for the kernel
382 1.1 rearnsha * Relocating the kernel to the bottom of physical memory
383 1.1 rearnsha */
384 1.1 rearnsha
385 1.1 rearnsha u_int
386 1.23 rearnsha initarm(void *arg)
387 1.1 rearnsha {
388 1.1 rearnsha int loop;
389 1.1 rearnsha int loop1;
390 1.1 rearnsha u_int l1pagetable;
391 1.1 rearnsha extern int etext asm ("_etext");
392 1.1 rearnsha extern int end asm ("_end");
393 1.1 rearnsha pv_addr_t kernel_l1pt;
394 1.23 rearnsha paddr_t memstart;
395 1.23 rearnsha psize_t memsize;
396 1.1 rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
397 1.1 rearnsha static struct bus_space plcom_bus_space;
398 1.1 rearnsha #endif
399 1.1 rearnsha
400 1.1 rearnsha /*
401 1.1 rearnsha * Heads up ... Setup the CPU / MMU / TLB functions
402 1.1 rearnsha */
403 1.1 rearnsha if (set_cpufuncs())
404 1.1 rearnsha panic("cpu not recognized!");
405 1.1 rearnsha
406 1.1 rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
407 1.1 rearnsha /*
408 1.1 rearnsha * Initialise the diagnostic serial console
409 1.1 rearnsha * This allows a means of generating output during initarm().
410 1.1 rearnsha * Once all the memory map changes are complete we can call consinit()
411 1.1 rearnsha * and not have to worry about things moving.
412 1.1 rearnsha */
413 1.1 rearnsha
414 1.1 rearnsha if (PLCOMCNUNIT == 0) {
415 1.1 rearnsha ifpga_create_io_bs_tag(&plcom_bus_space, (void*)0xfd600000);
416 1.1 rearnsha plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
417 1.1 rearnsha IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT);
418 1.1 rearnsha } else if (PLCOMCNUNIT == 1) {
419 1.1 rearnsha ifpga_create_io_bs_tag(&plcom_bus_space, (void*)0xfd700000);
420 1.1 rearnsha plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
421 1.1 rearnsha IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT);
422 1.1 rearnsha }
423 1.1 rearnsha #endif
424 1.1 rearnsha
425 1.38 thorpej #ifdef VERBOSE_INIT_ARM
426 1.1 rearnsha /* Talk to the user */
427 1.23 rearnsha printf("\nNetBSD/evbarm (Integrator) booting ...\n");
428 1.38 thorpej #endif
429 1.1 rearnsha
430 1.1 rearnsha /*
431 1.1 rearnsha * Ok we have the following memory map
432 1.1 rearnsha *
433 1.23 rearnsha * XXX NO WE DON'T
434 1.23 rearnsha *
435 1.1 rearnsha * virtual address == physical address apart from the areas:
436 1.1 rearnsha * 0x00000000 -> 0x000fffff which is mapped to
437 1.1 rearnsha * top 1MB of physical memory
438 1.1 rearnsha * 0x00100000 -> 0x0fffffff which is mapped to
439 1.1 rearnsha * physical addresses 0x00100000 -> 0x0fffffff
440 1.1 rearnsha * 0x10000000 -> 0x1fffffff which is mapped to
441 1.1 rearnsha * physical addresses 0x00000000 -> 0x0fffffff
442 1.1 rearnsha * 0x20000000 -> 0xefffffff which is mapped to
443 1.1 rearnsha * physical addresses 0x20000000 -> 0xefffffff
444 1.1 rearnsha * 0xf0000000 -> 0xf03fffff which is mapped to
445 1.1 rearnsha * physical addresses 0x00000000 -> 0x003fffff
446 1.1 rearnsha *
447 1.1 rearnsha * This means that the kernel is mapped suitably for continuing
448 1.1 rearnsha * execution, all I/O is mapped 1:1 virtual to physical and
449 1.1 rearnsha * physical memory is accessible.
450 1.1 rearnsha *
451 1.1 rearnsha * The initarm() has the responsibility for creating the kernel
452 1.1 rearnsha * page tables.
453 1.1 rearnsha * It must also set up various memory pointers that are used
454 1.1 rearnsha * by pmap etc.
455 1.1 rearnsha */
456 1.1 rearnsha
457 1.1 rearnsha /*
458 1.23 rearnsha * Fetch the SDRAM start/size from the CM configuration registers.
459 1.1 rearnsha */
460 1.23 rearnsha integrator_sdram_bounds(&memstart, &memsize);
461 1.1 rearnsha
462 1.38 thorpej #ifdef VERBOSE_INIT_ARM
463 1.1 rearnsha printf("initarm: Configuring system ...\n");
464 1.38 thorpej #endif
465 1.1 rearnsha
466 1.23 rearnsha /* Fake bootconfig structure for the benefit of pmap.c */
467 1.23 rearnsha /* XXX must make the memory description h/w independent */
468 1.23 rearnsha bootconfig.dramblocks = 1;
469 1.23 rearnsha bootconfig.dram[0].address = memstart;
470 1.31 thorpej bootconfig.dram[0].pages = memsize / PAGE_SIZE;
471 1.23 rearnsha
472 1.1 rearnsha /*
473 1.1 rearnsha * Set up the variables that define the availablilty of
474 1.23 rearnsha * physical memory. For now, we're going to set
475 1.23 rearnsha * physical_freestart to 0x00200000 (where the kernel
476 1.23 rearnsha * was loaded), and allocate the memory we need downwards.
477 1.23 rearnsha * If we get too close to the L1 table that we set up, we
478 1.23 rearnsha * will panic. We will update physical_freestart and
479 1.23 rearnsha * physical_freeend later to reflect what pmap_bootstrap()
480 1.23 rearnsha * wants to see.
481 1.23 rearnsha *
482 1.23 rearnsha * XXX pmap_bootstrap() needs an enema.
483 1.1 rearnsha */
484 1.23 rearnsha physical_start = bootconfig.dram[0].address;
485 1.31 thorpej physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
486 1.1 rearnsha
487 1.23 rearnsha physical_freestart = 0x00009000UL;
488 1.23 rearnsha physical_freeend = 0x00200000UL;
489 1.1 rearnsha
490 1.31 thorpej physmem = (physical_end - physical_start) / PAGE_SIZE;
491 1.1 rearnsha
492 1.38 thorpej #ifdef VERBOSE_INIT_ARM
493 1.1 rearnsha /* Tell the user about the memory */
494 1.1 rearnsha printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
495 1.1 rearnsha physical_start, physical_end - 1);
496 1.38 thorpej #endif
497 1.1 rearnsha
498 1.1 rearnsha /*
499 1.23 rearnsha * Okay, the kernel starts 2MB in from the bottom of physical
500 1.23 rearnsha * memory. We are going to allocate our bootstrap pages downwards
501 1.23 rearnsha * from there.
502 1.1 rearnsha *
503 1.23 rearnsha * We need to allocate some fixed page tables to get the kernel
504 1.23 rearnsha * going. We allocate one page directory and a number of page
505 1.23 rearnsha * tables and store the physical addresses in the kernel_pt_table
506 1.23 rearnsha * array.
507 1.23 rearnsha *
508 1.23 rearnsha * The kernel page directory must be on a 16K boundary. The page
509 1.23 rearnsha * tables must be on 4K bounaries. What we do is allocate the
510 1.23 rearnsha * page directory on the first 16K boundary that we encounter, and
511 1.23 rearnsha * the page tables on 4K boundaries otherwise. Since we allocate
512 1.23 rearnsha * at least 3 L2 page tables, we are guaranteed to encounter at
513 1.23 rearnsha * least one 16K aligned region.
514 1.1 rearnsha */
515 1.1 rearnsha
516 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
517 1.1 rearnsha printf("Allocating page tables\n");
518 1.1 rearnsha #endif
519 1.1 rearnsha
520 1.31 thorpej free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
521 1.1 rearnsha
522 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
523 1.23 rearnsha printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
524 1.1 rearnsha physical_freestart, free_pages, free_pages);
525 1.1 rearnsha #endif
526 1.1 rearnsha
527 1.1 rearnsha /* Define a macro to simplify memory allocation */
528 1.23 rearnsha #define valloc_pages(var, np) \
529 1.23 rearnsha alloc_pages((var).pv_pa, (np)); \
530 1.23 rearnsha (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
531 1.23 rearnsha
532 1.23 rearnsha #define alloc_pages(var, np) \
533 1.31 thorpej physical_freeend -= ((np) * PAGE_SIZE); \
534 1.23 rearnsha if (physical_freeend < physical_freestart) \
535 1.23 rearnsha panic("initarm: out of memory"); \
536 1.23 rearnsha (var) = physical_freeend; \
537 1.23 rearnsha free_pages -= (np); \
538 1.31 thorpej memset((char *)(var), 0, ((np) * PAGE_SIZE));
539 1.1 rearnsha
540 1.1 rearnsha loop1 = 0;
541 1.1 rearnsha kernel_l1pt.pv_pa = 0;
542 1.1 rearnsha for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
543 1.1 rearnsha /* Are we 16KB aligned for an L1 ? */
544 1.23 rearnsha if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
545 1.1 rearnsha && kernel_l1pt.pv_pa == 0) {
546 1.31 thorpej valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
547 1.1 rearnsha } else {
548 1.33 thorpej valloc_pages(kernel_pt_table[loop1],
549 1.33 thorpej L2_TABLE_SIZE / PAGE_SIZE);
550 1.23 rearnsha ++loop1;
551 1.1 rearnsha }
552 1.1 rearnsha }
553 1.1 rearnsha
554 1.1 rearnsha /* This should never be able to happen but better confirm that. */
555 1.21 thorpej if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
556 1.28 provos panic("initarm: Failed to align the kernel page directory");
557 1.1 rearnsha
558 1.1 rearnsha /*
559 1.1 rearnsha * Allocate a page for the system page mapped to V0x00000000
560 1.1 rearnsha * This page will just contain the system vectors and can be
561 1.1 rearnsha * shared by all processes.
562 1.1 rearnsha */
563 1.1 rearnsha alloc_pages(systempage.pv_pa, 1);
564 1.1 rearnsha
565 1.1 rearnsha /* Allocate stacks for all modes */
566 1.1 rearnsha valloc_pages(irqstack, IRQ_STACK_SIZE);
567 1.1 rearnsha valloc_pages(abtstack, ABT_STACK_SIZE);
568 1.1 rearnsha valloc_pages(undstack, UND_STACK_SIZE);
569 1.1 rearnsha valloc_pages(kernelstack, UPAGES);
570 1.1 rearnsha
571 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
572 1.23 rearnsha printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
573 1.23 rearnsha irqstack.pv_va);
574 1.23 rearnsha printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
575 1.23 rearnsha abtstack.pv_va);
576 1.23 rearnsha printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
577 1.23 rearnsha undstack.pv_va);
578 1.23 rearnsha printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
579 1.23 rearnsha kernelstack.pv_va);
580 1.1 rearnsha #endif
581 1.1 rearnsha
582 1.31 thorpej alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
583 1.1 rearnsha
584 1.1 rearnsha /*
585 1.1 rearnsha * Ok we have allocated physical pages for the primary kernel
586 1.1 rearnsha * page tables
587 1.1 rearnsha */
588 1.1 rearnsha
589 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
590 1.23 rearnsha printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
591 1.1 rearnsha #endif
592 1.1 rearnsha
593 1.1 rearnsha /*
594 1.23 rearnsha * Now we start construction of the L1 page table
595 1.1 rearnsha * We start by mapping the L2 page tables into the L1.
596 1.1 rearnsha * This means that we can replace L1 mappings later on if necessary
597 1.1 rearnsha */
598 1.1 rearnsha l1pagetable = kernel_l1pt.pv_pa;
599 1.1 rearnsha
600 1.1 rearnsha /* Map the L2 pages tables in the L1 page table */
601 1.11 thorpej pmap_link_l2pt(l1pagetable, 0x00000000,
602 1.14 thorpej &kernel_pt_table[KERNEL_PT_SYS]);
603 1.23 rearnsha for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
604 1.23 rearnsha pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
605 1.23 rearnsha &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
606 1.23 rearnsha for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
607 1.11 thorpej pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
608 1.14 thorpej &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
609 1.17 chris
610 1.17 chris /* update the top of the kernel VM */
611 1.19 thorpej pmap_curmaxkvaddr =
612 1.19 thorpej KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
613 1.1 rearnsha
614 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
615 1.1 rearnsha printf("Mapping kernel\n");
616 1.1 rearnsha #endif
617 1.1 rearnsha
618 1.1 rearnsha /* Now we fill in the L2 pagetable for the kernel static code/data */
619 1.1 rearnsha {
620 1.1 rearnsha size_t textsize = (uintptr_t) &etext - KERNEL_TEXT_BASE;
621 1.1 rearnsha size_t totalsize = (uintptr_t) &end - KERNEL_TEXT_BASE;
622 1.23 rearnsha u_int logical;
623 1.1 rearnsha
624 1.23 rearnsha textsize = (textsize + PGOFSET) & ~PGOFSET;
625 1.1 rearnsha totalsize = (totalsize + PGOFSET) & ~PGOFSET;
626 1.23 rearnsha
627 1.23 rearnsha logical = 0x00200000; /* offset of kernel in RAM */
628 1.23 rearnsha
629 1.23 rearnsha logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
630 1.23 rearnsha physical_start + logical, textsize,
631 1.12 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
632 1.23 rearnsha logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
633 1.23 rearnsha physical_start + logical, totalsize - textsize,
634 1.12 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
635 1.1 rearnsha }
636 1.1 rearnsha
637 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
638 1.1 rearnsha printf("Constructing L2 page tables\n");
639 1.1 rearnsha #endif
640 1.1 rearnsha
641 1.1 rearnsha /* Map the stack pages */
642 1.14 thorpej pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
643 1.31 thorpej IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
644 1.14 thorpej pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
645 1.31 thorpej ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
646 1.14 thorpej pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
647 1.31 thorpej UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
648 1.14 thorpej pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
649 1.31 thorpej UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
650 1.13 thorpej
651 1.33 thorpej pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
652 1.33 thorpej L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
653 1.1 rearnsha
654 1.33 thorpej for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
655 1.33 thorpej pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
656 1.33 thorpej kernel_pt_table[loop].pv_va, L2_TABLE_SIZE,
657 1.33 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
658 1.33 thorpej }
659 1.1 rearnsha
660 1.20 thorpej /* Map the vector page. */
661 1.1 rearnsha #if 1
662 1.1 rearnsha /* MULTI-ICE requires that page 0 is NC/NB so that it can download
663 1.1 rearnsha the cache-clean code there. */
664 1.20 thorpej pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
665 1.10 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
666 1.1 rearnsha #else
667 1.20 thorpej pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
668 1.20 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
669 1.1 rearnsha #endif
670 1.1 rearnsha
671 1.42 thorpej /* Map the statically mapped devices. */
672 1.42 thorpej pmap_devmap_bootstrap(l1pagetable, integrator_devmap);
673 1.1 rearnsha
674 1.1 rearnsha /*
675 1.1 rearnsha * Now we have the real page tables in place so we can switch to them.
676 1.23 rearnsha * Once this is done we will be running with the REAL kernel page
677 1.23 rearnsha * tables.
678 1.23 rearnsha */
679 1.23 rearnsha
680 1.23 rearnsha /*
681 1.23 rearnsha * Update the physical_freestart/physical_freeend/free_pages
682 1.23 rearnsha * variables.
683 1.1 rearnsha */
684 1.23 rearnsha {
685 1.23 rearnsha physical_freestart = physical_start +
686 1.23 rearnsha (((((uintptr_t) &end) + PGOFSET) & ~PGOFSET) -
687 1.23 rearnsha KERNEL_BASE);
688 1.23 rearnsha physical_freeend = physical_end;
689 1.31 thorpej free_pages =
690 1.31 thorpej (physical_freeend - physical_freestart) / PAGE_SIZE;
691 1.23 rearnsha }
692 1.1 rearnsha
693 1.1 rearnsha /* Switch tables */
694 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
695 1.23 rearnsha printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
696 1.1 rearnsha physical_freestart, free_pages, free_pages);
697 1.1 rearnsha printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
698 1.1 rearnsha #endif
699 1.33 thorpej cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
700 1.1 rearnsha setttb(kernel_l1pt.pv_pa);
701 1.23 rearnsha cpu_tlb_flushID();
702 1.33 thorpej cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
703 1.33 thorpej
704 1.33 thorpej /*
705 1.33 thorpej * Moved from cpu_startup() as data_abort_handler() references
706 1.33 thorpej * this during uvm init
707 1.33 thorpej */
708 1.33 thorpej proc0paddr = (struct user *)kernelstack.pv_va;
709 1.33 thorpej lwp0.l_addr = proc0paddr;
710 1.1 rearnsha
711 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
712 1.1 rearnsha printf("done!\n");
713 1.1 rearnsha #endif
714 1.1 rearnsha
715 1.1 rearnsha #ifdef PLCONSOLE
716 1.1 rearnsha /*
717 1.1 rearnsha * The IFPGA registers have just moved.
718 1.1 rearnsha * Detach the diagnostic serial port and reattach at the new address.
719 1.1 rearnsha */
720 1.1 rearnsha plcomcndetach();
721 1.1 rearnsha #endif
722 1.1 rearnsha
723 1.1 rearnsha /*
724 1.1 rearnsha * XXX this should only be done in main() but it useful to
725 1.1 rearnsha * have output earlier ...
726 1.1 rearnsha */
727 1.1 rearnsha consinit();
728 1.1 rearnsha
729 1.1 rearnsha #ifdef VERBOSE_INIT_ARM
730 1.1 rearnsha printf("bootstrap done.\n");
731 1.1 rearnsha #endif
732 1.1 rearnsha
733 1.20 thorpej arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
734 1.1 rearnsha
735 1.1 rearnsha /*
736 1.1 rearnsha * Pages were allocated during the secondary bootstrap for the
737 1.1 rearnsha * stacks for different CPU modes.
738 1.1 rearnsha * We must now set the r13 registers in the different CPU modes to
739 1.1 rearnsha * point to these stacks.
740 1.1 rearnsha * Since the ARM stacks use STMFD etc. we must set r13 to the top end
741 1.1 rearnsha * of the stack memory.
742 1.1 rearnsha */
743 1.38 thorpej #ifdef VERBOSE_INIT_ARM
744 1.1 rearnsha printf("init subsystems: stacks ");
745 1.38 thorpej #endif
746 1.1 rearnsha
747 1.31 thorpej set_stackptr(PSR_IRQ32_MODE,
748 1.31 thorpej irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
749 1.31 thorpej set_stackptr(PSR_ABT32_MODE,
750 1.31 thorpej abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
751 1.31 thorpej set_stackptr(PSR_UND32_MODE,
752 1.31 thorpej undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
753 1.1 rearnsha
754 1.1 rearnsha /*
755 1.1 rearnsha * Well we should set a data abort handler.
756 1.23 rearnsha * Once things get going this will change as we will need a proper
757 1.23 rearnsha * handler.
758 1.1 rearnsha * Until then we will use a handler that just panics but tells us
759 1.1 rearnsha * why.
760 1.1 rearnsha * Initialisation of the vectors will just panic on a data abort.
761 1.1 rearnsha * This just fills in a slighly better one.
762 1.1 rearnsha */
763 1.38 thorpej #ifdef VERBOSE_INIT_ARM
764 1.1 rearnsha printf("vectors ");
765 1.38 thorpej #endif
766 1.1 rearnsha data_abort_handler_address = (u_int)data_abort_handler;
767 1.1 rearnsha prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
768 1.1 rearnsha undefined_handler_address = (u_int)undefinedinstruction_bounce;
769 1.1 rearnsha
770 1.1 rearnsha /* Initialise the undefined instruction handlers */
771 1.38 thorpej #ifdef VERBOSE_INIT_ARM
772 1.1 rearnsha printf("undefined ");
773 1.38 thorpej #endif
774 1.1 rearnsha undefined_init();
775 1.1 rearnsha
776 1.25 thorpej /* Load memory into UVM. */
777 1.38 thorpej #ifdef VERBOSE_INIT_ARM
778 1.25 thorpej printf("page ");
779 1.38 thorpej #endif
780 1.25 thorpej uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
781 1.25 thorpej uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
782 1.25 thorpej atop(physical_freestart), atop(physical_freeend),
783 1.25 thorpej VM_FREELIST_DEFAULT);
784 1.25 thorpej
785 1.1 rearnsha /* Boot strap pmap telling it where the kernel page table is */
786 1.38 thorpej #ifdef VERBOSE_INIT_ARM
787 1.1 rearnsha printf("pmap ");
788 1.38 thorpej #endif
789 1.35 thorpej pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
790 1.35 thorpej KERNEL_VM_BASE + KERNEL_VM_SIZE);
791 1.1 rearnsha
792 1.1 rearnsha /* Setup the IRQ system */
793 1.38 thorpej #ifdef VERBOSE_INIT_ARM
794 1.1 rearnsha printf("irq ");
795 1.38 thorpej #endif
796 1.1 rearnsha irq_init();
797 1.1 rearnsha
798 1.38 thorpej #ifdef VERBOSE_INIT_ARM
799 1.1 rearnsha printf("done.\n");
800 1.38 thorpej #endif
801 1.1 rearnsha
802 1.1 rearnsha #ifdef IPKDB
803 1.1 rearnsha /* Initialise ipkdb */
804 1.1 rearnsha ipkdb_init();
805 1.1 rearnsha if (boothowto & RB_KDB)
806 1.1 rearnsha ipkdb_connect(0);
807 1.1 rearnsha #endif
808 1.1 rearnsha
809 1.32 ragge #if NKSYMS || defined(DDB) || defined(LKM)
810 1.32 ragge /* Firmware doesn't load symbols. */
811 1.32 ragge ksyms_init(0, NULL, NULL);
812 1.32 ragge #endif
813 1.32 ragge
814 1.1 rearnsha #ifdef DDB
815 1.1 rearnsha db_machine_init();
816 1.1 rearnsha if (boothowto & RB_KDB)
817 1.1 rearnsha Debugger();
818 1.1 rearnsha #endif
819 1.1 rearnsha
820 1.1 rearnsha /* We return the new stack pointer address */
821 1.1 rearnsha return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
822 1.1 rearnsha }
823 1.1 rearnsha
824 1.1 rearnsha void
825 1.1 rearnsha consinit(void)
826 1.1 rearnsha {
827 1.1 rearnsha static int consinit_called = 0;
828 1.1 rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
829 1.1 rearnsha static struct bus_space plcom_bus_space;
830 1.1 rearnsha #endif
831 1.1 rearnsha #if 0
832 1.1 rearnsha char *console = CONSDEVNAME;
833 1.1 rearnsha #endif
834 1.1 rearnsha
835 1.1 rearnsha if (consinit_called != 0)
836 1.1 rearnsha return;
837 1.1 rearnsha
838 1.1 rearnsha consinit_called = 1;
839 1.1 rearnsha
840 1.1 rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
841 1.1 rearnsha if (PLCOMCNUNIT == 0) {
842 1.1 rearnsha ifpga_create_io_bs_tag(&plcom_bus_space,
843 1.1 rearnsha (void*)UART0_BOOT_BASE);
844 1.1 rearnsha if (plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
845 1.1 rearnsha IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT))
846 1.1 rearnsha panic("can't init serial console");
847 1.1 rearnsha return;
848 1.1 rearnsha } else if (PLCOMCNUNIT == 1) {
849 1.1 rearnsha ifpga_create_io_bs_tag(&plcom_bus_space,
850 1.1 rearnsha (void*)UART0_BOOT_BASE);
851 1.1 rearnsha if (plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
852 1.1 rearnsha IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT))
853 1.1 rearnsha panic("can't init serial console");
854 1.1 rearnsha return;
855 1.1 rearnsha }
856 1.1 rearnsha #endif
857 1.1 rearnsha #if (NCOM > 0)
858 1.1 rearnsha if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
859 1.41 thorpej COM_FREQ, COM_TYPE_NORMAL, comcnmode))
860 1.1 rearnsha panic("can't init serial console @%x", CONCOMADDR);
861 1.1 rearnsha return;
862 1.1 rearnsha #endif
863 1.1 rearnsha panic("No serial console configured");
864 1.23 rearnsha }
865 1.23 rearnsha
866 1.23 rearnsha static void
867 1.23 rearnsha integrator_sdram_bounds(paddr_t *memstart, psize_t *memsize)
868 1.23 rearnsha {
869 1.23 rearnsha volatile unsigned long *cm_sdram
870 1.23 rearnsha = (volatile unsigned long *)0x10000020;
871 1.23 rearnsha
872 1.23 rearnsha *memstart = 0;
873 1.23 rearnsha
874 1.23 rearnsha switch ((*cm_sdram >> 2) & 0x7)
875 1.23 rearnsha {
876 1.23 rearnsha case 0:
877 1.23 rearnsha *memsize = 16 * 1024 * 1024;
878 1.23 rearnsha break;
879 1.23 rearnsha case 1:
880 1.23 rearnsha *memsize = 32 * 1024 * 1024;
881 1.23 rearnsha break;
882 1.23 rearnsha case 2:
883 1.23 rearnsha *memsize = 64 * 1024 * 1024;
884 1.23 rearnsha break;
885 1.23 rearnsha case 3:
886 1.23 rearnsha *memsize = 128 * 1024 * 1024;
887 1.23 rearnsha break;
888 1.23 rearnsha case 4:
889 1.23 rearnsha *memsize = 256 * 1024 * 1024;
890 1.23 rearnsha break;
891 1.23 rearnsha default:
892 1.23 rearnsha printf("CM_SDRAM retuns unknown value, using 16M\n");
893 1.23 rearnsha *memsize = 16 * 1024 * 1024;
894 1.23 rearnsha break;
895 1.23 rearnsha }
896 1.1 rearnsha }
897