Home | History | Annotate | Line # | Download | only in integrator
integrator_machdep.c revision 1.51
      1  1.51  rearnsha /*	$NetBSD: integrator_machdep.c,v 1.51 2004/08/07 11:20:53 rearnsha Exp $	*/
      2   1.1  rearnsha 
      3   1.1  rearnsha /*
      4  1.23  rearnsha  * Copyright (c) 2001,2002 ARM Ltd
      5   1.1  rearnsha  * All rights reserved.
      6   1.1  rearnsha  *
      7   1.1  rearnsha  * Redistribution and use in source and binary forms, with or without
      8   1.1  rearnsha  * modification, are permitted provided that the following conditions
      9   1.1  rearnsha  * are met:
     10   1.1  rearnsha  * 1. Redistributions of source code must retain the above copyright
     11   1.1  rearnsha  *    notice, this list of conditions and the following disclaimer.
     12   1.1  rearnsha  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1  rearnsha  *    notice, this list of conditions and the following disclaimer in the
     14   1.1  rearnsha  *    documentation and/or other materials provided with the distribution.
     15   1.1  rearnsha  * 3. The name of the company may not be used to endorse or promote
     16   1.1  rearnsha  *    products derived from this software without specific prior written
     17   1.1  rearnsha  *    permission.
     18   1.1  rearnsha  *
     19  1.23  rearnsha  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
     20  1.23  rearnsha  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.23  rearnsha  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.23  rearnsha  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD
     23  1.23  rearnsha  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.23  rearnsha  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.23  rearnsha  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.23  rearnsha  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.23  rearnsha  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.23  rearnsha  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.23  rearnsha  * POSSIBILITY OF SUCH DAMAGE.
     30  1.23  rearnsha  */
     31  1.23  rearnsha 
     32  1.23  rearnsha /*
     33   1.1  rearnsha  * Copyright (c) 1997,1998 Mark Brinicombe.
     34   1.1  rearnsha  * Copyright (c) 1997,1998 Causality Limited.
     35   1.1  rearnsha  * All rights reserved.
     36   1.1  rearnsha  *
     37   1.1  rearnsha  * Redistribution and use in source and binary forms, with or without
     38   1.1  rearnsha  * modification, are permitted provided that the following conditions
     39   1.1  rearnsha  * are met:
     40   1.1  rearnsha  * 1. Redistributions of source code must retain the above copyright
     41   1.1  rearnsha  *    notice, this list of conditions and the following disclaimer.
     42   1.1  rearnsha  * 2. Redistributions in binary form must reproduce the above copyright
     43   1.1  rearnsha  *    notice, this list of conditions and the following disclaimer in the
     44   1.1  rearnsha  *    documentation and/or other materials provided with the distribution.
     45   1.1  rearnsha  * 3. All advertising materials mentioning features or use of this software
     46   1.1  rearnsha  *    must display the following acknowledgement:
     47   1.1  rearnsha  *	This product includes software developed by Mark Brinicombe
     48   1.1  rearnsha  *	for the NetBSD Project.
     49   1.1  rearnsha  * 4. The name of the company nor the name of the author may be used to
     50   1.1  rearnsha  *    endorse or promote products derived from this software without specific
     51   1.1  rearnsha  *    prior written permission.
     52   1.1  rearnsha  *
     53   1.1  rearnsha  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54   1.1  rearnsha  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55   1.1  rearnsha  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56   1.1  rearnsha  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57   1.1  rearnsha  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58   1.1  rearnsha  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59   1.1  rearnsha  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60   1.1  rearnsha  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61   1.1  rearnsha  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62   1.1  rearnsha  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63   1.1  rearnsha  * SUCH DAMAGE.
     64   1.1  rearnsha  *
     65   1.1  rearnsha  * Machine dependant functions for kernel setup for integrator board
     66   1.1  rearnsha  *
     67   1.1  rearnsha  * Created      : 24/11/97
     68   1.1  rearnsha  */
     69  1.43     lukem 
     70  1.43     lukem #include <sys/cdefs.h>
     71  1.51  rearnsha __KERNEL_RCSID(0, "$NetBSD: integrator_machdep.c,v 1.51 2004/08/07 11:20:53 rearnsha Exp $");
     72   1.1  rearnsha 
     73   1.1  rearnsha #include "opt_ddb.h"
     74   1.1  rearnsha #include "opt_pmap_debug.h"
     75   1.1  rearnsha 
     76   1.1  rearnsha #include <sys/param.h>
     77   1.1  rearnsha #include <sys/device.h>
     78   1.1  rearnsha #include <sys/systm.h>
     79   1.1  rearnsha #include <sys/kernel.h>
     80   1.1  rearnsha #include <sys/exec.h>
     81   1.1  rearnsha #include <sys/proc.h>
     82   1.1  rearnsha #include <sys/msgbuf.h>
     83   1.1  rearnsha #include <sys/reboot.h>
     84   1.1  rearnsha #include <sys/termios.h>
     85  1.32     ragge #include <sys/ksyms.h>
     86   1.1  rearnsha 
     87  1.31   thorpej #include <uvm/uvm_extern.h>
     88  1.31   thorpej 
     89   1.1  rearnsha #include <dev/cons.h>
     90   1.1  rearnsha 
     91   1.1  rearnsha #include <machine/db_machdep.h>
     92   1.1  rearnsha #include <ddb/db_sym.h>
     93   1.1  rearnsha #include <ddb/db_extern.h>
     94   1.1  rearnsha 
     95   1.1  rearnsha #include <machine/bootconfig.h>
     96   1.1  rearnsha #include <machine/bus.h>
     97   1.1  rearnsha #include <machine/cpu.h>
     98   1.1  rearnsha #include <machine/frame.h>
     99   1.1  rearnsha #include <machine/intr.h>
    100   1.6   thorpej #include <arm/undefined.h>
    101   1.1  rearnsha 
    102  1.23  rearnsha #include <arm/arm32/machdep.h>
    103  1.23  rearnsha 
    104   1.1  rearnsha #include <evbarm/integrator/integrator_boot.h>
    105   1.1  rearnsha 
    106   1.1  rearnsha #include "opt_ipkdb.h"
    107   1.1  rearnsha #include "pci.h"
    108  1.32     ragge #include "ksyms.h"
    109   1.1  rearnsha 
    110   1.1  rearnsha void ifpga_reset(void) __attribute__((noreturn));
    111  1.36   thorpej 
    112  1.36   thorpej /* Kernel text starts 2MB in from the bottom of the kernel address space. */
    113  1.36   thorpej #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
    114  1.39   thorpej #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    115  1.40   thorpej 
    116  1.40   thorpej /*
    117  1.40   thorpej  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
    118  1.40   thorpej  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
    119  1.40   thorpej  */
    120  1.40   thorpej #define KERNEL_VM_SIZE		0x0C000000
    121  1.36   thorpej 
    122   1.1  rearnsha /*
    123   1.1  rearnsha  * Address to call from cpu_reset() to reset the machine.
    124   1.1  rearnsha  * This is machine architecture dependant as it varies depending
    125   1.1  rearnsha  * on where the ROM appears when you turn the MMU off.
    126   1.1  rearnsha  */
    127   1.1  rearnsha 
    128   1.1  rearnsha u_int cpu_reset_address = (u_int) ifpga_reset;
    129   1.1  rearnsha 
    130   1.1  rearnsha /* Define various stack sizes in pages */
    131   1.1  rearnsha #define IRQ_STACK_SIZE	1
    132   1.1  rearnsha #define ABT_STACK_SIZE	1
    133   1.1  rearnsha #ifdef IPKDB
    134   1.1  rearnsha #define UND_STACK_SIZE	2
    135   1.1  rearnsha #else
    136   1.1  rearnsha #define UND_STACK_SIZE	1
    137   1.1  rearnsha #endif
    138   1.1  rearnsha 
    139   1.1  rearnsha BootConfig bootconfig;		/* Boot config storage */
    140   1.1  rearnsha char *boot_args = NULL;
    141   1.1  rearnsha char *boot_file = NULL;
    142   1.1  rearnsha 
    143   1.1  rearnsha vm_offset_t physical_start;
    144   1.1  rearnsha vm_offset_t physical_end;
    145   1.1  rearnsha vm_offset_t pagetables_start;
    146   1.1  rearnsha int physmem = 0;
    147   1.1  rearnsha 
    148   1.1  rearnsha /*int debug_flags;*/
    149   1.1  rearnsha #ifndef PMAP_STATIC_L1S
    150   1.1  rearnsha int max_processes = 64;			/* Default number */
    151   1.1  rearnsha #endif	/* !PMAP_STATIC_L1S */
    152   1.1  rearnsha 
    153   1.1  rearnsha /* Physical and virtual addresses for some global pages */
    154   1.1  rearnsha pv_addr_t systempage;
    155   1.1  rearnsha pv_addr_t irqstack;
    156   1.1  rearnsha pv_addr_t undstack;
    157   1.1  rearnsha pv_addr_t abtstack;
    158   1.1  rearnsha pv_addr_t kernelstack;
    159   1.1  rearnsha 
    160   1.1  rearnsha vm_offset_t msgbufphys;
    161   1.1  rearnsha 
    162   1.1  rearnsha extern u_int data_abort_handler_address;
    163   1.1  rearnsha extern u_int prefetch_abort_handler_address;
    164   1.1  rearnsha extern u_int undefined_handler_address;
    165   1.1  rearnsha 
    166   1.1  rearnsha #ifdef PMAP_DEBUG
    167   1.1  rearnsha extern int pmap_debug_level;
    168   1.1  rearnsha #endif
    169   1.1  rearnsha 
    170  1.23  rearnsha #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
    171  1.23  rearnsha 
    172  1.23  rearnsha #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
    173  1.23  rearnsha #define	KERNEL_PT_KERNEL_NUM	2
    174  1.23  rearnsha 					/* L2 tables for mapping kernel VM */
    175  1.23  rearnsha #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
    176  1.17     chris #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    177   1.1  rearnsha #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    178   1.1  rearnsha 
    179  1.14   thorpej pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    180   1.1  rearnsha 
    181   1.1  rearnsha struct user *proc0paddr;
    182   1.1  rearnsha 
    183   1.1  rearnsha /* Prototypes */
    184   1.1  rearnsha 
    185  1.23  rearnsha static void	integrator_sdram_bounds	(paddr_t *, psize_t *);
    186   1.1  rearnsha 
    187  1.23  rearnsha void	consinit(void);
    188   1.1  rearnsha 
    189   1.1  rearnsha /* A load of console goo. */
    190   1.1  rearnsha #include "vga.h"
    191  1.23  rearnsha #if NVGA > 0
    192   1.1  rearnsha #include <dev/ic/mc6845reg.h>
    193   1.1  rearnsha #include <dev/ic/pcdisplayvar.h>
    194   1.1  rearnsha #include <dev/ic/vgareg.h>
    195   1.1  rearnsha #include <dev/ic/vgavar.h>
    196   1.1  rearnsha #endif
    197   1.1  rearnsha 
    198   1.1  rearnsha #include "pckbc.h"
    199  1.23  rearnsha #if NPCKBC > 0
    200   1.1  rearnsha #include <dev/ic/i8042reg.h>
    201   1.1  rearnsha #include <dev/ic/pckbcvar.h>
    202   1.1  rearnsha #endif
    203   1.1  rearnsha 
    204   1.1  rearnsha #include "com.h"
    205  1.23  rearnsha #if NCOM > 0
    206   1.1  rearnsha #include <dev/ic/comreg.h>
    207   1.1  rearnsha #include <dev/ic/comvar.h>
    208   1.1  rearnsha #ifndef CONCOMADDR
    209   1.1  rearnsha #define CONCOMADDR 0x3f8
    210   1.1  rearnsha #endif
    211   1.1  rearnsha #endif
    212   1.1  rearnsha 
    213  1.23  rearnsha /*
    214  1.23  rearnsha  * Define the default console speed for the board.  This is generally
    215  1.23  rearnsha  * what the firmware provided with the board defaults to.
    216  1.23  rearnsha  */
    217  1.30   mycroft #ifndef CONSPEED
    218   1.1  rearnsha #define CONSPEED B115200
    219   1.1  rearnsha #endif
    220   1.1  rearnsha #ifndef CONMODE
    221   1.1  rearnsha #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    222   1.1  rearnsha #endif
    223   1.1  rearnsha 
    224   1.1  rearnsha int comcnspeed = CONSPEED;
    225   1.1  rearnsha int comcnmode = CONMODE;
    226   1.1  rearnsha 
    227   1.1  rearnsha #include "plcom.h"
    228   1.1  rearnsha #if (NPLCOM > 0)
    229   1.1  rearnsha #include <evbarm/dev/plcomreg.h>
    230   1.1  rearnsha #include <evbarm/dev/plcomvar.h>
    231   1.1  rearnsha 
    232   1.1  rearnsha #include <evbarm/ifpga/ifpgamem.h>
    233   1.1  rearnsha #include <evbarm/ifpga/ifpgareg.h>
    234   1.1  rearnsha #include <evbarm/ifpga/ifpgavar.h>
    235   1.1  rearnsha #endif
    236   1.1  rearnsha 
    237   1.1  rearnsha #ifndef CONSDEVNAME
    238   1.1  rearnsha #define CONSDEVNAME "plcom"
    239   1.1  rearnsha #endif
    240   1.1  rearnsha 
    241   1.1  rearnsha #ifndef PLCONSPEED
    242   1.1  rearnsha #define PLCONSPEED B38400
    243   1.1  rearnsha #endif
    244   1.1  rearnsha #ifndef PLCONMODE
    245   1.1  rearnsha #define PLCONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    246   1.1  rearnsha #endif
    247   1.1  rearnsha #ifndef PLCOMCNUNIT
    248   1.1  rearnsha #define PLCOMCNUNIT -1
    249   1.1  rearnsha #endif
    250   1.1  rearnsha 
    251   1.1  rearnsha int plcomcnspeed = PLCONSPEED;
    252   1.1  rearnsha int plcomcnmode = PLCONMODE;
    253   1.1  rearnsha 
    254   1.1  rearnsha #if 0
    255   1.1  rearnsha extern struct consdev kcomcons;
    256   1.1  rearnsha static void kcomcnputc(dev_t, int);
    257   1.1  rearnsha #endif
    258   1.1  rearnsha 
    259   1.1  rearnsha /*
    260   1.1  rearnsha  * void cpu_reboot(int howto, char *bootstr)
    261   1.1  rearnsha  *
    262   1.1  rearnsha  * Reboots the system
    263   1.1  rearnsha  *
    264   1.1  rearnsha  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    265   1.1  rearnsha  * then reset the CPU.
    266   1.1  rearnsha  */
    267   1.1  rearnsha void
    268  1.23  rearnsha cpu_reboot(int howto, char *bootstr)
    269   1.1  rearnsha {
    270   1.1  rearnsha 
    271   1.1  rearnsha 	/*
    272   1.1  rearnsha 	 * If we are still cold then hit the air brakes
    273   1.1  rearnsha 	 * and crash to earth fast
    274   1.1  rearnsha 	 */
    275   1.1  rearnsha 	if (cold) {
    276   1.1  rearnsha 		doshutdownhooks();
    277   1.1  rearnsha 		printf("The operating system has halted.\n");
    278   1.1  rearnsha 		printf("Please press any key to reboot.\n\n");
    279   1.1  rearnsha 		cngetc();
    280   1.1  rearnsha 		printf("rebooting...\n");
    281   1.1  rearnsha 		ifpga_reset();
    282   1.1  rearnsha 		/*NOTREACHED*/
    283   1.1  rearnsha 	}
    284   1.1  rearnsha 
    285   1.1  rearnsha 	/* Disable console buffering */
    286   1.1  rearnsha 
    287   1.1  rearnsha 	/*
    288   1.1  rearnsha 	 * If RB_NOSYNC was not specified sync the discs.
    289  1.23  rearnsha 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    290  1.23  rearnsha 	 * unmount.  It looks like syslogd is getting woken up only to find
    291  1.23  rearnsha 	 * that it cannot page part of the binary in as the filesystem has
    292  1.23  rearnsha 	 * been unmounted.
    293   1.1  rearnsha 	 */
    294   1.1  rearnsha 	if (!(howto & RB_NOSYNC))
    295   1.1  rearnsha 		bootsync();
    296   1.1  rearnsha 
    297   1.1  rearnsha 	/* Say NO to interrupts */
    298   1.1  rearnsha 	splhigh();
    299   1.1  rearnsha 
    300   1.1  rearnsha 	/* Do a dump if requested. */
    301   1.1  rearnsha 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    302   1.1  rearnsha 		dumpsys();
    303   1.1  rearnsha 
    304   1.1  rearnsha 	/* Run any shutdown hooks */
    305   1.1  rearnsha 	doshutdownhooks();
    306   1.1  rearnsha 
    307   1.1  rearnsha 	/* Make sure IRQ's are disabled */
    308   1.1  rearnsha 	IRQdisable;
    309   1.1  rearnsha 
    310   1.1  rearnsha 	if (howto & RB_HALT) {
    311   1.1  rearnsha 		printf("The operating system has halted.\n");
    312   1.1  rearnsha 		printf("Please press any key to reboot.\n\n");
    313   1.1  rearnsha 		cngetc();
    314   1.1  rearnsha 	}
    315   1.1  rearnsha 
    316   1.1  rearnsha 	printf("rebooting...\n");
    317   1.1  rearnsha 	ifpga_reset();
    318   1.1  rearnsha 	/*NOTREACHED*/
    319   1.1  rearnsha }
    320   1.1  rearnsha 
    321  1.42   thorpej /* Statically mapped devices. */
    322  1.42   thorpej static const struct pmap_devmap integrator_devmap[] = {
    323   1.1  rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
    324  1.23  rearnsha 	{
    325  1.23  rearnsha 		UART0_BOOT_BASE,
    326  1.23  rearnsha 		IFPGA_IO_BASE + IFPGA_UART0,
    327  1.23  rearnsha 		1024 * 1024,
    328  1.23  rearnsha 		VM_PROT_READ|VM_PROT_WRITE,
    329  1.23  rearnsha 		PTE_NOCACHE
    330  1.23  rearnsha 	},
    331  1.23  rearnsha 
    332  1.23  rearnsha 	{
    333  1.23  rearnsha 		UART1_BOOT_BASE,
    334  1.23  rearnsha 		IFPGA_IO_BASE + IFPGA_UART1,
    335  1.23  rearnsha 		1024 * 1024,
    336  1.23  rearnsha 		VM_PROT_READ|VM_PROT_WRITE,
    337  1.23  rearnsha 		PTE_NOCACHE
    338  1.23  rearnsha 	},
    339   1.1  rearnsha #endif
    340   1.1  rearnsha #if NPCI > 0
    341  1.23  rearnsha 	{
    342  1.23  rearnsha 		IFPGA_PCI_IO_VBASE,
    343  1.23  rearnsha 		IFPGA_PCI_IO_BASE,
    344  1.23  rearnsha 		IFPGA_PCI_IO_VSIZE,
    345  1.23  rearnsha 		VM_PROT_READ|VM_PROT_WRITE,
    346  1.23  rearnsha 		PTE_NOCACHE
    347  1.23  rearnsha 	},
    348  1.23  rearnsha 
    349  1.23  rearnsha 	{
    350  1.23  rearnsha 		IFPGA_PCI_CONF_VBASE,
    351  1.23  rearnsha 		IFPGA_PCI_CONF_BASE,
    352  1.23  rearnsha 		IFPGA_PCI_CONF_VSIZE,
    353  1.23  rearnsha 		VM_PROT_READ|VM_PROT_WRITE,
    354  1.42   thorpej 		PTE_NOCACHE
    355  1.42   thorpej 	},
    356   1.1  rearnsha #endif
    357   1.1  rearnsha 
    358  1.23  rearnsha 	{
    359  1.23  rearnsha 		0,
    360  1.23  rearnsha 		0,
    361  1.23  rearnsha 		0,
    362  1.23  rearnsha 		0,
    363  1.23  rearnsha 		0
    364  1.23  rearnsha 	}
    365   1.1  rearnsha };
    366   1.1  rearnsha 
    367   1.1  rearnsha /*
    368  1.23  rearnsha  * u_int initarm(...)
    369   1.1  rearnsha  *
    370   1.1  rearnsha  * Initial entry point on startup. This gets called before main() is
    371   1.1  rearnsha  * entered.
    372   1.1  rearnsha  * It should be responsible for setting up everything that must be
    373   1.1  rearnsha  * in place when main is called.
    374   1.1  rearnsha  * This includes
    375   1.1  rearnsha  *   Taking a copy of the boot configuration structure.
    376   1.1  rearnsha  *   Initialising the physical console so characters can be printed.
    377   1.1  rearnsha  *   Setting up page tables for the kernel
    378   1.1  rearnsha  *   Relocating the kernel to the bottom of physical memory
    379   1.1  rearnsha  */
    380   1.1  rearnsha 
    381   1.1  rearnsha u_int
    382  1.23  rearnsha initarm(void *arg)
    383   1.1  rearnsha {
    384   1.1  rearnsha 	int loop;
    385   1.1  rearnsha 	int loop1;
    386   1.1  rearnsha 	u_int l1pagetable;
    387  1.47  rearnsha 	extern char etext asm ("_etext");
    388  1.47  rearnsha 	extern char end asm ("_end");
    389   1.1  rearnsha 	pv_addr_t kernel_l1pt;
    390  1.23  rearnsha 	paddr_t memstart;
    391  1.23  rearnsha 	psize_t memsize;
    392  1.47  rearnsha 	vm_offset_t physical_freestart;
    393  1.47  rearnsha 	vm_offset_t physical_freeend;
    394   1.1  rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
    395   1.1  rearnsha 	static struct bus_space plcom_bus_space;
    396   1.1  rearnsha #endif
    397   1.1  rearnsha 
    398   1.1  rearnsha 	/*
    399   1.1  rearnsha 	 * Heads up ... Setup the CPU / MMU / TLB functions
    400   1.1  rearnsha 	 */
    401   1.1  rearnsha 	if (set_cpufuncs())
    402  1.50       wiz 		panic("CPU not recognized!");
    403   1.1  rearnsha 
    404   1.1  rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
    405   1.1  rearnsha 	/*
    406   1.1  rearnsha 	 * Initialise the diagnostic serial console
    407   1.1  rearnsha 	 * This allows a means of generating output during initarm().
    408   1.1  rearnsha 	 * Once all the memory map changes are complete we can call consinit()
    409   1.1  rearnsha 	 * and not have to worry about things moving.
    410   1.1  rearnsha 	 */
    411   1.1  rearnsha 
    412   1.1  rearnsha 	if (PLCOMCNUNIT == 0) {
    413   1.1  rearnsha 		ifpga_create_io_bs_tag(&plcom_bus_space, (void*)0xfd600000);
    414   1.1  rearnsha 		plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
    415   1.1  rearnsha 		    IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT);
    416   1.1  rearnsha 	} else if (PLCOMCNUNIT == 1) {
    417   1.1  rearnsha 		ifpga_create_io_bs_tag(&plcom_bus_space, (void*)0xfd700000);
    418   1.1  rearnsha 		plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
    419   1.1  rearnsha 		    IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT);
    420   1.1  rearnsha 	}
    421   1.1  rearnsha #endif
    422   1.1  rearnsha 
    423  1.38   thorpej #ifdef VERBOSE_INIT_ARM
    424   1.1  rearnsha 	/* Talk to the user */
    425  1.23  rearnsha 	printf("\nNetBSD/evbarm (Integrator) booting ...\n");
    426  1.38   thorpej #endif
    427   1.1  rearnsha 
    428   1.1  rearnsha 	/*
    429  1.23  rearnsha 	 * Fetch the SDRAM start/size from the CM configuration registers.
    430   1.1  rearnsha 	 */
    431  1.23  rearnsha 	integrator_sdram_bounds(&memstart, &memsize);
    432   1.1  rearnsha 
    433  1.38   thorpej #ifdef VERBOSE_INIT_ARM
    434   1.1  rearnsha 	printf("initarm: Configuring system ...\n");
    435  1.38   thorpej #endif
    436   1.1  rearnsha 
    437  1.23  rearnsha 	/* Fake bootconfig structure for the benefit of pmap.c */
    438  1.23  rearnsha 	/* XXX must make the memory description h/w independent */
    439  1.23  rearnsha 	bootconfig.dramblocks = 1;
    440  1.23  rearnsha 	bootconfig.dram[0].address = memstart;
    441  1.31   thorpej 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    442  1.47  rearnsha 	bootconfig.dram[0].flags = BOOT_DRAM_CAN_DMA | BOOT_DRAM_PREFER;
    443  1.23  rearnsha 
    444   1.1  rearnsha 	/*
    445   1.1  rearnsha 	 * Set up the variables that define the availablilty of
    446  1.23  rearnsha 	 * physical memory.  For now, we're going to set
    447  1.23  rearnsha 	 * physical_freestart to 0x00200000 (where the kernel
    448  1.23  rearnsha 	 * was loaded), and allocate the memory we need downwards.
    449  1.23  rearnsha 	 * If we get too close to the L1 table that we set up, we
    450  1.23  rearnsha 	 * will panic.  We will update physical_freestart and
    451  1.23  rearnsha 	 * physical_freeend later to reflect what pmap_bootstrap()
    452  1.23  rearnsha 	 * wants to see.
    453  1.23  rearnsha 	 *
    454  1.47  rearnsha 	 * We assume that the kernel is loaded into bank[0].
    455  1.47  rearnsha 	 *
    456  1.23  rearnsha 	 * XXX pmap_bootstrap() needs an enema.
    457   1.1  rearnsha 	 */
    458  1.23  rearnsha 	physical_start = bootconfig.dram[0].address;
    459  1.47  rearnsha 	physical_end = 0;
    460   1.1  rearnsha 
    461  1.47  rearnsha 	/* Update the address of the first free 16KB chunk of physical memory */
    462  1.47  rearnsha 	physical_freestart = ((uintptr_t) &end - KERNEL_BASE + PGOFSET)
    463  1.47  rearnsha 	    & ~PGOFSET;
    464  1.47  rearnsha 	if (physical_freestart < bootconfig.dram[0].address)
    465  1.47  rearnsha 		physical_freestart = bootconfig.dram[0].address;
    466  1.47  rearnsha 	physical_freeend = bootconfig.dram[0].address +
    467  1.47  rearnsha 	    bootconfig.dram[0].pages * PAGE_SIZE;
    468  1.47  rearnsha 
    469  1.47  rearnsha 	for (loop = 0, physmem = 0; loop < bootconfig.dramblocks; loop++) {
    470  1.47  rearnsha 		paddr_t memoryblock_end;
    471  1.47  rearnsha 
    472  1.47  rearnsha 		memoryblock_end = bootconfig.dram[loop].address +
    473  1.47  rearnsha 		    bootconfig.dram[loop].pages * PAGE_SIZE;
    474  1.47  rearnsha 		if (memoryblock_end > physical_end)
    475  1.47  rearnsha 			physical_end = memoryblock_end;
    476  1.47  rearnsha 		if (bootconfig.dram[loop].address < physical_start)
    477  1.47  rearnsha 			physical_start = bootconfig.dram[loop].address;
    478  1.47  rearnsha 
    479  1.47  rearnsha 		physmem += bootconfig.dram[loop].pages;
    480  1.47  rearnsha 	}
    481   1.1  rearnsha 
    482  1.38   thorpej #ifdef VERBOSE_INIT_ARM
    483   1.1  rearnsha 	/* Tell the user about the memory */
    484   1.1  rearnsha 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    485   1.1  rearnsha 	    physical_start, physical_end - 1);
    486  1.38   thorpej #endif
    487   1.1  rearnsha 
    488   1.1  rearnsha 	/*
    489  1.23  rearnsha 	 * Okay, the kernel starts 2MB in from the bottom of physical
    490  1.23  rearnsha 	 * memory.  We are going to allocate our bootstrap pages downwards
    491  1.23  rearnsha 	 * from there.
    492   1.1  rearnsha 	 *
    493  1.23  rearnsha 	 * We need to allocate some fixed page tables to get the kernel
    494  1.23  rearnsha 	 * going.  We allocate one page directory and a number of page
    495  1.23  rearnsha 	 * tables and store the physical addresses in the kernel_pt_table
    496  1.23  rearnsha 	 * array.
    497  1.23  rearnsha 	 *
    498  1.23  rearnsha 	 * The kernel page directory must be on a 16K boundary.  The page
    499  1.23  rearnsha 	 * tables must be on 4K bounaries.  What we do is allocate the
    500  1.23  rearnsha 	 * page directory on the first 16K boundary that we encounter, and
    501  1.23  rearnsha 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    502  1.23  rearnsha 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    503  1.23  rearnsha 	 * least one 16K aligned region.
    504   1.1  rearnsha 	 */
    505   1.1  rearnsha 
    506   1.1  rearnsha #ifdef VERBOSE_INIT_ARM
    507   1.1  rearnsha 	printf("Allocating page tables\n");
    508   1.1  rearnsha #endif
    509   1.1  rearnsha 
    510   1.1  rearnsha #ifdef VERBOSE_INIT_ARM
    511  1.47  rearnsha 	printf("freestart = 0x%08lx, free pages = %d (0x%08x)\n",
    512  1.47  rearnsha 	       physical_freestart, physmem, physmem);
    513   1.1  rearnsha #endif
    514   1.1  rearnsha 
    515   1.1  rearnsha 	/* Define a macro to simplify memory allocation */
    516  1.23  rearnsha #define	valloc_pages(var, np)				\
    517  1.23  rearnsha 	alloc_pages((var).pv_pa, (np));			\
    518  1.47  rearnsha 	(var).pv_va = KERNEL_BASE + (var).pv_pa;
    519  1.23  rearnsha 
    520  1.23  rearnsha #define alloc_pages(var, np)				\
    521  1.47  rearnsha 	(var) = physical_freestart;			\
    522  1.47  rearnsha 	physical_freestart += ((np) * PAGE_SIZE);	\
    523  1.23  rearnsha 	if (physical_freeend < physical_freestart)	\
    524  1.23  rearnsha 		panic("initarm: out of memory");	\
    525  1.31   thorpej 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    526   1.1  rearnsha 
    527   1.1  rearnsha 	loop1 = 0;
    528   1.1  rearnsha 	kernel_l1pt.pv_pa = 0;
    529   1.1  rearnsha 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    530   1.1  rearnsha 		/* Are we 16KB aligned for an L1 ? */
    531  1.47  rearnsha 		if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
    532   1.1  rearnsha 		    && kernel_l1pt.pv_pa == 0) {
    533  1.31   thorpej 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    534   1.1  rearnsha 		} else {
    535  1.33   thorpej 			valloc_pages(kernel_pt_table[loop1],
    536  1.33   thorpej 			    L2_TABLE_SIZE / PAGE_SIZE);
    537  1.23  rearnsha 			++loop1;
    538   1.1  rearnsha 		}
    539   1.1  rearnsha 	}
    540   1.1  rearnsha 
    541   1.1  rearnsha 	/* This should never be able to happen but better confirm that. */
    542  1.21   thorpej 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
    543  1.28    provos 		panic("initarm: Failed to align the kernel page directory");
    544   1.1  rearnsha 
    545   1.1  rearnsha 	/*
    546   1.1  rearnsha 	 * Allocate a page for the system page mapped to V0x00000000
    547   1.1  rearnsha 	 * This page will just contain the system vectors and can be
    548   1.1  rearnsha 	 * shared by all processes.
    549   1.1  rearnsha 	 */
    550   1.1  rearnsha 	alloc_pages(systempage.pv_pa, 1);
    551   1.1  rearnsha 
    552   1.1  rearnsha 	/* Allocate stacks for all modes */
    553   1.1  rearnsha 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    554   1.1  rearnsha 	valloc_pages(abtstack, ABT_STACK_SIZE);
    555   1.1  rearnsha 	valloc_pages(undstack, UND_STACK_SIZE);
    556   1.1  rearnsha 	valloc_pages(kernelstack, UPAGES);
    557   1.1  rearnsha 
    558   1.1  rearnsha #ifdef VERBOSE_INIT_ARM
    559  1.23  rearnsha 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    560  1.23  rearnsha 	    irqstack.pv_va);
    561  1.23  rearnsha 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    562  1.23  rearnsha 	    abtstack.pv_va);
    563  1.23  rearnsha 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    564  1.23  rearnsha 	    undstack.pv_va);
    565  1.23  rearnsha 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    566  1.23  rearnsha 	    kernelstack.pv_va);
    567   1.1  rearnsha #endif
    568   1.1  rearnsha 
    569  1.31   thorpej 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    570   1.1  rearnsha 
    571   1.1  rearnsha 	/*
    572   1.1  rearnsha 	 * Ok we have allocated physical pages for the primary kernel
    573   1.1  rearnsha 	 * page tables
    574   1.1  rearnsha 	 */
    575   1.1  rearnsha 
    576   1.1  rearnsha #ifdef VERBOSE_INIT_ARM
    577  1.23  rearnsha 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    578   1.1  rearnsha #endif
    579   1.1  rearnsha 
    580   1.1  rearnsha 	/*
    581  1.23  rearnsha 	 * Now we start construction of the L1 page table
    582   1.1  rearnsha 	 * We start by mapping the L2 page tables into the L1.
    583   1.1  rearnsha 	 * This means that we can replace L1 mappings later on if necessary
    584   1.1  rearnsha 	 */
    585   1.1  rearnsha 	l1pagetable = kernel_l1pt.pv_pa;
    586   1.1  rearnsha 
    587   1.1  rearnsha 	/* Map the L2 pages tables in the L1 page table */
    588  1.11   thorpej 	pmap_link_l2pt(l1pagetable, 0x00000000,
    589  1.14   thorpej 	    &kernel_pt_table[KERNEL_PT_SYS]);
    590  1.23  rearnsha 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    591  1.23  rearnsha 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    592  1.23  rearnsha 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    593  1.23  rearnsha 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    594  1.11   thorpej 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    595  1.14   thorpej 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    596  1.17     chris 
    597  1.17     chris 	/* update the top of the kernel VM */
    598  1.19   thorpej 	pmap_curmaxkvaddr =
    599  1.19   thorpej 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    600   1.1  rearnsha 
    601   1.1  rearnsha #ifdef VERBOSE_INIT_ARM
    602   1.1  rearnsha 	printf("Mapping kernel\n");
    603   1.1  rearnsha #endif
    604   1.1  rearnsha 
    605   1.1  rearnsha 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    606   1.1  rearnsha 	{
    607   1.1  rearnsha 		size_t textsize = (uintptr_t) &etext - KERNEL_TEXT_BASE;
    608   1.1  rearnsha 		size_t totalsize = (uintptr_t) &end - KERNEL_TEXT_BASE;
    609  1.23  rearnsha 		u_int logical;
    610   1.1  rearnsha 
    611  1.23  rearnsha 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    612   1.1  rearnsha 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    613  1.23  rearnsha 
    614  1.23  rearnsha 		logical = 0x00200000;	/* offset of kernel in RAM */
    615  1.23  rearnsha 
    616  1.23  rearnsha 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    617  1.47  rearnsha 		    logical, textsize, VM_PROT_READ | VM_PROT_WRITE,
    618  1.47  rearnsha 		    PTE_CACHE);
    619  1.23  rearnsha 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    620  1.47  rearnsha 		    logical, totalsize - textsize,
    621  1.47  rearnsha 		    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    622   1.1  rearnsha 	}
    623   1.1  rearnsha 
    624   1.1  rearnsha #ifdef VERBOSE_INIT_ARM
    625   1.1  rearnsha 	printf("Constructing L2 page tables\n");
    626   1.1  rearnsha #endif
    627   1.1  rearnsha 
    628   1.1  rearnsha 	/* Map the stack pages */
    629  1.14   thorpej 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    630  1.31   thorpej 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    631  1.14   thorpej 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    632  1.31   thorpej 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    633  1.14   thorpej 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    634  1.31   thorpej 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    635  1.14   thorpej 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    636  1.31   thorpej 	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    637  1.13   thorpej 
    638  1.33   thorpej 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    639  1.33   thorpej 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    640   1.1  rearnsha 
    641  1.33   thorpej 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    642  1.33   thorpej 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    643  1.44  rearnsha 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    644  1.33   thorpej 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    645  1.33   thorpej 	}
    646   1.1  rearnsha 
    647  1.20   thorpej 	/* Map the vector page. */
    648   1.1  rearnsha #if 1
    649   1.1  rearnsha 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download
    650   1.1  rearnsha 	   the cache-clean code there.  */
    651  1.51  rearnsha 	pmap_map_entry(l1pagetable, ARM_VECTORS_LOW, systempage.pv_pa,
    652  1.10   thorpej 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    653   1.1  rearnsha #else
    654  1.51  rearnsha 	pmap_map_entry(l1pagetable, ARM_VECTORS_LOW, systempage.pv_pa,
    655  1.20   thorpej 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    656   1.1  rearnsha #endif
    657   1.1  rearnsha 
    658  1.42   thorpej 	/* Map the statically mapped devices. */
    659  1.42   thorpej 	pmap_devmap_bootstrap(l1pagetable, integrator_devmap);
    660   1.1  rearnsha 
    661   1.1  rearnsha 	/*
    662   1.1  rearnsha 	 * Now we have the real page tables in place so we can switch to them.
    663  1.23  rearnsha 	 * Once this is done we will be running with the REAL kernel page
    664  1.23  rearnsha 	 * tables.
    665  1.23  rearnsha 	 */
    666  1.23  rearnsha 
    667   1.1  rearnsha 	/* Switch tables */
    668   1.1  rearnsha #ifdef VERBOSE_INIT_ARM
    669   1.1  rearnsha 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    670   1.1  rearnsha #endif
    671  1.33   thorpej 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    672   1.1  rearnsha 	setttb(kernel_l1pt.pv_pa);
    673  1.23  rearnsha 	cpu_tlb_flushID();
    674  1.33   thorpej 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    675  1.33   thorpej 
    676  1.33   thorpej 	/*
    677  1.33   thorpej 	 * Moved from cpu_startup() as data_abort_handler() references
    678  1.33   thorpej 	 * this during uvm init
    679  1.33   thorpej 	 */
    680  1.33   thorpej 	proc0paddr = (struct user *)kernelstack.pv_va;
    681  1.33   thorpej 	lwp0.l_addr = proc0paddr;
    682   1.1  rearnsha 
    683   1.1  rearnsha #ifdef PLCONSOLE
    684   1.1  rearnsha 	/*
    685   1.1  rearnsha 	 * The IFPGA registers have just moved.
    686   1.1  rearnsha 	 * Detach the diagnostic serial port and reattach at the new address.
    687   1.1  rearnsha 	 */
    688   1.1  rearnsha 	plcomcndetach();
    689   1.1  rearnsha #endif
    690   1.1  rearnsha 
    691   1.1  rearnsha 	/*
    692   1.1  rearnsha 	 * XXX this should only be done in main() but it useful to
    693   1.1  rearnsha 	 * have output earlier ...
    694   1.1  rearnsha 	 */
    695   1.1  rearnsha 	consinit();
    696   1.1  rearnsha 
    697   1.1  rearnsha #ifdef VERBOSE_INIT_ARM
    698   1.1  rearnsha 	printf("bootstrap done.\n");
    699   1.1  rearnsha #endif
    700   1.1  rearnsha 
    701  1.20   thorpej 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
    702   1.1  rearnsha 
    703   1.1  rearnsha 	/*
    704   1.1  rearnsha 	 * Pages were allocated during the secondary bootstrap for the
    705   1.1  rearnsha 	 * stacks for different CPU modes.
    706   1.1  rearnsha 	 * We must now set the r13 registers in the different CPU modes to
    707   1.1  rearnsha 	 * point to these stacks.
    708   1.1  rearnsha 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    709   1.1  rearnsha 	 * of the stack memory.
    710   1.1  rearnsha 	 */
    711  1.38   thorpej #ifdef VERBOSE_INIT_ARM
    712   1.1  rearnsha 	printf("init subsystems: stacks ");
    713  1.38   thorpej #endif
    714   1.1  rearnsha 
    715  1.31   thorpej 	set_stackptr(PSR_IRQ32_MODE,
    716  1.31   thorpej 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    717  1.31   thorpej 	set_stackptr(PSR_ABT32_MODE,
    718  1.31   thorpej 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    719  1.31   thorpej 	set_stackptr(PSR_UND32_MODE,
    720  1.31   thorpej 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    721   1.1  rearnsha 
    722   1.1  rearnsha 	/*
    723   1.1  rearnsha 	 * Well we should set a data abort handler.
    724  1.23  rearnsha 	 * Once things get going this will change as we will need a proper
    725  1.23  rearnsha 	 * handler.
    726   1.1  rearnsha 	 * Until then we will use a handler that just panics but tells us
    727   1.1  rearnsha 	 * why.
    728   1.1  rearnsha 	 * Initialisation of the vectors will just panic on a data abort.
    729   1.1  rearnsha 	 * This just fills in a slighly better one.
    730   1.1  rearnsha 	 */
    731  1.38   thorpej #ifdef VERBOSE_INIT_ARM
    732   1.1  rearnsha 	printf("vectors ");
    733  1.38   thorpej #endif
    734   1.1  rearnsha 	data_abort_handler_address = (u_int)data_abort_handler;
    735   1.1  rearnsha 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    736   1.1  rearnsha 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    737   1.1  rearnsha 
    738   1.1  rearnsha 	/* Initialise the undefined instruction handlers */
    739  1.38   thorpej #ifdef VERBOSE_INIT_ARM
    740   1.1  rearnsha 	printf("undefined ");
    741  1.38   thorpej #endif
    742   1.1  rearnsha 	undefined_init();
    743   1.1  rearnsha 
    744  1.25   thorpej 	/* Load memory into UVM. */
    745  1.38   thorpej #ifdef VERBOSE_INIT_ARM
    746  1.25   thorpej 	printf("page ");
    747  1.38   thorpej #endif
    748  1.25   thorpej 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
    749  1.47  rearnsha 
    750  1.47  rearnsha 	/* Round the start up and the end down to a page.  */
    751  1.47  rearnsha 	physical_freestart = (physical_freestart + PGOFSET) & ~PGOFSET;
    752  1.47  rearnsha 	physical_freeend &= ~PGOFSET;
    753  1.47  rearnsha 
    754  1.47  rearnsha 	for (loop = 0; loop < bootconfig.dramblocks; loop++) {
    755  1.47  rearnsha 		paddr_t block_start = (paddr_t) bootconfig.dram[loop].address;
    756  1.47  rearnsha 		paddr_t block_end = block_start +
    757  1.47  rearnsha 		    (bootconfig.dram[loop].pages * PAGE_SIZE);
    758  1.47  rearnsha 
    759  1.47  rearnsha 		if (loop == 0) {
    760  1.47  rearnsha 			block_start = physical_freestart;
    761  1.47  rearnsha 			block_end = physical_freeend;
    762  1.47  rearnsha 		}
    763  1.47  rearnsha 
    764  1.47  rearnsha 
    765  1.47  rearnsha 		uvm_page_physload(atop(block_start), atop(block_end),
    766  1.47  rearnsha 		    atop(block_start), atop(block_end),
    767  1.47  rearnsha 		    (bootconfig.dram[loop].flags & BOOT_DRAM_PREFER) ?
    768  1.47  rearnsha 		    VM_FREELIST_DEFAULT : VM_FREELIST_DEFAULT + 1);
    769  1.47  rearnsha 	}
    770  1.25   thorpej 
    771   1.1  rearnsha 	/* Boot strap pmap telling it where the kernel page table is */
    772  1.38   thorpej #ifdef VERBOSE_INIT_ARM
    773   1.1  rearnsha 	printf("pmap ");
    774  1.38   thorpej #endif
    775  1.35   thorpej 	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
    776  1.35   thorpej 	    KERNEL_VM_BASE + KERNEL_VM_SIZE);
    777   1.1  rearnsha 
    778   1.1  rearnsha 	/* Setup the IRQ system */
    779  1.38   thorpej #ifdef VERBOSE_INIT_ARM
    780   1.1  rearnsha 	printf("irq ");
    781  1.38   thorpej #endif
    782  1.48  rearnsha 	ifpga_intr_init();
    783   1.1  rearnsha 
    784  1.38   thorpej #ifdef VERBOSE_INIT_ARM
    785   1.1  rearnsha 	printf("done.\n");
    786  1.38   thorpej #endif
    787   1.1  rearnsha 
    788   1.1  rearnsha #ifdef IPKDB
    789   1.1  rearnsha 	/* Initialise ipkdb */
    790   1.1  rearnsha 	ipkdb_init();
    791   1.1  rearnsha 	if (boothowto & RB_KDB)
    792   1.1  rearnsha 		ipkdb_connect(0);
    793   1.1  rearnsha #endif
    794   1.1  rearnsha 
    795  1.32     ragge #if NKSYMS || defined(DDB) || defined(LKM)
    796  1.32     ragge 	/* Firmware doesn't load symbols. */
    797  1.32     ragge 	ksyms_init(0, NULL, NULL);
    798  1.32     ragge #endif
    799  1.32     ragge 
    800   1.1  rearnsha #ifdef DDB
    801   1.1  rearnsha 	db_machine_init();
    802   1.1  rearnsha 	if (boothowto & RB_KDB)
    803   1.1  rearnsha 		Debugger();
    804   1.1  rearnsha #endif
    805   1.1  rearnsha 
    806   1.1  rearnsha 	/* We return the new stack pointer address */
    807   1.1  rearnsha 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    808   1.1  rearnsha }
    809   1.1  rearnsha 
    810   1.1  rearnsha void
    811   1.1  rearnsha consinit(void)
    812   1.1  rearnsha {
    813   1.1  rearnsha 	static int consinit_called = 0;
    814   1.1  rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
    815   1.1  rearnsha 	static struct bus_space plcom_bus_space;
    816   1.1  rearnsha #endif
    817   1.1  rearnsha #if 0
    818   1.1  rearnsha 	char *console = CONSDEVNAME;
    819   1.1  rearnsha #endif
    820   1.1  rearnsha 
    821   1.1  rearnsha 	if (consinit_called != 0)
    822   1.1  rearnsha 		return;
    823   1.1  rearnsha 
    824   1.1  rearnsha 	consinit_called = 1;
    825   1.1  rearnsha 
    826   1.1  rearnsha #if NPLCOM > 0 && defined(PLCONSOLE)
    827   1.1  rearnsha 	if (PLCOMCNUNIT == 0) {
    828   1.1  rearnsha 		ifpga_create_io_bs_tag(&plcom_bus_space,
    829   1.1  rearnsha 		    (void*)UART0_BOOT_BASE);
    830   1.1  rearnsha 		if (plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
    831   1.1  rearnsha 		    IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT))
    832   1.1  rearnsha 			panic("can't init serial console");
    833   1.1  rearnsha 		return;
    834   1.1  rearnsha 	} else if (PLCOMCNUNIT == 1) {
    835   1.1  rearnsha 		ifpga_create_io_bs_tag(&plcom_bus_space,
    836   1.1  rearnsha 		    (void*)UART0_BOOT_BASE);
    837   1.1  rearnsha 		if (plcomcnattach(&plcom_bus_space, 0, plcomcnspeed,
    838   1.1  rearnsha 		    IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT))
    839   1.1  rearnsha 			panic("can't init serial console");
    840   1.1  rearnsha 		return;
    841   1.1  rearnsha 	}
    842   1.1  rearnsha #endif
    843   1.1  rearnsha #if (NCOM > 0)
    844   1.1  rearnsha 	if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
    845  1.41   thorpej 	    COM_FREQ, COM_TYPE_NORMAL, comcnmode))
    846   1.1  rearnsha 		panic("can't init serial console @%x", CONCOMADDR);
    847   1.1  rearnsha 	return;
    848   1.1  rearnsha #endif
    849   1.1  rearnsha 	panic("No serial console configured");
    850  1.23  rearnsha }
    851  1.23  rearnsha 
    852  1.23  rearnsha static void
    853  1.23  rearnsha integrator_sdram_bounds(paddr_t *memstart, psize_t *memsize)
    854  1.23  rearnsha {
    855  1.23  rearnsha 	volatile unsigned long *cm_sdram
    856  1.23  rearnsha 	    = (volatile unsigned long *)0x10000020;
    857  1.46  rearnsha 	volatile unsigned long *cm_stat
    858  1.46  rearnsha 	    = (volatile unsigned long *)0x10000010;
    859  1.23  rearnsha 
    860  1.46  rearnsha 	*memstart = *cm_stat & 0x00ff0000;
    861  1.23  rearnsha 
    862  1.46  rearnsha 	/*
    863  1.46  rearnsha 	 * Although the SSRAM overlaps the SDRAM, we can use the wrap-around
    864  1.46  rearnsha 	 * to access the entire bank.
    865  1.46  rearnsha 	 */
    866  1.23  rearnsha 	switch ((*cm_sdram >> 2) & 0x7)
    867  1.23  rearnsha 	{
    868  1.23  rearnsha 	case 0:
    869  1.23  rearnsha 		*memsize = 16 * 1024 * 1024;
    870  1.23  rearnsha 		break;
    871  1.23  rearnsha 	case 1:
    872  1.23  rearnsha 		*memsize = 32 * 1024 * 1024;
    873  1.23  rearnsha 		break;
    874  1.23  rearnsha 	case 2:
    875  1.23  rearnsha 		*memsize = 64 * 1024 * 1024;
    876  1.23  rearnsha 		break;
    877  1.23  rearnsha 	case 3:
    878  1.23  rearnsha 		*memsize = 128 * 1024 * 1024;
    879  1.23  rearnsha 		break;
    880  1.23  rearnsha 	case 4:
    881  1.46  rearnsha 		/* With 256M of memory there is no wrap-around.  */
    882  1.46  rearnsha 		*memsize = 256 * 1024 * 1024 - *memstart;
    883  1.23  rearnsha 		break;
    884  1.23  rearnsha 	default:
    885  1.23  rearnsha 		printf("CM_SDRAM retuns unknown value, using 16M\n");
    886  1.23  rearnsha 		*memsize = 16 * 1024 * 1024;
    887  1.23  rearnsha 		break;
    888  1.23  rearnsha 	}
    889   1.1  rearnsha }
    890