Home | History | Annotate | Line # | Download | only in iq80310
iq80310_machdep.c revision 1.12
      1  1.12  thorpej /*	$NetBSD: iq80310_machdep.c,v 1.12 2001/11/27 00:35:34 thorpej Exp $	*/
      2  1.12  thorpej 
      3  1.12  thorpej /*
      4  1.12  thorpej  * Copyright (c) 2001 Wasabi Systems, Inc.
      5  1.12  thorpej  * All rights reserved.
      6  1.12  thorpej  *
      7  1.12  thorpej  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  1.12  thorpej  *
      9  1.12  thorpej  * Redistribution and use in source and binary forms, with or without
     10  1.12  thorpej  * modification, are permitted provided that the following conditions
     11  1.12  thorpej  * are met:
     12  1.12  thorpej  * 1. Redistributions of source code must retain the above copyright
     13  1.12  thorpej  *    notice, this list of conditions and the following disclaimer.
     14  1.12  thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     15  1.12  thorpej  *    notice, this list of conditions and the following disclaimer in the
     16  1.12  thorpej  *    documentation and/or other materials provided with the distribution.
     17  1.12  thorpej  * 3. All advertising materials mentioning features or use of this software
     18  1.12  thorpej  *    must display the following acknowledgement:
     19  1.12  thorpej  *	This product includes software developed for the NetBSD Project by
     20  1.12  thorpej  *	Wasabi Systems, Inc.
     21  1.12  thorpej  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  1.12  thorpej  *    or promote products derived from this software without specific prior
     23  1.12  thorpej  *    written permission.
     24  1.12  thorpej  *
     25  1.12  thorpej  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  1.12  thorpej  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  1.12  thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  1.12  thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  1.12  thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  1.12  thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  1.12  thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  1.12  thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  1.12  thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  1.12  thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  1.12  thorpej  * POSSIBILITY OF SUCH DAMAGE.
     36  1.12  thorpej  */
     37   1.1     matt 
     38   1.1     matt /*
     39   1.1     matt  * Copyright (c) 1997,1998 Mark Brinicombe.
     40   1.1     matt  * Copyright (c) 1997,1998 Causality Limited.
     41   1.1     matt  * All rights reserved.
     42   1.1     matt  *
     43   1.1     matt  * Redistribution and use in source and binary forms, with or without
     44   1.1     matt  * modification, are permitted provided that the following conditions
     45   1.1     matt  * are met:
     46   1.1     matt  * 1. Redistributions of source code must retain the above copyright
     47   1.1     matt  *    notice, this list of conditions and the following disclaimer.
     48   1.1     matt  * 2. Redistributions in binary form must reproduce the above copyright
     49   1.1     matt  *    notice, this list of conditions and the following disclaimer in the
     50   1.1     matt  *    documentation and/or other materials provided with the distribution.
     51   1.1     matt  * 3. All advertising materials mentioning features or use of this software
     52   1.1     matt  *    must display the following acknowledgement:
     53   1.1     matt  *	This product includes software developed by Mark Brinicombe
     54   1.1     matt  *	for the NetBSD Project.
     55   1.1     matt  * 4. The name of the company nor the name of the author may be used to
     56   1.1     matt  *    endorse or promote products derived from this software without specific
     57   1.1     matt  *    prior written permission.
     58   1.1     matt  *
     59   1.1     matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60   1.1     matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61   1.1     matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62   1.1     matt  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63   1.1     matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64   1.1     matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65   1.1     matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66   1.1     matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67   1.1     matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68   1.1     matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69   1.1     matt  * SUCH DAMAGE.
     70   1.1     matt  *
     71   1.2  thorpej  * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
     72   1.2  thorpej  * boards using RedBoot firmware.
     73   1.1     matt  */
     74   1.1     matt 
     75   1.1     matt #include "opt_ddb.h"
     76   1.1     matt #include "opt_pmap_debug.h"
     77   1.1     matt 
     78   1.1     matt #include <sys/param.h>
     79   1.1     matt #include <sys/device.h>
     80   1.1     matt #include <sys/systm.h>
     81   1.1     matt #include <sys/kernel.h>
     82   1.1     matt #include <sys/exec.h>
     83   1.1     matt #include <sys/proc.h>
     84   1.1     matt #include <sys/msgbuf.h>
     85   1.1     matt #include <sys/reboot.h>
     86   1.1     matt #include <sys/termios.h>
     87   1.1     matt 
     88   1.1     matt #include <dev/cons.h>
     89   1.1     matt 
     90   1.1     matt #include <machine/db_machdep.h>
     91   1.1     matt #include <ddb/db_sym.h>
     92   1.1     matt #include <ddb/db_extern.h>
     93   1.1     matt 
     94   1.1     matt #include <machine/bootconfig.h>
     95   1.1     matt #include <machine/bus.h>
     96   1.1     matt #include <machine/cpu.h>
     97   1.1     matt #include <machine/frame.h>
     98  1.10  thorpej #include <arm/undefined.h>
     99   1.1     matt 
    100   1.1     matt #include <arm/xscale/i80312reg.h>
    101   1.1     matt #include <arm/xscale/i80312var.h>
    102   1.1     matt 
    103   1.3  thorpej #include <dev/pci/ppbreg.h>
    104   1.3  thorpej 
    105   1.2  thorpej #include <evbarm/iq80310/iq80310reg.h>
    106   1.2  thorpej #include <evbarm/iq80310/iq80310var.h>
    107   1.2  thorpej #include <evbarm/iq80310/obiovar.h>
    108   1.2  thorpej 
    109   1.1     matt #include "opt_ipkdb.h"
    110   1.1     matt 
    111   1.1     matt /*
    112   1.1     matt  * Address to call from cpu_reset() to reset the machine.
    113   1.1     matt  * This is machine architecture dependant as it varies depending
    114   1.1     matt  * on where the ROM appears when you turn the MMU off.
    115   1.1     matt  */
    116   1.1     matt 
    117   1.2  thorpej u_int cpu_reset_address = 0;
    118   1.1     matt 
    119   1.1     matt /* Define various stack sizes in pages */
    120   1.1     matt #define IRQ_STACK_SIZE	1
    121   1.1     matt #define ABT_STACK_SIZE	1
    122   1.1     matt #ifdef IPKDB
    123   1.1     matt #define UND_STACK_SIZE	2
    124   1.1     matt #else
    125   1.1     matt #define UND_STACK_SIZE	1
    126   1.1     matt #endif
    127   1.1     matt 
    128   1.1     matt BootConfig bootconfig;		/* Boot config storage */
    129   1.1     matt static char bootargs[MAX_BOOT_STRING + 1];
    130   1.1     matt char *boot_args = NULL;
    131   1.1     matt char *boot_file = NULL;
    132   1.1     matt 
    133   1.1     matt vm_offset_t physical_start;
    134   1.1     matt vm_offset_t physical_freestart;
    135   1.1     matt vm_offset_t physical_freeend;
    136   1.1     matt vm_offset_t physical_end;
    137   1.1     matt u_int free_pages;
    138   1.1     matt vm_offset_t pagetables_start;
    139   1.1     matt int physmem = 0;
    140   1.1     matt 
    141   1.1     matt /*int debug_flags;*/
    142   1.1     matt #ifndef PMAP_STATIC_L1S
    143   1.1     matt int max_processes = 64;			/* Default number */
    144   1.1     matt #endif	/* !PMAP_STATIC_L1S */
    145   1.1     matt 
    146   1.1     matt /* Physical and virtual addresses for some global pages */
    147   1.1     matt pv_addr_t systempage;
    148   1.1     matt pv_addr_t irqstack;
    149   1.1     matt pv_addr_t undstack;
    150   1.1     matt pv_addr_t abtstack;
    151   1.1     matt pv_addr_t kernelstack;
    152   1.8  thorpej pv_addr_t minidataclean;
    153   1.1     matt 
    154   1.1     matt vm_offset_t msgbufphys;
    155   1.1     matt 
    156   1.1     matt extern u_int data_abort_handler_address;
    157   1.1     matt extern u_int prefetch_abort_handler_address;
    158   1.1     matt extern u_int undefined_handler_address;
    159   1.1     matt 
    160   1.1     matt #ifdef PMAP_DEBUG
    161   1.1     matt extern int pmap_debug_level;
    162   1.1     matt #endif
    163   1.1     matt 
    164   1.1     matt #define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
    165   1.1     matt #define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
    166   1.3  thorpej #define	KERNEL_PT_IOPXS		2	/* Page table for mapping i80312 */
    167   1.3  thorpej #define KERNEL_PT_VMDATA	3	/* Page tables for mapping kernel VM */
    168   1.1     matt #define	KERNEL_PT_VMDATA_NUM	(KERNEL_VM_SIZE >> (PDSHIFT + 2))
    169   1.1     matt #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    170   1.1     matt 
    171   1.1     matt pt_entry_t kernel_pt_table[NUM_KERNEL_PTS];
    172   1.1     matt 
    173   1.1     matt struct user *proc0paddr;
    174   1.1     matt 
    175   1.1     matt /* Prototypes */
    176   1.1     matt 
    177   1.2  thorpej void	consinit(void);
    178   1.1     matt 
    179   1.2  thorpej void	map_section(vm_offset_t pt, vm_offset_t va, vm_offset_t pa,
    180   1.2  thorpej 	    int cacheable);
    181   1.2  thorpej void	map_pagetable(vm_offset_t pt, vm_offset_t va, vm_offset_t pa);
    182   1.2  thorpej void	map_entry(vm_offset_t pt, vm_offset_t va, vm_offset_t pa);
    183   1.2  thorpej void	map_entry_nc(vm_offset_t pt, vm_offset_t va, vm_offset_t pa);
    184   1.2  thorpej void	map_entry_ro(vm_offset_t pt, vm_offset_t va, vm_offset_t pa);
    185   1.2  thorpej vm_size_t map_chunk(vm_offset_t pd, vm_offset_t pt, vm_offset_t va,
    186   1.2  thorpej 	    vm_offset_t pa, vm_size_t size, u_int acc, u_int flg);
    187   1.2  thorpej 
    188   1.2  thorpej void	process_kernel_args(char *);
    189   1.2  thorpej void	data_abort_handler(trapframe_t *frame);
    190   1.2  thorpej void	prefetch_abort_handler(trapframe_t *frame);
    191   1.2  thorpej void	undefinedinstruction_bounce(trapframe_t *frame);
    192   1.2  thorpej 
    193   1.2  thorpej extern void parse_mi_bootargs(char *args);
    194   1.2  thorpej extern void dumpsys(void);
    195   1.1     matt 
    196   1.1     matt #include "com.h"
    197   1.2  thorpej #if NCOM > 0
    198   1.1     matt #include <dev/ic/comreg.h>
    199   1.1     matt #include <dev/ic/comvar.h>
    200   1.1     matt #endif
    201   1.1     matt 
    202   1.1     matt #ifndef CONSPEED
    203   1.2  thorpej #define CONSPEED B115200	/* What RedBoot uses */
    204   1.1     matt #endif
    205   1.1     matt #ifndef CONMODE
    206   1.1     matt #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    207   1.1     matt #endif
    208   1.1     matt 
    209   1.1     matt int comcnspeed = CONSPEED;
    210   1.1     matt int comcnmode = CONMODE;
    211   1.1     matt 
    212   1.1     matt /*
    213   1.1     matt  * void cpu_reboot(int howto, char *bootstr)
    214   1.1     matt  *
    215   1.1     matt  * Reboots the system
    216   1.1     matt  *
    217   1.1     matt  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    218   1.1     matt  * then reset the CPU.
    219   1.1     matt  */
    220   1.1     matt void
    221   1.1     matt cpu_reboot(int howto, char *bootstr)
    222   1.1     matt {
    223   1.1     matt #ifdef DIAGNOSTIC
    224   1.1     matt 	/* info */
    225   1.1     matt 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
    226   1.1     matt #endif
    227   1.1     matt 
    228   1.1     matt 	/*
    229   1.1     matt 	 * If we are still cold then hit the air brakes
    230   1.1     matt 	 * and crash to earth fast
    231   1.1     matt 	 */
    232   1.1     matt 	if (cold) {
    233   1.1     matt 		doshutdownhooks();
    234   1.1     matt 		printf("The operating system has halted.\n");
    235   1.1     matt 		printf("Please press any key to reboot.\n\n");
    236   1.1     matt 		cngetc();
    237   1.1     matt 		printf("rebooting...\n");
    238   1.1     matt 		cpu_reset();
    239   1.1     matt 		/*NOTREACHED*/
    240   1.1     matt 	}
    241   1.1     matt 
    242   1.1     matt 	/* Disable console buffering */
    243   1.1     matt /*	cnpollc(1);*/
    244   1.1     matt 
    245   1.1     matt 	/*
    246   1.1     matt 	 * If RB_NOSYNC was not specified sync the discs.
    247   1.2  thorpej 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    248   1.2  thorpej 	 * unmount.  It looks like syslogd is getting woken up only to find
    249   1.2  thorpej 	 * that it cannot page part of the binary in as the filesystem has
    250   1.2  thorpej 	 * been unmounted.
    251   1.1     matt 	 */
    252   1.1     matt 	if (!(howto & RB_NOSYNC))
    253   1.1     matt 		bootsync();
    254   1.1     matt 
    255   1.1     matt 	/* Say NO to interrupts */
    256   1.1     matt 	splhigh();
    257   1.1     matt 
    258   1.1     matt 	/* Do a dump if requested. */
    259   1.1     matt 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    260   1.1     matt 		dumpsys();
    261   1.1     matt 
    262   1.1     matt 	/* Run any shutdown hooks */
    263   1.1     matt 	doshutdownhooks();
    264   1.1     matt 
    265   1.1     matt 	/* Make sure IRQ's are disabled */
    266   1.1     matt 	IRQdisable;
    267   1.1     matt 
    268   1.1     matt 	if (howto & RB_HALT) {
    269   1.1     matt 		printf("The operating system has halted.\n");
    270   1.1     matt 		printf("Please press any key to reboot.\n\n");
    271   1.1     matt 		cngetc();
    272   1.1     matt 	}
    273   1.1     matt 
    274   1.1     matt 	printf("rebooting...\n");
    275   1.1     matt 	cpu_reset();
    276   1.1     matt 	/*NOTREACHED*/
    277   1.1     matt }
    278   1.1     matt 
    279   1.1     matt /*
    280   1.1     matt  * Mapping table for core kernel memory. This memory is mapped at init
    281   1.1     matt  * time with section mappings.
    282   1.1     matt  */
    283   1.1     matt struct l1_sec_map {
    284   1.1     matt 	vaddr_t	va;
    285   1.1     matt 	vaddr_t	pa;
    286   1.1     matt 	vsize_t	size;
    287   1.1     matt 	int flags;
    288   1.1     matt } l1_sec_table[] = {
    289   1.2  thorpej     /*
    290   1.2  thorpej      * Map the on-board devices VA == PA so that we can access them
    291   1.2  thorpej      * with the MMU on or off.
    292   1.2  thorpej      */
    293   1.2  thorpej     {
    294   1.2  thorpej 	IQ80310_OBIO_BASE,
    295   1.2  thorpej 	IQ80310_OBIO_BASE,
    296   1.2  thorpej 	IQ80310_OBIO_SIZE,
    297   1.2  thorpej 	0,
    298   1.2  thorpej     },
    299   1.2  thorpej 
    300   1.1     matt     {
    301   1.1     matt 	0,
    302   1.1     matt 	0,
    303   1.1     matt 	0,
    304   1.1     matt 	0,
    305   1.1     matt     }
    306   1.1     matt };
    307   1.1     matt 
    308   1.1     matt /*
    309   1.2  thorpej  * u_int initarm(...)
    310   1.1     matt  *
    311   1.1     matt  * Initial entry point on startup. This gets called before main() is
    312   1.1     matt  * entered.
    313   1.1     matt  * It should be responsible for setting up everything that must be
    314   1.1     matt  * in place when main is called.
    315   1.1     matt  * This includes
    316   1.1     matt  *   Taking a copy of the boot configuration structure.
    317   1.1     matt  *   Initialising the physical console so characters can be printed.
    318   1.1     matt  *   Setting up page tables for the kernel
    319   1.1     matt  *   Relocating the kernel to the bottom of physical memory
    320   1.1     matt  */
    321   1.1     matt u_int
    322   1.2  thorpej initarm(void)
    323   1.1     matt {
    324   1.8  thorpej 	extern vaddr_t xscale_cache_clean_addr, xscale_minidata_clean_addr;
    325   1.8  thorpej 	extern vsize_t xscale_minidata_clean_size;
    326   1.1     matt 	int loop;
    327   1.1     matt 	int loop1;
    328   1.1     matt 	u_int l1pagetable;
    329   1.1     matt 	u_int l2pagetable;
    330   1.1     matt 	extern char page0[], page0_end[];
    331   1.1     matt 	pv_addr_t kernel_l1pt;
    332   1.1     matt 	pv_addr_t kernel_ptpt;
    333   1.2  thorpej 	paddr_t memstart;
    334   1.2  thorpej 	psize_t memsize;
    335   1.2  thorpej 
    336   1.2  thorpej 	/*
    337   1.2  thorpej 	 * Clear out the 7-segment display.  Whee, the first visual
    338   1.2  thorpej 	 * indication that we're running kernel code.
    339   1.2  thorpej 	 */
    340   1.2  thorpej 	iq80310_7seg(' ', ' ');
    341   1.1     matt 
    342   1.1     matt 	/*
    343   1.1     matt 	 * Heads up ... Setup the CPU / MMU / TLB functions
    344   1.1     matt 	 */
    345   1.1     matt 	if (set_cpufuncs())
    346   1.1     matt 		panic("cpu not recognized!");
    347   1.1     matt 
    348   1.2  thorpej 	/* Calibrate the delay loop. */
    349   1.2  thorpej 	iq80310_calibrate_delay();
    350   1.1     matt 
    351   1.1     matt 	/*
    352   1.2  thorpej 	 * Since we map the on-board devices VA==PA, and the kernel
    353   1.2  thorpej 	 * is running VA==PA, it's possible for us to initialize
    354   1.2  thorpej 	 * the console now.
    355   1.1     matt 	 */
    356   1.2  thorpej 	consinit();
    357   1.1     matt 
    358   1.1     matt 	/* Talk to the user */
    359   1.2  thorpej 	printf("\nNetBSD/evbarm (IQ80310) booting ...\n");
    360   1.1     matt 
    361   1.1     matt 	/*
    362   1.3  thorpej 	 * Reset the secondary PCI bus.  RedBoot doesn't stop devices
    363   1.3  thorpej 	 * on the PCI bus before handing us control, so we have to
    364   1.3  thorpej 	 * do this.
    365   1.3  thorpej 	 *
    366   1.3  thorpej 	 * XXX This is arguably a bug in RedBoot, and doing this reset
    367   1.3  thorpej 	 * XXX could be problematic in the future if we encounter an
    368   1.3  thorpej 	 * XXX application where the PPB in the i80312 is used as a
    369   1.3  thorpej 	 * XXX PPB.
    370   1.3  thorpej 	 */
    371   1.3  thorpej 	{
    372   1.3  thorpej 		uint32_t reg;
    373   1.3  thorpej 
    374   1.3  thorpej 		printf("Resetting secondary PCI bus...\n");
    375   1.3  thorpej 		reg = bus_space_read_4(&obio_bs_tag,
    376   1.3  thorpej 		    I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL);
    377   1.3  thorpej 		bus_space_write_4(&obio_bs_tag,
    378   1.3  thorpej 		    I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
    379   1.3  thorpej 		    reg | PPB_BC_SECONDARY_RESET);
    380   1.3  thorpej 		delay(10 * 1000);	/* 10ms enough? */
    381   1.3  thorpej 		bus_space_write_4(&obio_bs_tag,
    382   1.3  thorpej 		    I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
    383   1.3  thorpej 		    reg);
    384   1.3  thorpej 	}
    385   1.3  thorpej 
    386   1.3  thorpej 	/*
    387   1.2  thorpej 	 * Okay, RedBoot has provided us with the following memory map:
    388   1.2  thorpej 	 *
    389   1.2  thorpej 	 * Physical Address Range     Description
    390   1.2  thorpej 	 * -----------------------    ----------------------------------
    391   1.2  thorpej 	 * 0x00000000 - 0x00000fff    flash Memory
    392   1.2  thorpej 	 * 0x00001000 - 0x00001fff    80312 Internal Registers
    393   1.2  thorpej 	 * 0x00002000 - 0x007fffff    flash Memory
    394   1.2  thorpej 	 * 0x00800000 - 0x7fffffff    PCI ATU Outbound Direct Window
    395   1.2  thorpej 	 * 0x80000000 - 0x83ffffff    Primary PCI 32-bit Memory
    396   1.2  thorpej 	 * 0x84000000 - 0x87ffffff    Primary PCI 64-bit Memory
    397   1.2  thorpej 	 * 0x88000000 - 0x8bffffff    Secondary PCI 32-bit Memory
    398   1.2  thorpej 	 * 0x8c000000 - 0x8fffffff    Secondary PCI 64-bit Memory
    399   1.2  thorpej 	 * 0x90000000 - 0x9000ffff    Primary PCI IO Space
    400   1.2  thorpej 	 * 0x90010000 - 0x9001ffff    Secondary PCI IO Space
    401   1.2  thorpej 	 * 0x90020000 - 0x9fffffff    Unused
    402   1.2  thorpej 	 * 0xa0000000 - 0xbfffffff    SDRAM
    403   1.2  thorpej 	 * 0xc0000000 - 0xefffffff    Unused
    404   1.2  thorpej 	 * 0xf0000000 - 0xffffffff    80200 Internal Registers
    405   1.2  thorpej 	 *
    406   1.1     matt 	 *
    407   1.2  thorpej 	 * Virtual Address Range    C B  Description
    408   1.2  thorpej 	 * -----------------------  - -  ----------------------------------
    409   1.2  thorpej 	 * 0x00000000 - 0x00000fff  Y Y  SDRAM
    410   1.2  thorpej 	 * 0x00001000 - 0x00001fff  N N  80312 Internal Registers
    411   1.2  thorpej 	 * 0x00002000 - 0x007fffff  Y N  flash Memory
    412   1.2  thorpej 	 * 0x00800000 - 0x7fffffff  N N  PCI ATU Outbound Direct Window
    413   1.2  thorpej 	 * 0x80000000 - 0x83ffffff  N N  Primary PCI 32-bit Memory
    414   1.2  thorpej 	 * 0x84000000 - 0x87ffffff  N N  Primary PCI 64-bit Memory
    415   1.2  thorpej 	 * 0x88000000 - 0x8bffffff  N N  Secondary PCI 32-bit Memory
    416   1.2  thorpej 	 * 0x8c000000 - 0x8fffffff  N N  Secondary PCI 64-bit Memory
    417   1.2  thorpej 	 * 0x90000000 - 0x9000ffff  N N  Primary PCI IO Space
    418   1.2  thorpej 	 * 0x90010000 - 0x9001ffff  N N  Secondary PCI IO Space
    419   1.2  thorpej 	 * 0xa0000000 - 0xa0000fff  Y N  flash
    420   1.2  thorpej 	 * 0xa0001000 - 0xbfffffff  Y Y  SDRAM
    421   1.2  thorpej 	 * 0xc0000000 - 0xcfffffff  Y Y  Cache Flush Region
    422   1.2  thorpej 	 * 0xf0000000 - 0xffffffff  N N  80200 Internal Registers
    423   1.1     matt 	 *
    424   1.2  thorpej 	 * The first level page table is at 0xa0004000.  There are also
    425   1.2  thorpej 	 * 2 second-level tables at 0xa0008000 and 0xa0008400.
    426   1.1     matt 	 *
    427   1.2  thorpej 	 * This corresponds roughly to the physical memory map, i.e.
    428   1.2  thorpej 	 * we are quite nearly running VA==PA.
    429   1.1     matt 	 */
    430   1.1     matt 
    431   1.1     matt 	/*
    432   1.1     matt 	 * Examine the boot args string for options we need to know about
    433   1.1     matt 	 * now.
    434   1.1     matt 	 */
    435   1.1     matt #if 0
    436   1.1     matt 	process_kernel_args((char *)nwbootinfo.bt_args);
    437   1.1     matt #endif
    438   1.1     matt 
    439   1.2  thorpej 	/*
    440   1.2  thorpej 	 * Fetch the SDRAM start/size from the i80312 SDRAM configration
    441   1.2  thorpej 	 * registers.
    442   1.2  thorpej 	 */
    443   1.3  thorpej 	i80312_sdram_bounds(&obio_bs_tag, I80312_PMMR_BASE + I80312_MEM_BASE,
    444   1.3  thorpej 	    &memstart, &memsize);
    445   1.2  thorpej 
    446   1.1     matt 	printf("initarm: Configuring system ...\n");
    447   1.1     matt 
    448   1.2  thorpej 	/* Fake bootconfig structure for the benefit of pmap.c */
    449   1.2  thorpej 	/* XXX must make the memory description h/w independant */
    450   1.2  thorpej 	bootconfig.dramblocks = 1;
    451   1.2  thorpej 	bootconfig.dram[0].address = memstart;
    452   1.2  thorpej 	bootconfig.dram[0].pages = memsize / NBPG;
    453   1.2  thorpej 
    454   1.1     matt 	/*
    455   1.1     matt 	 * Set up the variables that define the availablilty of
    456   1.2  thorpej 	 * physical memory.  For now, we're going to set
    457   1.2  thorpej 	 * physical_freestart to 0xa0200000 (where the kernel
    458   1.2  thorpej 	 * was loaded), and allocate the memory we need downwards.
    459   1.2  thorpej 	 * If we get too close to the page tables that RedBoot
    460   1.2  thorpej 	 * set up, we will panic.  We will update physical_freestart
    461   1.2  thorpej 	 * and physical_freeend later to reflect what pmap_bootstrap()
    462   1.2  thorpej 	 * wants to see.
    463   1.2  thorpej 	 *
    464   1.2  thorpej 	 * XXX pmap_bootstrap() needs an enema.
    465   1.1     matt 	 */
    466   1.2  thorpej 	physical_start = bootconfig.dram[0].address;
    467   1.2  thorpej 	physical_end = physical_start + (bootconfig.dram[0].pages * NBPG);
    468   1.2  thorpej 
    469   1.2  thorpej 	physical_freestart = 0xa0009000UL;
    470   1.2  thorpej 	physical_freeend = 0xa0200000UL;
    471   1.2  thorpej 
    472   1.1     matt 	physmem = (physical_end - physical_start) / NBPG;
    473   1.1     matt 
    474   1.1     matt 	/* Tell the user about the memory */
    475   1.1     matt 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    476   1.1     matt 	    physical_start, physical_end - 1);
    477   1.1     matt 
    478   1.1     matt 	/*
    479   1.2  thorpej 	 * Okay, the kernel starts 2MB in from the bottom of physical
    480   1.2  thorpej 	 * memory.  We are going to allocate our bootstrap pages downwards
    481   1.2  thorpej 	 * from there.
    482   1.2  thorpej 	 *
    483   1.2  thorpej 	 * We need to allocate some fixed page tables to get the kernel
    484   1.2  thorpej 	 * going.  We allocate one page directory and a number of page
    485   1.2  thorpej 	 * tables and store the physical addresses in the kernel_pt_table
    486   1.2  thorpej 	 * array.
    487   1.1     matt 	 *
    488   1.2  thorpej 	 * The kernel page directory must be on a 16K boundary.  The page
    489   1.2  thorpej 	 * tables must be on 4K bounaries.  What we do is allocate the
    490   1.2  thorpej 	 * page directory on the first 16K boundary that we encounter, and
    491   1.2  thorpej 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    492   1.2  thorpej 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    493   1.2  thorpej 	 * least one 16K aligned region.
    494   1.1     matt 	 */
    495   1.1     matt 
    496   1.1     matt #ifdef VERBOSE_INIT_ARM
    497   1.1     matt 	printf("Allocating page tables\n");
    498   1.1     matt #endif
    499   1.1     matt 
    500   1.2  thorpej 	free_pages = (physical_freeend - physical_freestart) / NBPG;
    501   1.1     matt 
    502   1.1     matt #ifdef VERBOSE_INIT_ARM
    503   1.2  thorpej 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    504   1.1     matt 	       physical_freestart, free_pages, free_pages);
    505   1.1     matt #endif
    506   1.1     matt 
    507   1.1     matt 	/* Define a macro to simplify memory allocation */
    508   1.2  thorpej #define	valloc_pages(var, np)				\
    509   1.2  thorpej 	alloc_pages((var).pv_pa, (np));			\
    510   1.1     matt 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    511   1.1     matt 
    512   1.2  thorpej #define alloc_pages(var, np)				\
    513   1.2  thorpej 	physical_freeend -= ((np) * NBPG);		\
    514   1.2  thorpej 	if (physical_freeend < physical_freestart)	\
    515   1.2  thorpej 		panic("initarm: out of memory");	\
    516   1.2  thorpej 	(var) = physical_freeend;			\
    517   1.2  thorpej 	free_pages -= (np);				\
    518   1.1     matt 	memset((char *)(var), 0, ((np) * NBPG));
    519   1.1     matt 
    520   1.1     matt 	loop1 = 0;
    521   1.1     matt 	kernel_l1pt.pv_pa = 0;
    522   1.1     matt 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    523   1.1     matt 		/* Are we 16KB aligned for an L1 ? */
    524   1.2  thorpej 		if (((physical_freeend - PD_SIZE) & (PD_SIZE - 1)) == 0
    525   1.1     matt 		    && kernel_l1pt.pv_pa == 0) {
    526   1.1     matt 			valloc_pages(kernel_l1pt, PD_SIZE / NBPG);
    527   1.1     matt 		} else {
    528   1.1     matt 			alloc_pages(kernel_pt_table[loop1], PT_SIZE / NBPG);
    529   1.1     matt 			++loop1;
    530   1.1     matt 		}
    531   1.1     matt 	}
    532   1.1     matt 
    533   1.1     matt 	/* This should never be able to happen but better confirm that. */
    534   1.1     matt 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (PD_SIZE-1)) != 0)
    535   1.1     matt 		panic("initarm: Failed to align the kernel page directory\n");
    536   1.1     matt 
    537   1.1     matt 	/*
    538   1.1     matt 	 * Allocate a page for the system page mapped to V0x00000000
    539   1.1     matt 	 * This page will just contain the system vectors and can be
    540   1.1     matt 	 * shared by all processes.
    541   1.1     matt 	 */
    542   1.1     matt 	alloc_pages(systempage.pv_pa, 1);
    543   1.1     matt 
    544   1.2  thorpej 	/* Allocate a page for the page table to map kernel page tables. */
    545   1.1     matt 	valloc_pages(kernel_ptpt, PT_SIZE / NBPG);
    546   1.1     matt 
    547   1.1     matt 	/* Allocate stacks for all modes */
    548   1.1     matt 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    549   1.1     matt 	valloc_pages(abtstack, ABT_STACK_SIZE);
    550   1.1     matt 	valloc_pages(undstack, UND_STACK_SIZE);
    551   1.1     matt 	valloc_pages(kernelstack, UPAGES);
    552   1.1     matt 
    553   1.8  thorpej 	/* Allocate enough pages for cleaning the Mini-Data cache. */
    554   1.8  thorpej 	KASSERT(xscale_minidata_clean_size <= NBPG);
    555   1.8  thorpej 	valloc_pages(minidataclean, 1);
    556   1.8  thorpej 	xscale_minidata_clean_addr = minidataclean.pv_va;
    557   1.8  thorpej 
    558   1.1     matt #ifdef VERBOSE_INIT_ARM
    559   1.2  thorpej 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    560   1.2  thorpej 	    irqstack.pv_va);
    561   1.2  thorpej 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    562   1.2  thorpej 	    abtstack.pv_va);
    563   1.2  thorpej 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    564   1.2  thorpej 	    undstack.pv_va);
    565   1.2  thorpej 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    566   1.2  thorpej 	    kernelstack.pv_va);
    567   1.1     matt #endif
    568   1.1     matt 
    569   1.2  thorpej 	/*
    570   1.2  thorpej 	 * XXX Defer this to later so that we can reclaim the memory
    571   1.2  thorpej 	 * XXX used by the RedBoot page tables.
    572   1.2  thorpej 	 */
    573   1.1     matt 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / NBPG);
    574   1.1     matt 
    575   1.1     matt 	/*
    576   1.1     matt 	 * Ok we have allocated physical pages for the primary kernel
    577   1.1     matt 	 * page tables
    578   1.1     matt 	 */
    579   1.1     matt 
    580   1.1     matt #ifdef VERBOSE_INIT_ARM
    581   1.2  thorpej 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    582   1.1     matt #endif
    583   1.1     matt 
    584   1.1     matt 	/*
    585   1.1     matt 	 * Now we start consturction of the L1 page table
    586   1.1     matt 	 * We start by mapping the L2 page tables into the L1.
    587   1.1     matt 	 * This means that we can replace L1 mappings later on if necessary
    588   1.1     matt 	 */
    589   1.1     matt 	l1pagetable = kernel_l1pt.pv_pa;
    590   1.1     matt 
    591   1.1     matt 	/* Map the L2 pages tables in the L1 page table */
    592   1.1     matt 	map_pagetable(l1pagetable, 0x00000000,
    593   1.1     matt 	    kernel_pt_table[KERNEL_PT_SYS]);
    594   1.1     matt 	map_pagetable(l1pagetable, KERNEL_BASE,
    595   1.1     matt 	    kernel_pt_table[KERNEL_PT_KERNEL]);
    596   1.3  thorpej 	map_pagetable(l1pagetable, IQ80310_IOPXS_VBASE,
    597   1.3  thorpej 	    kernel_pt_table[KERNEL_PT_IOPXS]);
    598   1.1     matt 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
    599   1.1     matt 		map_pagetable(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    600   1.1     matt 		    kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    601   1.1     matt 	map_pagetable(l1pagetable, PROCESS_PAGE_TBLS_BASE,
    602   1.1     matt 	    kernel_ptpt.pv_pa);
    603   1.1     matt 
    604   1.1     matt #ifdef VERBOSE_INIT_ARM
    605   1.1     matt 	printf("Mapping kernel\n");
    606   1.1     matt #endif
    607   1.1     matt 
    608   1.1     matt 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    609   1.1     matt 	l2pagetable = kernel_pt_table[KERNEL_PT_KERNEL];
    610   1.1     matt 
    611   1.1     matt 	{
    612   1.2  thorpej 		extern char etext[], _end[];
    613   1.2  thorpej 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    614   1.2  thorpej 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    615   1.1     matt 		u_int logical;
    616   1.1     matt 
    617   1.2  thorpej 		/* Round down text size and round up total size. */
    618   1.1     matt 		textsize = textsize & ~PGOFSET;
    619   1.1     matt 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    620   1.2  thorpej 
    621   1.2  thorpej 		logical = 0x00200000;	/* offset of kernel in RAM */
    622   1.2  thorpej 
    623   1.2  thorpej 		/*
    624   1.2  thorpej 		 * This maps the kernel text/data/bss VA==PA.
    625   1.2  thorpej 		 */
    626   1.1     matt 		logical += map_chunk(0, l2pagetable, KERNEL_BASE + logical,
    627   1.1     matt 		    physical_start + logical, textsize,
    628   1.1     matt 		    AP_KRW, PT_CACHEABLE);
    629   1.1     matt 		logical += map_chunk(0, l2pagetable, KERNEL_BASE + logical,
    630   1.1     matt 		    physical_start + logical, totalsize - textsize,
    631   1.1     matt 		    AP_KRW, PT_CACHEABLE);
    632   1.2  thorpej 
    633   1.2  thorpej #if 0 /* XXX No symbols yet. */
    634   1.1     matt 		logical += map_chunk(0, l2pagetable, KERNEL_BASE + logical,
    635   1.1     matt 		    physical_start + logical, kernexec->a_syms + sizeof(int)
    636   1.1     matt 		    + *(u_int *)((int)end + kernexec->a_syms + sizeof(int)),
    637   1.1     matt 		    AP_KRW, PT_CACHEABLE);
    638   1.1     matt #endif
    639   1.1     matt 	}
    640   1.1     matt 
    641   1.1     matt #ifdef VERBOSE_INIT_ARM
    642   1.1     matt 	printf("Constructing L2 page tables\n");
    643   1.1     matt #endif
    644   1.1     matt 
    645   1.1     matt 	/* Map the stack pages */
    646   1.1     matt 	map_chunk(0, l2pagetable, irqstack.pv_va, irqstack.pv_pa,
    647   1.1     matt 	    IRQ_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
    648   1.1     matt 	map_chunk(0, l2pagetable, abtstack.pv_va, abtstack.pv_pa,
    649   1.1     matt 	    ABT_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
    650   1.1     matt 	map_chunk(0, l2pagetable, undstack.pv_va, undstack.pv_pa,
    651   1.1     matt 	    UND_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
    652   1.1     matt 	map_chunk(0, l2pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    653   1.1     matt 	    UPAGES * NBPG, AP_KRW, PT_CACHEABLE);
    654   1.1     matt 	map_chunk(0, l2pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    655   1.1     matt 	    PD_SIZE, AP_KRW, 0);
    656   1.1     matt 
    657   1.8  thorpej 	/* Map the Mini-Data cache clean area. */
    658   1.8  thorpej 	map_chunk(0, l2pagetable, minidataclean.pv_va, minidataclean.pv_pa,
    659   1.8  thorpej 	    NBPG, AP_KRW, PT_CACHEABLE);
    660   1.8  thorpej 
    661   1.1     matt 	/* Map the page table that maps the kernel pages */
    662   1.1     matt 	map_entry_nc(l2pagetable, kernel_ptpt.pv_pa, kernel_ptpt.pv_pa);
    663   1.1     matt 
    664   1.1     matt 	/*
    665   1.1     matt 	 * Map entries in the page table used to map PTE's
    666   1.1     matt 	 * Basically every kernel page table gets mapped here
    667   1.1     matt 	 */
    668   1.1     matt 	/* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */
    669   1.1     matt 	l2pagetable = kernel_ptpt.pv_pa;
    670   1.1     matt 	map_entry_nc(l2pagetable, (KERNEL_BASE >> (PGSHIFT-2)),
    671   1.1     matt 	    kernel_pt_table[KERNEL_PT_KERNEL]);
    672   1.1     matt 	map_entry_nc(l2pagetable, (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT-2)),
    673   1.1     matt 	    kernel_ptpt.pv_pa);
    674   1.1     matt 	map_entry_nc(l2pagetable, (0x00000000 >> (PGSHIFT-2)),
    675   1.1     matt 	    kernel_pt_table[KERNEL_PT_SYS]);
    676   1.1     matt 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
    677   1.1     matt 		map_entry_nc(l2pagetable, ((KERNEL_VM_BASE +
    678   1.1     matt 		    (loop * 0x00400000)) >> (PGSHIFT-2)),
    679   1.1     matt 		    kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    680   1.1     matt 
    681   1.1     matt 	/*
    682   1.1     matt 	 * Map the system page in the kernel page table for the bottom 1Meg
    683   1.1     matt 	 * of the virtual memory map.
    684   1.1     matt 	 */
    685   1.1     matt 	l2pagetable = kernel_pt_table[KERNEL_PT_SYS];
    686   1.1     matt 	map_entry(l2pagetable, 0x00000000, systempage.pv_pa);
    687   1.1     matt 
    688   1.3  thorpej 	/*
    689   1.3  thorpej 	 * Map devices we can map w/ section mappings.
    690   1.3  thorpej 	 */
    691   1.1     matt 	loop = 0;
    692   1.1     matt 	while (l1_sec_table[loop].size) {
    693   1.1     matt 		vm_size_t sz;
    694   1.1     matt 
    695   1.1     matt #ifdef VERBOSE_INIT_ARM
    696   1.1     matt 		printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
    697   1.1     matt 		    l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
    698   1.1     matt 		    l1_sec_table[loop].va);
    699   1.1     matt #endif
    700   1.1     matt 		for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_SEC_SIZE)
    701   1.1     matt 			map_section(l1pagetable, l1_sec_table[loop].va + sz,
    702   1.1     matt 			    l1_sec_table[loop].pa + sz,
    703   1.1     matt 			    l1_sec_table[loop].flags);
    704   1.1     matt 		++loop;
    705   1.1     matt 	}
    706   1.3  thorpej 
    707   1.3  thorpej 	/*
    708   1.3  thorpej 	 * Map the PCI I/O spaces and i80312 registers.  These are too
    709   1.3  thorpej 	 * small to be mapped w/ section mappings.
    710   1.3  thorpej 	 */
    711   1.3  thorpej 	l2pagetable = kernel_pt_table[KERNEL_PT_IOPXS];
    712   1.3  thorpej #ifdef VERBOSE_INIT_ARM
    713   1.3  thorpej 	printf("Mapping PIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
    714   1.3  thorpej 	    I80312_PCI_XLATE_PIOW_BASE,
    715   1.3  thorpej 	    I80312_PCI_XLATE_PIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
    716   1.3  thorpej 	    IQ80310_PIOW_VBASE);
    717   1.3  thorpej #endif
    718   1.3  thorpej 	map_chunk(0, l2pagetable, IQ80310_PIOW_VBASE,
    719   1.3  thorpej 	    I80312_PCI_XLATE_PIOW_BASE, I80312_PCI_XLATE_IOSIZE, AP_KRW, 0);
    720   1.3  thorpej 
    721   1.3  thorpej #ifdef VERBOSE_INIT_ARM
    722   1.3  thorpej 	printf("Mapping SIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
    723   1.3  thorpej 	    I80312_PCI_XLATE_SIOW_BASE,
    724   1.3  thorpej 	    I80312_PCI_XLATE_SIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
    725   1.3  thorpej 	    IQ80310_SIOW_VBASE);
    726   1.3  thorpej #endif
    727   1.3  thorpej 	map_chunk(0, l2pagetable, IQ80310_SIOW_VBASE,
    728   1.3  thorpej 	    I80312_PCI_XLATE_SIOW_BASE, I80312_PCI_XLATE_IOSIZE, AP_KRW, 0);
    729   1.3  thorpej 
    730   1.3  thorpej #ifdef VERBOSE_INIT_ARM
    731   1.4  thorpej 	printf("Mapping 80312 0x%08lx -> 0x%08lx @ 0x%08lx\n",
    732   1.3  thorpej 	    I80312_PMMR_BASE,
    733   1.3  thorpej 	    I80312_PMMR_BASE + I80312_PMMR_SIZE - 1,
    734   1.3  thorpej 	    IQ80310_80312_VBASE);
    735   1.3  thorpej #endif
    736   1.3  thorpej 	map_chunk(0, l2pagetable, IQ80310_80312_VBASE,
    737   1.3  thorpej 	    I80312_PMMR_BASE, I80312_PMMR_SIZE, AP_KRW, 0);
    738   1.8  thorpej 
    739   1.8  thorpej 	/*
    740   1.8  thorpej 	 * Give the XScale global cache clean code an appropriately
    741   1.8  thorpej 	 * sized chunk of unmapped VA space starting at 0xff000000
    742   1.8  thorpej 	 * (our device mappings end before this address).
    743   1.8  thorpej 	 */
    744   1.8  thorpej 	xscale_cache_clean_addr = 0xff000000U;
    745   1.1     matt 
    746   1.1     matt 	/*
    747   1.1     matt 	 * Now we have the real page tables in place so we can switch to them.
    748   1.2  thorpej 	 * Once this is done we will be running with the REAL kernel page
    749   1.2  thorpej 	 * tables.
    750   1.2  thorpej 	 */
    751   1.2  thorpej 
    752   1.2  thorpej 	/*
    753   1.2  thorpej 	 * Update the physical_freestart/physical_freeend/free_pages
    754   1.2  thorpej 	 * variables.
    755   1.1     matt 	 */
    756   1.2  thorpej 	{
    757   1.2  thorpej 		extern char _end[];
    758   1.2  thorpej 
    759   1.2  thorpej 		physical_freestart = (((uintptr_t) _end) + PGOFSET) & ~PGOFSET;
    760   1.2  thorpej 		physical_freeend = physical_end;
    761   1.2  thorpej 		free_pages = (physical_freeend - physical_freestart) / NBPG;
    762   1.2  thorpej 	}
    763   1.1     matt 
    764   1.1     matt 	/* Switch tables */
    765   1.1     matt #ifdef VERBOSE_INIT_ARM
    766   1.2  thorpej 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    767   1.1     matt 	       physical_freestart, free_pages, free_pages);
    768   1.1     matt 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    769   1.1     matt #endif
    770   1.1     matt 	setttb(kernel_l1pt.pv_pa);
    771   1.1     matt 
    772   1.1     matt #ifdef VERBOSE_INIT_ARM
    773   1.1     matt 	printf("done!\n");
    774   1.1     matt #endif
    775   1.1     matt 
    776   1.1     matt #ifdef VERBOSE_INIT_ARM
    777   1.1     matt 	printf("bootstrap done.\n");
    778   1.1     matt #endif
    779   1.1     matt 
    780   1.2  thorpej 	/* Right, set up the vectors at the bottom of page 0 */
    781   1.1     matt 	memcpy((char *)0x00000000, page0, page0_end - page0);
    782   1.1     matt 
    783   1.1     matt 	/* We have modified a text page so sync the icache */
    784   1.1     matt 	cpu_cache_syncI();
    785   1.1     matt 
    786   1.1     matt 	/*
    787   1.1     matt 	 * Pages were allocated during the secondary bootstrap for the
    788   1.1     matt 	 * stacks for different CPU modes.
    789   1.1     matt 	 * We must now set the r13 registers in the different CPU modes to
    790   1.1     matt 	 * point to these stacks.
    791   1.1     matt 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    792   1.1     matt 	 * of the stack memory.
    793   1.1     matt 	 */
    794   1.1     matt 	printf("init subsystems: stacks ");
    795   1.1     matt 
    796   1.1     matt 	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * NBPG);
    797   1.1     matt 	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * NBPG);
    798   1.1     matt 	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * NBPG);
    799   1.1     matt 
    800   1.1     matt 	/*
    801   1.1     matt 	 * Well we should set a data abort handler.
    802   1.2  thorpej 	 * Once things get going this will change as we will need a proper
    803   1.2  thorpej 	 * handler.
    804   1.1     matt 	 * Until then we will use a handler that just panics but tells us
    805   1.1     matt 	 * why.
    806   1.1     matt 	 * Initialisation of the vectors will just panic on a data abort.
    807   1.1     matt 	 * This just fills in a slighly better one.
    808   1.1     matt 	 */
    809   1.1     matt 	printf("vectors ");
    810   1.1     matt 	data_abort_handler_address = (u_int)data_abort_handler;
    811   1.1     matt 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    812   1.1     matt 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    813   1.1     matt 
    814   1.1     matt 	/* At last !
    815   1.1     matt 	 * We now have the kernel in physical memory from the bottom upwards.
    816   1.1     matt 	 * Kernel page tables are physically above this.
    817   1.1     matt 	 * The kernel is mapped to KERNEL_TEXT_BASE
    818   1.1     matt 	 * The kernel data PTs will handle the mapping of 0xf1000000-0xf3ffffff
    819   1.1     matt 	 * The page tables are mapped to 0xefc00000
    820   1.1     matt 	 */
    821   1.1     matt 
    822   1.1     matt 	/* Initialise the undefined instruction handlers */
    823   1.1     matt 	printf("undefined ");
    824   1.1     matt 	undefined_init();
    825   1.1     matt 
    826   1.1     matt 	/* Boot strap pmap telling it where the kernel page table is */
    827   1.1     matt 	printf("pmap ");
    828   1.1     matt 	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, kernel_ptpt);
    829   1.1     matt 
    830   1.1     matt 	/* Setup the IRQ system */
    831   1.1     matt 	printf("irq ");
    832   1.1     matt 	irq_init();
    833   1.1     matt 	printf("done.\n");
    834   1.1     matt 
    835   1.1     matt #ifdef IPKDB
    836   1.1     matt 	/* Initialise ipkdb */
    837   1.1     matt 	ipkdb_init();
    838   1.1     matt 	if (boothowto & RB_KDB)
    839   1.1     matt 		ipkdb_connect(0);
    840   1.1     matt #endif
    841   1.1     matt 
    842   1.1     matt #ifdef DDB
    843   1.1     matt 	db_machine_init();
    844   1.7  thorpej 
    845   1.7  thorpej 	/* Firmware doesn't load symbols. */
    846   1.7  thorpej 	ddb_init(0, NULL, NULL);
    847   1.1     matt 
    848   1.1     matt 	if (boothowto & RB_KDB)
    849   1.1     matt 		Debugger();
    850   1.1     matt #endif
    851   1.1     matt 
    852   1.1     matt 	/* We return the new stack pointer address */
    853   1.1     matt 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    854   1.1     matt }
    855   1.1     matt 
    856   1.1     matt void
    857   1.2  thorpej process_kernel_args(char *args)
    858   1.1     matt {
    859   1.1     matt 
    860   1.1     matt 	boothowto = 0;
    861   1.1     matt 
    862   1.1     matt 	/* Make a local copy of the bootargs */
    863   1.1     matt 	strncpy(bootargs, args, MAX_BOOT_STRING);
    864   1.1     matt 
    865   1.1     matt 	args = bootargs;
    866   1.1     matt 	boot_file = bootargs;
    867   1.1     matt 
    868   1.1     matt 	/* Skip the kernel image filename */
    869   1.1     matt 	while (*args != ' ' && *args != 0)
    870   1.1     matt 		++args;
    871   1.1     matt 
    872   1.1     matt 	if (*args != 0)
    873   1.1     matt 		*args++ = 0;
    874   1.1     matt 
    875   1.1     matt 	while (*args == ' ')
    876   1.1     matt 		++args;
    877   1.1     matt 
    878   1.1     matt 	boot_args = args;
    879   1.1     matt 
    880   1.1     matt 	printf("bootfile: %s\n", boot_file);
    881   1.1     matt 	printf("bootargs: %s\n", boot_args);
    882   1.1     matt 
    883   1.1     matt 	parse_mi_bootargs(boot_args);
    884   1.1     matt }
    885   1.1     matt 
    886   1.1     matt void
    887   1.1     matt consinit(void)
    888   1.1     matt {
    889   1.2  thorpej 	static int consinit_called;
    890   1.1     matt 
    891   1.1     matt 	if (consinit_called != 0)
    892   1.1     matt 		return;
    893   1.1     matt 
    894   1.1     matt 	consinit_called = 1;
    895   1.1     matt 
    896   1.2  thorpej #if NCOM > 0
    897   1.2  thorpej 	if (comcnattach(&obio_bs_tag, IQ80310_UART2, comcnspeed,
    898   1.2  thorpej 	    COM_FREQ, comcnmode))
    899   1.2  thorpej 			panic("can't init serial console @%lx", IQ80310_UART1);
    900   1.1     matt #else
    901   1.2  thorpej 	panic("serial console @%lx not configured", IQ80310_UART1);
    902   1.1     matt #endif
    903   1.1     matt }
    904