iq80310_machdep.c revision 1.27 1 1.27 thorpej /* $NetBSD: iq80310_machdep.c,v 1.27 2002/02/21 21:58:02 thorpej Exp $ */
2 1.12 thorpej
3 1.12 thorpej /*
4 1.15 thorpej * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5 1.12 thorpej * All rights reserved.
6 1.12 thorpej *
7 1.12 thorpej * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 1.12 thorpej *
9 1.12 thorpej * Redistribution and use in source and binary forms, with or without
10 1.12 thorpej * modification, are permitted provided that the following conditions
11 1.12 thorpej * are met:
12 1.12 thorpej * 1. Redistributions of source code must retain the above copyright
13 1.12 thorpej * notice, this list of conditions and the following disclaimer.
14 1.12 thorpej * 2. Redistributions in binary form must reproduce the above copyright
15 1.12 thorpej * notice, this list of conditions and the following disclaimer in the
16 1.12 thorpej * documentation and/or other materials provided with the distribution.
17 1.12 thorpej * 3. All advertising materials mentioning features or use of this software
18 1.12 thorpej * must display the following acknowledgement:
19 1.12 thorpej * This product includes software developed for the NetBSD Project by
20 1.12 thorpej * Wasabi Systems, Inc.
21 1.12 thorpej * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.12 thorpej * or promote products derived from this software without specific prior
23 1.12 thorpej * written permission.
24 1.12 thorpej *
25 1.12 thorpej * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.12 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.12 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.12 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.12 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.12 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.12 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.12 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.12 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.12 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.12 thorpej * POSSIBILITY OF SUCH DAMAGE.
36 1.12 thorpej */
37 1.1 matt
38 1.1 matt /*
39 1.1 matt * Copyright (c) 1997,1998 Mark Brinicombe.
40 1.1 matt * Copyright (c) 1997,1998 Causality Limited.
41 1.1 matt * All rights reserved.
42 1.1 matt *
43 1.1 matt * Redistribution and use in source and binary forms, with or without
44 1.1 matt * modification, are permitted provided that the following conditions
45 1.1 matt * are met:
46 1.1 matt * 1. Redistributions of source code must retain the above copyright
47 1.1 matt * notice, this list of conditions and the following disclaimer.
48 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 matt * notice, this list of conditions and the following disclaimer in the
50 1.1 matt * documentation and/or other materials provided with the distribution.
51 1.1 matt * 3. All advertising materials mentioning features or use of this software
52 1.1 matt * must display the following acknowledgement:
53 1.1 matt * This product includes software developed by Mark Brinicombe
54 1.1 matt * for the NetBSD Project.
55 1.1 matt * 4. The name of the company nor the name of the author may be used to
56 1.1 matt * endorse or promote products derived from this software without specific
57 1.1 matt * prior written permission.
58 1.1 matt *
59 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 1.1 matt * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 matt * SUCH DAMAGE.
70 1.1 matt *
71 1.2 thorpej * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
72 1.2 thorpej * boards using RedBoot firmware.
73 1.1 matt */
74 1.1 matt
75 1.1 matt #include "opt_ddb.h"
76 1.1 matt #include "opt_pmap_debug.h"
77 1.1 matt
78 1.1 matt #include <sys/param.h>
79 1.1 matt #include <sys/device.h>
80 1.1 matt #include <sys/systm.h>
81 1.1 matt #include <sys/kernel.h>
82 1.1 matt #include <sys/exec.h>
83 1.1 matt #include <sys/proc.h>
84 1.1 matt #include <sys/msgbuf.h>
85 1.1 matt #include <sys/reboot.h>
86 1.1 matt #include <sys/termios.h>
87 1.1 matt
88 1.1 matt #include <dev/cons.h>
89 1.1 matt
90 1.1 matt #include <machine/db_machdep.h>
91 1.1 matt #include <ddb/db_sym.h>
92 1.1 matt #include <ddb/db_extern.h>
93 1.1 matt
94 1.1 matt #include <machine/bootconfig.h>
95 1.1 matt #include <machine/bus.h>
96 1.1 matt #include <machine/cpu.h>
97 1.1 matt #include <machine/frame.h>
98 1.10 thorpej #include <arm/undefined.h>
99 1.1 matt
100 1.16 thorpej #include <arm/arm32/machdep.h>
101 1.16 thorpej
102 1.1 matt #include <arm/xscale/i80312reg.h>
103 1.1 matt #include <arm/xscale/i80312var.h>
104 1.1 matt
105 1.3 thorpej #include <dev/pci/ppbreg.h>
106 1.3 thorpej
107 1.2 thorpej #include <evbarm/iq80310/iq80310reg.h>
108 1.2 thorpej #include <evbarm/iq80310/iq80310var.h>
109 1.2 thorpej #include <evbarm/iq80310/obiovar.h>
110 1.2 thorpej
111 1.1 matt #include "opt_ipkdb.h"
112 1.1 matt
113 1.1 matt /*
114 1.1 matt * Address to call from cpu_reset() to reset the machine.
115 1.1 matt * This is machine architecture dependant as it varies depending
116 1.1 matt * on where the ROM appears when you turn the MMU off.
117 1.1 matt */
118 1.1 matt
119 1.2 thorpej u_int cpu_reset_address = 0;
120 1.1 matt
121 1.1 matt /* Define various stack sizes in pages */
122 1.1 matt #define IRQ_STACK_SIZE 1
123 1.1 matt #define ABT_STACK_SIZE 1
124 1.1 matt #ifdef IPKDB
125 1.1 matt #define UND_STACK_SIZE 2
126 1.1 matt #else
127 1.1 matt #define UND_STACK_SIZE 1
128 1.1 matt #endif
129 1.1 matt
130 1.1 matt BootConfig bootconfig; /* Boot config storage */
131 1.1 matt char *boot_args = NULL;
132 1.1 matt char *boot_file = NULL;
133 1.1 matt
134 1.1 matt vm_offset_t physical_start;
135 1.1 matt vm_offset_t physical_freestart;
136 1.1 matt vm_offset_t physical_freeend;
137 1.1 matt vm_offset_t physical_end;
138 1.1 matt u_int free_pages;
139 1.1 matt vm_offset_t pagetables_start;
140 1.1 matt int physmem = 0;
141 1.1 matt
142 1.1 matt /*int debug_flags;*/
143 1.1 matt #ifndef PMAP_STATIC_L1S
144 1.1 matt int max_processes = 64; /* Default number */
145 1.1 matt #endif /* !PMAP_STATIC_L1S */
146 1.1 matt
147 1.1 matt /* Physical and virtual addresses for some global pages */
148 1.1 matt pv_addr_t systempage;
149 1.1 matt pv_addr_t irqstack;
150 1.1 matt pv_addr_t undstack;
151 1.1 matt pv_addr_t abtstack;
152 1.1 matt pv_addr_t kernelstack;
153 1.8 thorpej pv_addr_t minidataclean;
154 1.1 matt
155 1.1 matt vm_offset_t msgbufphys;
156 1.1 matt
157 1.1 matt extern u_int data_abort_handler_address;
158 1.1 matt extern u_int prefetch_abort_handler_address;
159 1.1 matt extern u_int undefined_handler_address;
160 1.1 matt
161 1.1 matt #ifdef PMAP_DEBUG
162 1.1 matt extern int pmap_debug_level;
163 1.1 matt #endif
164 1.1 matt
165 1.27 thorpej #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
166 1.27 thorpej
167 1.27 thorpej #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
168 1.27 thorpej #define KERNEL_PT_KERNEL_NUM 2
169 1.27 thorpej
170 1.27 thorpej /* L2 table for mapping i80312 */
171 1.27 thorpej #define KERNEL_PT_IOPXS (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
172 1.27 thorpej
173 1.27 thorpej /* L2 tables for mapping kernel VM */
174 1.27 thorpej #define KERNEL_PT_VMDATA (KERNEL_PT_IOPXS + 1)
175 1.1 matt #define KERNEL_PT_VMDATA_NUM (KERNEL_VM_SIZE >> (PDSHIFT + 2))
176 1.1 matt #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
177 1.1 matt
178 1.27 thorpej pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
179 1.1 matt
180 1.1 matt struct user *proc0paddr;
181 1.1 matt
182 1.1 matt /* Prototypes */
183 1.1 matt
184 1.2 thorpej void consinit(void);
185 1.1 matt
186 1.1 matt #include "com.h"
187 1.2 thorpej #if NCOM > 0
188 1.1 matt #include <dev/ic/comreg.h>
189 1.1 matt #include <dev/ic/comvar.h>
190 1.1 matt #endif
191 1.1 matt
192 1.20 thorpej /*
193 1.20 thorpej * Define the default console speed for the board. This is generally
194 1.20 thorpej * what the firmware provided with the board defaults to.
195 1.20 thorpej */
196 1.1 matt #ifndef CONSPEED
197 1.20 thorpej #if defined(IOP310_TEAMASA_NPWR)
198 1.20 thorpej #define CONSPEED B19200
199 1.20 thorpej #else /* Default to stock IQ80310 */
200 1.20 thorpej #define CONSPEED B115200
201 1.20 thorpej #endif /* list of IQ80310-based designs */
202 1.20 thorpej #endif /* ! CONSPEED */
203 1.20 thorpej
204 1.20 thorpej #ifndef CONUNIT
205 1.20 thorpej #define CONUNIT 0
206 1.1 matt #endif
207 1.20 thorpej
208 1.1 matt #ifndef CONMODE
209 1.1 matt #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
210 1.15 thorpej #endif
211 1.1 matt
212 1.1 matt int comcnspeed = CONSPEED;
213 1.1 matt int comcnmode = CONMODE;
214 1.15 thorpej int comcnunit = CONUNIT;
215 1.1 matt
216 1.1 matt /*
217 1.1 matt * void cpu_reboot(int howto, char *bootstr)
218 1.1 matt *
219 1.1 matt * Reboots the system
220 1.1 matt *
221 1.1 matt * Deal with any syncing, unmounting, dumping and shutdown hooks,
222 1.1 matt * then reset the CPU.
223 1.1 matt */
224 1.1 matt void
225 1.1 matt cpu_reboot(int howto, char *bootstr)
226 1.1 matt {
227 1.1 matt #ifdef DIAGNOSTIC
228 1.1 matt /* info */
229 1.1 matt printf("boot: howto=%08x curproc=%p\n", howto, curproc);
230 1.1 matt #endif
231 1.1 matt
232 1.1 matt /*
233 1.1 matt * If we are still cold then hit the air brakes
234 1.1 matt * and crash to earth fast
235 1.1 matt */
236 1.1 matt if (cold) {
237 1.1 matt doshutdownhooks();
238 1.1 matt printf("The operating system has halted.\n");
239 1.1 matt printf("Please press any key to reboot.\n\n");
240 1.1 matt cngetc();
241 1.1 matt printf("rebooting...\n");
242 1.1 matt cpu_reset();
243 1.1 matt /*NOTREACHED*/
244 1.1 matt }
245 1.1 matt
246 1.1 matt /* Disable console buffering */
247 1.1 matt
248 1.1 matt /*
249 1.1 matt * If RB_NOSYNC was not specified sync the discs.
250 1.2 thorpej * Note: Unless cold is set to 1 here, syslogd will die during the
251 1.2 thorpej * unmount. It looks like syslogd is getting woken up only to find
252 1.2 thorpej * that it cannot page part of the binary in as the filesystem has
253 1.2 thorpej * been unmounted.
254 1.1 matt */
255 1.1 matt if (!(howto & RB_NOSYNC))
256 1.1 matt bootsync();
257 1.1 matt
258 1.1 matt /* Say NO to interrupts */
259 1.1 matt splhigh();
260 1.1 matt
261 1.1 matt /* Do a dump if requested. */
262 1.1 matt if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
263 1.1 matt dumpsys();
264 1.1 matt
265 1.1 matt /* Run any shutdown hooks */
266 1.1 matt doshutdownhooks();
267 1.1 matt
268 1.1 matt /* Make sure IRQ's are disabled */
269 1.1 matt IRQdisable;
270 1.1 matt
271 1.1 matt if (howto & RB_HALT) {
272 1.1 matt printf("The operating system has halted.\n");
273 1.1 matt printf("Please press any key to reboot.\n\n");
274 1.1 matt cngetc();
275 1.1 matt }
276 1.1 matt
277 1.1 matt printf("rebooting...\n");
278 1.1 matt cpu_reset();
279 1.1 matt /*NOTREACHED*/
280 1.1 matt }
281 1.1 matt
282 1.1 matt /*
283 1.1 matt * Mapping table for core kernel memory. This memory is mapped at init
284 1.1 matt * time with section mappings.
285 1.1 matt */
286 1.1 matt struct l1_sec_map {
287 1.1 matt vaddr_t va;
288 1.1 matt vaddr_t pa;
289 1.1 matt vsize_t size;
290 1.21 thorpej vm_prot_t prot;
291 1.21 thorpej int cache;
292 1.1 matt } l1_sec_table[] = {
293 1.2 thorpej /*
294 1.2 thorpej * Map the on-board devices VA == PA so that we can access them
295 1.2 thorpej * with the MMU on or off.
296 1.2 thorpej */
297 1.2 thorpej {
298 1.2 thorpej IQ80310_OBIO_BASE,
299 1.2 thorpej IQ80310_OBIO_BASE,
300 1.2 thorpej IQ80310_OBIO_SIZE,
301 1.21 thorpej VM_PROT_READ|VM_PROT_WRITE,
302 1.21 thorpej PTE_NOCACHE,
303 1.2 thorpej },
304 1.2 thorpej
305 1.1 matt {
306 1.1 matt 0,
307 1.1 matt 0,
308 1.1 matt 0,
309 1.1 matt 0,
310 1.21 thorpej 0,
311 1.1 matt }
312 1.1 matt };
313 1.1 matt
314 1.1 matt /*
315 1.2 thorpej * u_int initarm(...)
316 1.1 matt *
317 1.1 matt * Initial entry point on startup. This gets called before main() is
318 1.1 matt * entered.
319 1.1 matt * It should be responsible for setting up everything that must be
320 1.1 matt * in place when main is called.
321 1.1 matt * This includes
322 1.1 matt * Taking a copy of the boot configuration structure.
323 1.1 matt * Initialising the physical console so characters can be printed.
324 1.1 matt * Setting up page tables for the kernel
325 1.1 matt * Relocating the kernel to the bottom of physical memory
326 1.1 matt */
327 1.1 matt u_int
328 1.16 thorpej initarm(void *arg)
329 1.1 matt {
330 1.8 thorpej extern vaddr_t xscale_cache_clean_addr, xscale_minidata_clean_addr;
331 1.8 thorpej extern vsize_t xscale_minidata_clean_size;
332 1.1 matt int loop;
333 1.1 matt int loop1;
334 1.1 matt u_int l1pagetable;
335 1.1 matt u_int l2pagetable;
336 1.1 matt extern char page0[], page0_end[];
337 1.1 matt pv_addr_t kernel_l1pt;
338 1.1 matt pv_addr_t kernel_ptpt;
339 1.2 thorpej paddr_t memstart;
340 1.2 thorpej psize_t memsize;
341 1.2 thorpej
342 1.2 thorpej /*
343 1.2 thorpej * Clear out the 7-segment display. Whee, the first visual
344 1.2 thorpej * indication that we're running kernel code.
345 1.2 thorpej */
346 1.2 thorpej iq80310_7seg(' ', ' ');
347 1.1 matt
348 1.1 matt /*
349 1.1 matt * Heads up ... Setup the CPU / MMU / TLB functions
350 1.1 matt */
351 1.1 matt if (set_cpufuncs())
352 1.1 matt panic("cpu not recognized!");
353 1.1 matt
354 1.2 thorpej /* Calibrate the delay loop. */
355 1.2 thorpej iq80310_calibrate_delay();
356 1.1 matt
357 1.1 matt /*
358 1.2 thorpej * Since we map the on-board devices VA==PA, and the kernel
359 1.2 thorpej * is running VA==PA, it's possible for us to initialize
360 1.2 thorpej * the console now.
361 1.1 matt */
362 1.2 thorpej consinit();
363 1.1 matt
364 1.1 matt /* Talk to the user */
365 1.2 thorpej printf("\nNetBSD/evbarm (IQ80310) booting ...\n");
366 1.1 matt
367 1.1 matt /*
368 1.3 thorpej * Reset the secondary PCI bus. RedBoot doesn't stop devices
369 1.3 thorpej * on the PCI bus before handing us control, so we have to
370 1.3 thorpej * do this.
371 1.3 thorpej *
372 1.3 thorpej * XXX This is arguably a bug in RedBoot, and doing this reset
373 1.3 thorpej * XXX could be problematic in the future if we encounter an
374 1.3 thorpej * XXX application where the PPB in the i80312 is used as a
375 1.3 thorpej * XXX PPB.
376 1.3 thorpej */
377 1.3 thorpej {
378 1.3 thorpej uint32_t reg;
379 1.3 thorpej
380 1.3 thorpej printf("Resetting secondary PCI bus...\n");
381 1.3 thorpej reg = bus_space_read_4(&obio_bs_tag,
382 1.3 thorpej I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL);
383 1.3 thorpej bus_space_write_4(&obio_bs_tag,
384 1.3 thorpej I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
385 1.3 thorpej reg | PPB_BC_SECONDARY_RESET);
386 1.3 thorpej delay(10 * 1000); /* 10ms enough? */
387 1.3 thorpej bus_space_write_4(&obio_bs_tag,
388 1.3 thorpej I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
389 1.3 thorpej reg);
390 1.3 thorpej }
391 1.3 thorpej
392 1.3 thorpej /*
393 1.2 thorpej * Okay, RedBoot has provided us with the following memory map:
394 1.2 thorpej *
395 1.2 thorpej * Physical Address Range Description
396 1.2 thorpej * ----------------------- ----------------------------------
397 1.2 thorpej * 0x00000000 - 0x00000fff flash Memory
398 1.2 thorpej * 0x00001000 - 0x00001fff 80312 Internal Registers
399 1.2 thorpej * 0x00002000 - 0x007fffff flash Memory
400 1.2 thorpej * 0x00800000 - 0x7fffffff PCI ATU Outbound Direct Window
401 1.2 thorpej * 0x80000000 - 0x83ffffff Primary PCI 32-bit Memory
402 1.2 thorpej * 0x84000000 - 0x87ffffff Primary PCI 64-bit Memory
403 1.2 thorpej * 0x88000000 - 0x8bffffff Secondary PCI 32-bit Memory
404 1.2 thorpej * 0x8c000000 - 0x8fffffff Secondary PCI 64-bit Memory
405 1.2 thorpej * 0x90000000 - 0x9000ffff Primary PCI IO Space
406 1.2 thorpej * 0x90010000 - 0x9001ffff Secondary PCI IO Space
407 1.2 thorpej * 0x90020000 - 0x9fffffff Unused
408 1.2 thorpej * 0xa0000000 - 0xbfffffff SDRAM
409 1.2 thorpej * 0xc0000000 - 0xefffffff Unused
410 1.2 thorpej * 0xf0000000 - 0xffffffff 80200 Internal Registers
411 1.2 thorpej *
412 1.1 matt *
413 1.2 thorpej * Virtual Address Range C B Description
414 1.2 thorpej * ----------------------- - - ----------------------------------
415 1.2 thorpej * 0x00000000 - 0x00000fff Y Y SDRAM
416 1.2 thorpej * 0x00001000 - 0x00001fff N N 80312 Internal Registers
417 1.2 thorpej * 0x00002000 - 0x007fffff Y N flash Memory
418 1.2 thorpej * 0x00800000 - 0x7fffffff N N PCI ATU Outbound Direct Window
419 1.2 thorpej * 0x80000000 - 0x83ffffff N N Primary PCI 32-bit Memory
420 1.2 thorpej * 0x84000000 - 0x87ffffff N N Primary PCI 64-bit Memory
421 1.2 thorpej * 0x88000000 - 0x8bffffff N N Secondary PCI 32-bit Memory
422 1.2 thorpej * 0x8c000000 - 0x8fffffff N N Secondary PCI 64-bit Memory
423 1.2 thorpej * 0x90000000 - 0x9000ffff N N Primary PCI IO Space
424 1.2 thorpej * 0x90010000 - 0x9001ffff N N Secondary PCI IO Space
425 1.2 thorpej * 0xa0000000 - 0xa0000fff Y N flash
426 1.2 thorpej * 0xa0001000 - 0xbfffffff Y Y SDRAM
427 1.2 thorpej * 0xc0000000 - 0xcfffffff Y Y Cache Flush Region
428 1.2 thorpej * 0xf0000000 - 0xffffffff N N 80200 Internal Registers
429 1.1 matt *
430 1.2 thorpej * The first level page table is at 0xa0004000. There are also
431 1.2 thorpej * 2 second-level tables at 0xa0008000 and 0xa0008400.
432 1.1 matt *
433 1.2 thorpej * This corresponds roughly to the physical memory map, i.e.
434 1.2 thorpej * we are quite nearly running VA==PA.
435 1.1 matt */
436 1.1 matt
437 1.1 matt /*
438 1.1 matt * Examine the boot args string for options we need to know about
439 1.1 matt * now.
440 1.1 matt */
441 1.1 matt #if 0
442 1.1 matt process_kernel_args((char *)nwbootinfo.bt_args);
443 1.1 matt #endif
444 1.1 matt
445 1.2 thorpej /*
446 1.2 thorpej * Fetch the SDRAM start/size from the i80312 SDRAM configration
447 1.2 thorpej * registers.
448 1.2 thorpej */
449 1.3 thorpej i80312_sdram_bounds(&obio_bs_tag, I80312_PMMR_BASE + I80312_MEM_BASE,
450 1.3 thorpej &memstart, &memsize);
451 1.2 thorpej
452 1.1 matt printf("initarm: Configuring system ...\n");
453 1.1 matt
454 1.2 thorpej /* Fake bootconfig structure for the benefit of pmap.c */
455 1.2 thorpej /* XXX must make the memory description h/w independant */
456 1.2 thorpej bootconfig.dramblocks = 1;
457 1.2 thorpej bootconfig.dram[0].address = memstart;
458 1.2 thorpej bootconfig.dram[0].pages = memsize / NBPG;
459 1.2 thorpej
460 1.1 matt /*
461 1.1 matt * Set up the variables that define the availablilty of
462 1.2 thorpej * physical memory. For now, we're going to set
463 1.2 thorpej * physical_freestart to 0xa0200000 (where the kernel
464 1.2 thorpej * was loaded), and allocate the memory we need downwards.
465 1.2 thorpej * If we get too close to the page tables that RedBoot
466 1.2 thorpej * set up, we will panic. We will update physical_freestart
467 1.2 thorpej * and physical_freeend later to reflect what pmap_bootstrap()
468 1.2 thorpej * wants to see.
469 1.2 thorpej *
470 1.2 thorpej * XXX pmap_bootstrap() needs an enema.
471 1.1 matt */
472 1.2 thorpej physical_start = bootconfig.dram[0].address;
473 1.2 thorpej physical_end = physical_start + (bootconfig.dram[0].pages * NBPG);
474 1.2 thorpej
475 1.2 thorpej physical_freestart = 0xa0009000UL;
476 1.2 thorpej physical_freeend = 0xa0200000UL;
477 1.2 thorpej
478 1.1 matt physmem = (physical_end - physical_start) / NBPG;
479 1.1 matt
480 1.1 matt /* Tell the user about the memory */
481 1.1 matt printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
482 1.1 matt physical_start, physical_end - 1);
483 1.1 matt
484 1.1 matt /*
485 1.2 thorpej * Okay, the kernel starts 2MB in from the bottom of physical
486 1.2 thorpej * memory. We are going to allocate our bootstrap pages downwards
487 1.2 thorpej * from there.
488 1.2 thorpej *
489 1.2 thorpej * We need to allocate some fixed page tables to get the kernel
490 1.2 thorpej * going. We allocate one page directory and a number of page
491 1.2 thorpej * tables and store the physical addresses in the kernel_pt_table
492 1.2 thorpej * array.
493 1.1 matt *
494 1.2 thorpej * The kernel page directory must be on a 16K boundary. The page
495 1.2 thorpej * tables must be on 4K bounaries. What we do is allocate the
496 1.2 thorpej * page directory on the first 16K boundary that we encounter, and
497 1.2 thorpej * the page tables on 4K boundaries otherwise. Since we allocate
498 1.2 thorpej * at least 3 L2 page tables, we are guaranteed to encounter at
499 1.2 thorpej * least one 16K aligned region.
500 1.1 matt */
501 1.1 matt
502 1.1 matt #ifdef VERBOSE_INIT_ARM
503 1.1 matt printf("Allocating page tables\n");
504 1.1 matt #endif
505 1.1 matt
506 1.2 thorpej free_pages = (physical_freeend - physical_freestart) / NBPG;
507 1.1 matt
508 1.1 matt #ifdef VERBOSE_INIT_ARM
509 1.2 thorpej printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
510 1.1 matt physical_freestart, free_pages, free_pages);
511 1.1 matt #endif
512 1.1 matt
513 1.1 matt /* Define a macro to simplify memory allocation */
514 1.2 thorpej #define valloc_pages(var, np) \
515 1.2 thorpej alloc_pages((var).pv_pa, (np)); \
516 1.1 matt (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
517 1.1 matt
518 1.2 thorpej #define alloc_pages(var, np) \
519 1.2 thorpej physical_freeend -= ((np) * NBPG); \
520 1.2 thorpej if (physical_freeend < physical_freestart) \
521 1.2 thorpej panic("initarm: out of memory"); \
522 1.2 thorpej (var) = physical_freeend; \
523 1.2 thorpej free_pages -= (np); \
524 1.1 matt memset((char *)(var), 0, ((np) * NBPG));
525 1.1 matt
526 1.1 matt loop1 = 0;
527 1.1 matt kernel_l1pt.pv_pa = 0;
528 1.1 matt for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
529 1.1 matt /* Are we 16KB aligned for an L1 ? */
530 1.2 thorpej if (((physical_freeend - PD_SIZE) & (PD_SIZE - 1)) == 0
531 1.1 matt && kernel_l1pt.pv_pa == 0) {
532 1.1 matt valloc_pages(kernel_l1pt, PD_SIZE / NBPG);
533 1.1 matt } else {
534 1.27 thorpej alloc_pages(kernel_pt_table[loop1].pv_pa,
535 1.27 thorpej PT_SIZE / NBPG);
536 1.27 thorpej kernel_pt_table[loop1].pv_va =
537 1.27 thorpej kernel_pt_table[loop1].pv_pa;
538 1.1 matt ++loop1;
539 1.1 matt }
540 1.1 matt }
541 1.1 matt
542 1.1 matt /* This should never be able to happen but better confirm that. */
543 1.1 matt if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (PD_SIZE-1)) != 0)
544 1.1 matt panic("initarm: Failed to align the kernel page directory\n");
545 1.1 matt
546 1.1 matt /*
547 1.1 matt * Allocate a page for the system page mapped to V0x00000000
548 1.1 matt * This page will just contain the system vectors and can be
549 1.1 matt * shared by all processes.
550 1.1 matt */
551 1.1 matt alloc_pages(systempage.pv_pa, 1);
552 1.1 matt
553 1.2 thorpej /* Allocate a page for the page table to map kernel page tables. */
554 1.1 matt valloc_pages(kernel_ptpt, PT_SIZE / NBPG);
555 1.1 matt
556 1.1 matt /* Allocate stacks for all modes */
557 1.1 matt valloc_pages(irqstack, IRQ_STACK_SIZE);
558 1.1 matt valloc_pages(abtstack, ABT_STACK_SIZE);
559 1.1 matt valloc_pages(undstack, UND_STACK_SIZE);
560 1.1 matt valloc_pages(kernelstack, UPAGES);
561 1.1 matt
562 1.8 thorpej /* Allocate enough pages for cleaning the Mini-Data cache. */
563 1.8 thorpej KASSERT(xscale_minidata_clean_size <= NBPG);
564 1.8 thorpej valloc_pages(minidataclean, 1);
565 1.8 thorpej xscale_minidata_clean_addr = minidataclean.pv_va;
566 1.8 thorpej
567 1.1 matt #ifdef VERBOSE_INIT_ARM
568 1.2 thorpej printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
569 1.2 thorpej irqstack.pv_va);
570 1.2 thorpej printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
571 1.2 thorpej abtstack.pv_va);
572 1.2 thorpej printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
573 1.2 thorpej undstack.pv_va);
574 1.2 thorpej printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
575 1.2 thorpej kernelstack.pv_va);
576 1.1 matt #endif
577 1.1 matt
578 1.2 thorpej /*
579 1.2 thorpej * XXX Defer this to later so that we can reclaim the memory
580 1.2 thorpej * XXX used by the RedBoot page tables.
581 1.2 thorpej */
582 1.1 matt alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / NBPG);
583 1.1 matt
584 1.1 matt /*
585 1.1 matt * Ok we have allocated physical pages for the primary kernel
586 1.1 matt * page tables
587 1.1 matt */
588 1.1 matt
589 1.1 matt #ifdef VERBOSE_INIT_ARM
590 1.2 thorpej printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
591 1.1 matt #endif
592 1.1 matt
593 1.1 matt /*
594 1.24 skrll * Now we start construction of the L1 page table
595 1.1 matt * We start by mapping the L2 page tables into the L1.
596 1.1 matt * This means that we can replace L1 mappings later on if necessary
597 1.1 matt */
598 1.1 matt l1pagetable = kernel_l1pt.pv_pa;
599 1.1 matt
600 1.1 matt /* Map the L2 pages tables in the L1 page table */
601 1.23 thorpej pmap_link_l2pt(l1pagetable, 0x00000000,
602 1.27 thorpej &kernel_pt_table[KERNEL_PT_SYS]);
603 1.27 thorpej for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
604 1.27 thorpej pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
605 1.27 thorpej &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
606 1.23 thorpej pmap_link_l2pt(l1pagetable, IQ80310_IOPXS_VBASE,
607 1.27 thorpej &kernel_pt_table[KERNEL_PT_IOPXS]);
608 1.27 thorpej for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
609 1.23 thorpej pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
610 1.27 thorpej &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
611 1.27 thorpej pmap_link_l2pt(l1pagetable, PROCESS_PAGE_TBLS_BASE, &kernel_ptpt);
612 1.1 matt
613 1.1 matt #ifdef VERBOSE_INIT_ARM
614 1.1 matt printf("Mapping kernel\n");
615 1.1 matt #endif
616 1.1 matt
617 1.1 matt /* Now we fill in the L2 pagetable for the kernel static code/data */
618 1.27 thorpej l2pagetable = kernel_pt_table[KERNEL_PT_KERNEL].pv_va;
619 1.1 matt
620 1.1 matt {
621 1.2 thorpej extern char etext[], _end[];
622 1.2 thorpej size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
623 1.2 thorpej size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
624 1.1 matt u_int logical;
625 1.1 matt
626 1.14 thorpej textsize = (textsize + PGOFSET) & ~PGOFSET;
627 1.1 matt totalsize = (totalsize + PGOFSET) & ~PGOFSET;
628 1.2 thorpej
629 1.2 thorpej logical = 0x00200000; /* offset of kernel in RAM */
630 1.2 thorpej
631 1.2 thorpej /*
632 1.2 thorpej * This maps the kernel text/data/bss VA==PA.
633 1.2 thorpej */
634 1.27 thorpej logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
635 1.1 matt physical_start + logical, textsize,
636 1.25 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
637 1.27 thorpej logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
638 1.1 matt physical_start + logical, totalsize - textsize,
639 1.25 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
640 1.2 thorpej
641 1.2 thorpej #if 0 /* XXX No symbols yet. */
642 1.27 thorpej logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
643 1.1 matt physical_start + logical, kernexec->a_syms + sizeof(int)
644 1.1 matt + *(u_int *)((int)end + kernexec->a_syms + sizeof(int)),
645 1.25 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
646 1.1 matt #endif
647 1.1 matt }
648 1.1 matt
649 1.1 matt #ifdef VERBOSE_INIT_ARM
650 1.1 matt printf("Constructing L2 page tables\n");
651 1.1 matt #endif
652 1.1 matt
653 1.1 matt /* Map the stack pages */
654 1.27 thorpej pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
655 1.27 thorpej IRQ_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
656 1.27 thorpej pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
657 1.27 thorpej ABT_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
658 1.27 thorpej pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
659 1.27 thorpej UND_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
660 1.27 thorpej pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
661 1.27 thorpej UPAGES * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
662 1.25 thorpej
663 1.27 thorpej pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
664 1.27 thorpej PD_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
665 1.1 matt
666 1.8 thorpej /* Map the Mini-Data cache clean area. */
667 1.27 thorpej pmap_map_chunk(l1pagetable, minidataclean.pv_va, minidataclean.pv_pa,
668 1.27 thorpej NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
669 1.8 thorpej
670 1.1 matt /* Map the page table that maps the kernel pages */
671 1.22 thorpej pmap_map_entry(l2pagetable, kernel_ptpt.pv_pa, kernel_ptpt.pv_pa,
672 1.22 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
673 1.1 matt
674 1.1 matt /*
675 1.1 matt * Map entries in the page table used to map PTE's
676 1.1 matt * Basically every kernel page table gets mapped here
677 1.1 matt */
678 1.1 matt /* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */
679 1.1 matt l2pagetable = kernel_ptpt.pv_pa;
680 1.27 thorpej for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
681 1.27 thorpej pmap_map_entry(l2pagetable, ((KERNEL_BASE +
682 1.27 thorpej (loop * 0x00400000)) >> (PGSHIFT-2)),
683 1.27 thorpej kernel_pt_table[KERNEL_PT_KERNEL + loop].pv_pa,
684 1.27 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
685 1.22 thorpej pmap_map_entry(l2pagetable, (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT-2)),
686 1.22 thorpej kernel_ptpt.pv_pa,
687 1.22 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
688 1.22 thorpej pmap_map_entry(l2pagetable, (0x00000000 >> (PGSHIFT-2)),
689 1.27 thorpej kernel_pt_table[KERNEL_PT_SYS].pv_pa,
690 1.22 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
691 1.27 thorpej for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
692 1.22 thorpej pmap_map_entry(l2pagetable, ((KERNEL_VM_BASE +
693 1.1 matt (loop * 0x00400000)) >> (PGSHIFT-2)),
694 1.27 thorpej kernel_pt_table[KERNEL_PT_VMDATA + loop].pv_pa,
695 1.22 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
696 1.1 matt
697 1.1 matt /*
698 1.1 matt * Map the system page in the kernel page table for the bottom 1Meg
699 1.1 matt * of the virtual memory map.
700 1.1 matt */
701 1.27 thorpej l2pagetable = kernel_pt_table[KERNEL_PT_SYS].pv_va;
702 1.22 thorpej pmap_map_entry(l2pagetable, 0x00000000, systempage.pv_pa,
703 1.22 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
704 1.1 matt
705 1.3 thorpej /*
706 1.3 thorpej * Map devices we can map w/ section mappings.
707 1.3 thorpej */
708 1.1 matt loop = 0;
709 1.1 matt while (l1_sec_table[loop].size) {
710 1.1 matt vm_size_t sz;
711 1.1 matt
712 1.1 matt #ifdef VERBOSE_INIT_ARM
713 1.1 matt printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
714 1.1 matt l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
715 1.1 matt l1_sec_table[loop].va);
716 1.1 matt #endif
717 1.1 matt for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_SEC_SIZE)
718 1.21 thorpej pmap_map_section(l1pagetable,
719 1.21 thorpej l1_sec_table[loop].va + sz,
720 1.1 matt l1_sec_table[loop].pa + sz,
721 1.21 thorpej l1_sec_table[loop].prot,
722 1.21 thorpej l1_sec_table[loop].cache);
723 1.1 matt ++loop;
724 1.1 matt }
725 1.3 thorpej
726 1.3 thorpej /*
727 1.3 thorpej * Map the PCI I/O spaces and i80312 registers. These are too
728 1.3 thorpej * small to be mapped w/ section mappings.
729 1.3 thorpej */
730 1.27 thorpej l2pagetable = kernel_pt_table[KERNEL_PT_IOPXS].pv_va;
731 1.3 thorpej #ifdef VERBOSE_INIT_ARM
732 1.3 thorpej printf("Mapping PIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
733 1.3 thorpej I80312_PCI_XLATE_PIOW_BASE,
734 1.3 thorpej I80312_PCI_XLATE_PIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
735 1.3 thorpej IQ80310_PIOW_VBASE);
736 1.3 thorpej #endif
737 1.27 thorpej pmap_map_chunk(l1pagetable, IQ80310_PIOW_VBASE,
738 1.25 thorpej I80312_PCI_XLATE_PIOW_BASE, I80312_PCI_XLATE_IOSIZE,
739 1.25 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
740 1.3 thorpej
741 1.3 thorpej #ifdef VERBOSE_INIT_ARM
742 1.3 thorpej printf("Mapping SIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
743 1.3 thorpej I80312_PCI_XLATE_SIOW_BASE,
744 1.3 thorpej I80312_PCI_XLATE_SIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
745 1.3 thorpej IQ80310_SIOW_VBASE);
746 1.3 thorpej #endif
747 1.27 thorpej pmap_map_chunk(l1pagetable, IQ80310_SIOW_VBASE,
748 1.25 thorpej I80312_PCI_XLATE_SIOW_BASE, I80312_PCI_XLATE_IOSIZE,
749 1.25 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
750 1.3 thorpej
751 1.3 thorpej #ifdef VERBOSE_INIT_ARM
752 1.4 thorpej printf("Mapping 80312 0x%08lx -> 0x%08lx @ 0x%08lx\n",
753 1.3 thorpej I80312_PMMR_BASE,
754 1.3 thorpej I80312_PMMR_BASE + I80312_PMMR_SIZE - 1,
755 1.3 thorpej IQ80310_80312_VBASE);
756 1.3 thorpej #endif
757 1.27 thorpej pmap_map_chunk(l1pagetable, IQ80310_80312_VBASE,
758 1.25 thorpej I80312_PMMR_BASE, I80312_PMMR_SIZE,
759 1.25 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
760 1.8 thorpej
761 1.8 thorpej /*
762 1.8 thorpej * Give the XScale global cache clean code an appropriately
763 1.8 thorpej * sized chunk of unmapped VA space starting at 0xff000000
764 1.8 thorpej * (our device mappings end before this address).
765 1.8 thorpej */
766 1.8 thorpej xscale_cache_clean_addr = 0xff000000U;
767 1.1 matt
768 1.1 matt /*
769 1.1 matt * Now we have the real page tables in place so we can switch to them.
770 1.2 thorpej * Once this is done we will be running with the REAL kernel page
771 1.2 thorpej * tables.
772 1.2 thorpej */
773 1.2 thorpej
774 1.2 thorpej /*
775 1.2 thorpej * Update the physical_freestart/physical_freeend/free_pages
776 1.2 thorpej * variables.
777 1.1 matt */
778 1.2 thorpej {
779 1.2 thorpej extern char _end[];
780 1.2 thorpej
781 1.2 thorpej physical_freestart = (((uintptr_t) _end) + PGOFSET) & ~PGOFSET;
782 1.2 thorpej physical_freeend = physical_end;
783 1.2 thorpej free_pages = (physical_freeend - physical_freestart) / NBPG;
784 1.2 thorpej }
785 1.1 matt
786 1.1 matt /* Switch tables */
787 1.1 matt #ifdef VERBOSE_INIT_ARM
788 1.2 thorpej printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
789 1.1 matt physical_freestart, free_pages, free_pages);
790 1.1 matt printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
791 1.1 matt #endif
792 1.1 matt setttb(kernel_l1pt.pv_pa);
793 1.1 matt
794 1.1 matt #ifdef VERBOSE_INIT_ARM
795 1.1 matt printf("done!\n");
796 1.1 matt #endif
797 1.1 matt
798 1.1 matt #ifdef VERBOSE_INIT_ARM
799 1.1 matt printf("bootstrap done.\n");
800 1.1 matt #endif
801 1.1 matt
802 1.2 thorpej /* Right, set up the vectors at the bottom of page 0 */
803 1.1 matt memcpy((char *)0x00000000, page0, page0_end - page0);
804 1.1 matt
805 1.1 matt /* We have modified a text page so sync the icache */
806 1.17 thorpej cpu_icache_sync_all();
807 1.1 matt
808 1.1 matt /*
809 1.1 matt * Pages were allocated during the secondary bootstrap for the
810 1.1 matt * stacks for different CPU modes.
811 1.1 matt * We must now set the r13 registers in the different CPU modes to
812 1.1 matt * point to these stacks.
813 1.1 matt * Since the ARM stacks use STMFD etc. we must set r13 to the top end
814 1.1 matt * of the stack memory.
815 1.1 matt */
816 1.1 matt printf("init subsystems: stacks ");
817 1.1 matt
818 1.1 matt set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * NBPG);
819 1.1 matt set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * NBPG);
820 1.1 matt set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * NBPG);
821 1.1 matt
822 1.1 matt /*
823 1.1 matt * Well we should set a data abort handler.
824 1.2 thorpej * Once things get going this will change as we will need a proper
825 1.2 thorpej * handler.
826 1.1 matt * Until then we will use a handler that just panics but tells us
827 1.1 matt * why.
828 1.1 matt * Initialisation of the vectors will just panic on a data abort.
829 1.1 matt * This just fills in a slighly better one.
830 1.1 matt */
831 1.1 matt printf("vectors ");
832 1.1 matt data_abort_handler_address = (u_int)data_abort_handler;
833 1.1 matt prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
834 1.1 matt undefined_handler_address = (u_int)undefinedinstruction_bounce;
835 1.1 matt
836 1.1 matt /* At last !
837 1.1 matt * We now have the kernel in physical memory from the bottom upwards.
838 1.1 matt * Kernel page tables are physically above this.
839 1.1 matt * The kernel is mapped to KERNEL_TEXT_BASE
840 1.1 matt * The kernel data PTs will handle the mapping of 0xf1000000-0xf3ffffff
841 1.1 matt * The page tables are mapped to 0xefc00000
842 1.1 matt */
843 1.1 matt
844 1.1 matt /* Initialise the undefined instruction handlers */
845 1.1 matt printf("undefined ");
846 1.1 matt undefined_init();
847 1.1 matt
848 1.1 matt /* Boot strap pmap telling it where the kernel page table is */
849 1.1 matt printf("pmap ");
850 1.1 matt pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, kernel_ptpt);
851 1.1 matt
852 1.1 matt /* Setup the IRQ system */
853 1.1 matt printf("irq ");
854 1.18 thorpej iq80310_intr_init();
855 1.1 matt printf("done.\n");
856 1.1 matt
857 1.1 matt #ifdef IPKDB
858 1.1 matt /* Initialise ipkdb */
859 1.1 matt ipkdb_init();
860 1.1 matt if (boothowto & RB_KDB)
861 1.1 matt ipkdb_connect(0);
862 1.1 matt #endif
863 1.1 matt
864 1.1 matt #ifdef DDB
865 1.1 matt db_machine_init();
866 1.7 thorpej
867 1.7 thorpej /* Firmware doesn't load symbols. */
868 1.7 thorpej ddb_init(0, NULL, NULL);
869 1.1 matt
870 1.1 matt if (boothowto & RB_KDB)
871 1.1 matt Debugger();
872 1.1 matt #endif
873 1.1 matt
874 1.1 matt /* We return the new stack pointer address */
875 1.1 matt return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
876 1.1 matt }
877 1.1 matt
878 1.16 thorpej #if 0
879 1.1 matt void
880 1.2 thorpej process_kernel_args(char *args)
881 1.1 matt {
882 1.16 thorpej static char bootargs[MAX_BOOT_STRING + 1];
883 1.1 matt
884 1.1 matt boothowto = 0;
885 1.1 matt
886 1.1 matt /* Make a local copy of the bootargs */
887 1.1 matt strncpy(bootargs, args, MAX_BOOT_STRING);
888 1.1 matt
889 1.1 matt args = bootargs;
890 1.1 matt boot_file = bootargs;
891 1.1 matt
892 1.1 matt /* Skip the kernel image filename */
893 1.1 matt while (*args != ' ' && *args != 0)
894 1.1 matt ++args;
895 1.1 matt
896 1.1 matt if (*args != 0)
897 1.1 matt *args++ = 0;
898 1.1 matt
899 1.1 matt while (*args == ' ')
900 1.1 matt ++args;
901 1.1 matt
902 1.1 matt boot_args = args;
903 1.1 matt
904 1.1 matt printf("bootfile: %s\n", boot_file);
905 1.1 matt printf("bootargs: %s\n", boot_args);
906 1.1 matt
907 1.1 matt parse_mi_bootargs(boot_args);
908 1.1 matt }
909 1.16 thorpej #endif
910 1.1 matt
911 1.1 matt void
912 1.1 matt consinit(void)
913 1.1 matt {
914 1.15 thorpej static const bus_addr_t comcnaddrs[] = {
915 1.15 thorpej IQ80310_UART2, /* com0 (J9) */
916 1.15 thorpej IQ80310_UART1, /* com1 (J10) */
917 1.15 thorpej };
918 1.2 thorpej static int consinit_called;
919 1.1 matt
920 1.1 matt if (consinit_called != 0)
921 1.1 matt return;
922 1.1 matt
923 1.1 matt consinit_called = 1;
924 1.1 matt
925 1.2 thorpej #if NCOM > 0
926 1.15 thorpej if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
927 1.2 thorpej COM_FREQ, comcnmode))
928 1.19 thorpej panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
929 1.1 matt #else
930 1.19 thorpej panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
931 1.1 matt #endif
932 1.1 matt }
933