iq80310_machdep.c revision 1.56 1 1.56 thorpej /* $NetBSD: iq80310_machdep.c,v 1.56 2003/05/21 22:48:22 thorpej Exp $ */
2 1.12 thorpej
3 1.12 thorpej /*
4 1.48 thorpej * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
5 1.12 thorpej * All rights reserved.
6 1.12 thorpej *
7 1.12 thorpej * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 1.12 thorpej *
9 1.12 thorpej * Redistribution and use in source and binary forms, with or without
10 1.12 thorpej * modification, are permitted provided that the following conditions
11 1.12 thorpej * are met:
12 1.12 thorpej * 1. Redistributions of source code must retain the above copyright
13 1.12 thorpej * notice, this list of conditions and the following disclaimer.
14 1.12 thorpej * 2. Redistributions in binary form must reproduce the above copyright
15 1.12 thorpej * notice, this list of conditions and the following disclaimer in the
16 1.12 thorpej * documentation and/or other materials provided with the distribution.
17 1.12 thorpej * 3. All advertising materials mentioning features or use of this software
18 1.12 thorpej * must display the following acknowledgement:
19 1.12 thorpej * This product includes software developed for the NetBSD Project by
20 1.12 thorpej * Wasabi Systems, Inc.
21 1.12 thorpej * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.12 thorpej * or promote products derived from this software without specific prior
23 1.12 thorpej * written permission.
24 1.12 thorpej *
25 1.12 thorpej * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.12 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.12 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.12 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.12 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.12 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.12 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.12 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.12 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.12 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.12 thorpej * POSSIBILITY OF SUCH DAMAGE.
36 1.12 thorpej */
37 1.1 matt
38 1.1 matt /*
39 1.1 matt * Copyright (c) 1997,1998 Mark Brinicombe.
40 1.1 matt * Copyright (c) 1997,1998 Causality Limited.
41 1.1 matt * All rights reserved.
42 1.1 matt *
43 1.1 matt * Redistribution and use in source and binary forms, with or without
44 1.1 matt * modification, are permitted provided that the following conditions
45 1.1 matt * are met:
46 1.1 matt * 1. Redistributions of source code must retain the above copyright
47 1.1 matt * notice, this list of conditions and the following disclaimer.
48 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 matt * notice, this list of conditions and the following disclaimer in the
50 1.1 matt * documentation and/or other materials provided with the distribution.
51 1.1 matt * 3. All advertising materials mentioning features or use of this software
52 1.1 matt * must display the following acknowledgement:
53 1.1 matt * This product includes software developed by Mark Brinicombe
54 1.1 matt * for the NetBSD Project.
55 1.1 matt * 4. The name of the company nor the name of the author may be used to
56 1.1 matt * endorse or promote products derived from this software without specific
57 1.1 matt * prior written permission.
58 1.1 matt *
59 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 1.1 matt * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 matt * SUCH DAMAGE.
70 1.1 matt *
71 1.2 thorpej * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
72 1.2 thorpej * boards using RedBoot firmware.
73 1.1 matt */
74 1.1 matt
75 1.1 matt #include "opt_ddb.h"
76 1.1 matt #include "opt_pmap_debug.h"
77 1.1 matt
78 1.1 matt #include <sys/param.h>
79 1.1 matt #include <sys/device.h>
80 1.1 matt #include <sys/systm.h>
81 1.1 matt #include <sys/kernel.h>
82 1.1 matt #include <sys/exec.h>
83 1.1 matt #include <sys/proc.h>
84 1.1 matt #include <sys/msgbuf.h>
85 1.1 matt #include <sys/reboot.h>
86 1.1 matt #include <sys/termios.h>
87 1.50 ragge #include <sys/ksyms.h>
88 1.1 matt
89 1.47 thorpej #include <uvm/uvm_extern.h>
90 1.47 thorpej
91 1.1 matt #include <dev/cons.h>
92 1.1 matt
93 1.1 matt #include <machine/db_machdep.h>
94 1.1 matt #include <ddb/db_sym.h>
95 1.1 matt #include <ddb/db_extern.h>
96 1.1 matt
97 1.1 matt #include <machine/bootconfig.h>
98 1.1 matt #include <machine/bus.h>
99 1.1 matt #include <machine/cpu.h>
100 1.1 matt #include <machine/frame.h>
101 1.10 thorpej #include <arm/undefined.h>
102 1.1 matt
103 1.16 thorpej #include <arm/arm32/machdep.h>
104 1.16 thorpej
105 1.1 matt #include <arm/xscale/i80312reg.h>
106 1.1 matt #include <arm/xscale/i80312var.h>
107 1.1 matt
108 1.3 thorpej #include <dev/pci/ppbreg.h>
109 1.3 thorpej
110 1.2 thorpej #include <evbarm/iq80310/iq80310reg.h>
111 1.2 thorpej #include <evbarm/iq80310/iq80310var.h>
112 1.2 thorpej #include <evbarm/iq80310/obiovar.h>
113 1.2 thorpej
114 1.1 matt #include "opt_ipkdb.h"
115 1.50 ragge #include "ksyms.h"
116 1.54 thorpej
117 1.54 thorpej /* Kernel text starts 2MB in from the bottom of the kernel address space. */
118 1.54 thorpej #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
119 1.56 thorpej #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
120 1.1 matt
121 1.1 matt /*
122 1.1 matt * Address to call from cpu_reset() to reset the machine.
123 1.1 matt * This is machine architecture dependant as it varies depending
124 1.1 matt * on where the ROM appears when you turn the MMU off.
125 1.1 matt */
126 1.1 matt
127 1.2 thorpej u_int cpu_reset_address = 0;
128 1.1 matt
129 1.1 matt /* Define various stack sizes in pages */
130 1.1 matt #define IRQ_STACK_SIZE 1
131 1.1 matt #define ABT_STACK_SIZE 1
132 1.1 matt #ifdef IPKDB
133 1.1 matt #define UND_STACK_SIZE 2
134 1.1 matt #else
135 1.1 matt #define UND_STACK_SIZE 1
136 1.1 matt #endif
137 1.1 matt
138 1.1 matt BootConfig bootconfig; /* Boot config storage */
139 1.1 matt char *boot_args = NULL;
140 1.1 matt char *boot_file = NULL;
141 1.1 matt
142 1.1 matt vm_offset_t physical_start;
143 1.1 matt vm_offset_t physical_freestart;
144 1.1 matt vm_offset_t physical_freeend;
145 1.1 matt vm_offset_t physical_end;
146 1.1 matt u_int free_pages;
147 1.1 matt vm_offset_t pagetables_start;
148 1.1 matt int physmem = 0;
149 1.1 matt
150 1.1 matt /*int debug_flags;*/
151 1.1 matt #ifndef PMAP_STATIC_L1S
152 1.1 matt int max_processes = 64; /* Default number */
153 1.1 matt #endif /* !PMAP_STATIC_L1S */
154 1.1 matt
155 1.1 matt /* Physical and virtual addresses for some global pages */
156 1.1 matt pv_addr_t systempage;
157 1.1 matt pv_addr_t irqstack;
158 1.1 matt pv_addr_t undstack;
159 1.1 matt pv_addr_t abtstack;
160 1.1 matt pv_addr_t kernelstack;
161 1.8 thorpej pv_addr_t minidataclean;
162 1.1 matt
163 1.1 matt vm_offset_t msgbufphys;
164 1.1 matt
165 1.1 matt extern u_int data_abort_handler_address;
166 1.1 matt extern u_int prefetch_abort_handler_address;
167 1.1 matt extern u_int undefined_handler_address;
168 1.1 matt
169 1.1 matt #ifdef PMAP_DEBUG
170 1.1 matt extern int pmap_debug_level;
171 1.1 matt #endif
172 1.1 matt
173 1.27 thorpej #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
174 1.27 thorpej
175 1.27 thorpej #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
176 1.27 thorpej #define KERNEL_PT_KERNEL_NUM 2
177 1.27 thorpej
178 1.27 thorpej /* L2 table for mapping i80312 */
179 1.27 thorpej #define KERNEL_PT_IOPXS (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
180 1.27 thorpej
181 1.27 thorpej /* L2 tables for mapping kernel VM */
182 1.27 thorpej #define KERNEL_PT_VMDATA (KERNEL_PT_IOPXS + 1)
183 1.32 chris #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
184 1.1 matt #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
185 1.1 matt
186 1.27 thorpej pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
187 1.1 matt
188 1.1 matt struct user *proc0paddr;
189 1.1 matt
190 1.1 matt /* Prototypes */
191 1.1 matt
192 1.2 thorpej void consinit(void);
193 1.1 matt
194 1.1 matt #include "com.h"
195 1.2 thorpej #if NCOM > 0
196 1.1 matt #include <dev/ic/comreg.h>
197 1.1 matt #include <dev/ic/comvar.h>
198 1.1 matt #endif
199 1.1 matt
200 1.20 thorpej /*
201 1.20 thorpej * Define the default console speed for the board. This is generally
202 1.20 thorpej * what the firmware provided with the board defaults to.
203 1.20 thorpej */
204 1.1 matt #ifndef CONSPEED
205 1.20 thorpej #define CONSPEED B115200
206 1.20 thorpej #endif /* ! CONSPEED */
207 1.20 thorpej
208 1.20 thorpej #ifndef CONUNIT
209 1.20 thorpej #define CONUNIT 0
210 1.1 matt #endif
211 1.20 thorpej
212 1.1 matt #ifndef CONMODE
213 1.1 matt #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
214 1.15 thorpej #endif
215 1.1 matt
216 1.1 matt int comcnspeed = CONSPEED;
217 1.1 matt int comcnmode = CONMODE;
218 1.15 thorpej int comcnunit = CONUNIT;
219 1.1 matt
220 1.1 matt /*
221 1.1 matt * void cpu_reboot(int howto, char *bootstr)
222 1.1 matt *
223 1.1 matt * Reboots the system
224 1.1 matt *
225 1.1 matt * Deal with any syncing, unmounting, dumping and shutdown hooks,
226 1.1 matt * then reset the CPU.
227 1.1 matt */
228 1.1 matt void
229 1.1 matt cpu_reboot(int howto, char *bootstr)
230 1.1 matt {
231 1.1 matt
232 1.1 matt /*
233 1.1 matt * If we are still cold then hit the air brakes
234 1.1 matt * and crash to earth fast
235 1.1 matt */
236 1.1 matt if (cold) {
237 1.1 matt doshutdownhooks();
238 1.1 matt printf("The operating system has halted.\n");
239 1.1 matt printf("Please press any key to reboot.\n\n");
240 1.1 matt cngetc();
241 1.1 matt printf("rebooting...\n");
242 1.1 matt cpu_reset();
243 1.1 matt /*NOTREACHED*/
244 1.1 matt }
245 1.1 matt
246 1.1 matt /* Disable console buffering */
247 1.1 matt
248 1.1 matt /*
249 1.1 matt * If RB_NOSYNC was not specified sync the discs.
250 1.2 thorpej * Note: Unless cold is set to 1 here, syslogd will die during the
251 1.2 thorpej * unmount. It looks like syslogd is getting woken up only to find
252 1.2 thorpej * that it cannot page part of the binary in as the filesystem has
253 1.2 thorpej * been unmounted.
254 1.1 matt */
255 1.1 matt if (!(howto & RB_NOSYNC))
256 1.1 matt bootsync();
257 1.1 matt
258 1.1 matt /* Say NO to interrupts */
259 1.1 matt splhigh();
260 1.1 matt
261 1.1 matt /* Do a dump if requested. */
262 1.1 matt if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
263 1.1 matt dumpsys();
264 1.1 matt
265 1.1 matt /* Run any shutdown hooks */
266 1.1 matt doshutdownhooks();
267 1.1 matt
268 1.1 matt /* Make sure IRQ's are disabled */
269 1.1 matt IRQdisable;
270 1.1 matt
271 1.1 matt if (howto & RB_HALT) {
272 1.40 thorpej iq80310_7seg('.', '.');
273 1.1 matt printf("The operating system has halted.\n");
274 1.1 matt printf("Please press any key to reboot.\n\n");
275 1.1 matt cngetc();
276 1.1 matt }
277 1.1 matt
278 1.1 matt printf("rebooting...\n");
279 1.1 matt cpu_reset();
280 1.1 matt /*NOTREACHED*/
281 1.1 matt }
282 1.1 matt
283 1.1 matt /*
284 1.1 matt * Mapping table for core kernel memory. This memory is mapped at init
285 1.1 matt * time with section mappings.
286 1.1 matt */
287 1.1 matt struct l1_sec_map {
288 1.1 matt vaddr_t va;
289 1.1 matt vaddr_t pa;
290 1.1 matt vsize_t size;
291 1.21 thorpej vm_prot_t prot;
292 1.21 thorpej int cache;
293 1.1 matt } l1_sec_table[] = {
294 1.2 thorpej /*
295 1.2 thorpej * Map the on-board devices VA == PA so that we can access them
296 1.2 thorpej * with the MMU on or off.
297 1.2 thorpej */
298 1.2 thorpej {
299 1.2 thorpej IQ80310_OBIO_BASE,
300 1.2 thorpej IQ80310_OBIO_BASE,
301 1.2 thorpej IQ80310_OBIO_SIZE,
302 1.21 thorpej VM_PROT_READ|VM_PROT_WRITE,
303 1.21 thorpej PTE_NOCACHE,
304 1.2 thorpej },
305 1.2 thorpej
306 1.1 matt {
307 1.1 matt 0,
308 1.1 matt 0,
309 1.1 matt 0,
310 1.1 matt 0,
311 1.21 thorpej 0,
312 1.1 matt }
313 1.1 matt };
314 1.1 matt
315 1.1 matt /*
316 1.2 thorpej * u_int initarm(...)
317 1.1 matt *
318 1.1 matt * Initial entry point on startup. This gets called before main() is
319 1.1 matt * entered.
320 1.1 matt * It should be responsible for setting up everything that must be
321 1.1 matt * in place when main is called.
322 1.1 matt * This includes
323 1.1 matt * Taking a copy of the boot configuration structure.
324 1.1 matt * Initialising the physical console so characters can be printed.
325 1.1 matt * Setting up page tables for the kernel
326 1.1 matt * Relocating the kernel to the bottom of physical memory
327 1.1 matt */
328 1.1 matt u_int
329 1.16 thorpej initarm(void *arg)
330 1.1 matt {
331 1.38 thorpej extern vaddr_t xscale_cache_clean_addr;
332 1.46 thorpej #ifdef DIAGNOSTIC
333 1.8 thorpej extern vsize_t xscale_minidata_clean_size;
334 1.46 thorpej #endif
335 1.1 matt int loop;
336 1.1 matt int loop1;
337 1.1 matt u_int l1pagetable;
338 1.1 matt pv_addr_t kernel_l1pt;
339 1.2 thorpej paddr_t memstart;
340 1.2 thorpej psize_t memsize;
341 1.2 thorpej
342 1.2 thorpej /*
343 1.2 thorpej * Clear out the 7-segment display. Whee, the first visual
344 1.2 thorpej * indication that we're running kernel code.
345 1.2 thorpej */
346 1.2 thorpej iq80310_7seg(' ', ' ');
347 1.1 matt
348 1.1 matt /*
349 1.1 matt * Heads up ... Setup the CPU / MMU / TLB functions
350 1.1 matt */
351 1.1 matt if (set_cpufuncs())
352 1.1 matt panic("cpu not recognized!");
353 1.1 matt
354 1.2 thorpej /* Calibrate the delay loop. */
355 1.2 thorpej iq80310_calibrate_delay();
356 1.1 matt
357 1.1 matt /*
358 1.2 thorpej * Since we map the on-board devices VA==PA, and the kernel
359 1.2 thorpej * is running VA==PA, it's possible for us to initialize
360 1.2 thorpej * the console now.
361 1.1 matt */
362 1.2 thorpej consinit();
363 1.1 matt
364 1.55 thorpej #ifdef VERBOSE_INIT_ARM
365 1.1 matt /* Talk to the user */
366 1.2 thorpej printf("\nNetBSD/evbarm (IQ80310) booting ...\n");
367 1.55 thorpej #endif
368 1.1 matt
369 1.1 matt /*
370 1.3 thorpej * Reset the secondary PCI bus. RedBoot doesn't stop devices
371 1.3 thorpej * on the PCI bus before handing us control, so we have to
372 1.3 thorpej * do this.
373 1.3 thorpej *
374 1.3 thorpej * XXX This is arguably a bug in RedBoot, and doing this reset
375 1.3 thorpej * XXX could be problematic in the future if we encounter an
376 1.3 thorpej * XXX application where the PPB in the i80312 is used as a
377 1.3 thorpej * XXX PPB.
378 1.3 thorpej */
379 1.3 thorpej {
380 1.3 thorpej uint32_t reg;
381 1.3 thorpej
382 1.55 thorpej #ifdef VERBOSE_INIT_ARM
383 1.3 thorpej printf("Resetting secondary PCI bus...\n");
384 1.55 thorpej #endif
385 1.3 thorpej reg = bus_space_read_4(&obio_bs_tag,
386 1.3 thorpej I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL);
387 1.3 thorpej bus_space_write_4(&obio_bs_tag,
388 1.3 thorpej I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
389 1.3 thorpej reg | PPB_BC_SECONDARY_RESET);
390 1.3 thorpej delay(10 * 1000); /* 10ms enough? */
391 1.3 thorpej bus_space_write_4(&obio_bs_tag,
392 1.3 thorpej I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
393 1.3 thorpej reg);
394 1.3 thorpej }
395 1.3 thorpej
396 1.3 thorpej /*
397 1.33 thorpej * We are currently running with the MMU enabled and the
398 1.33 thorpej * entire address space mapped VA==PA, except for the
399 1.33 thorpej * first 64M of RAM is also double-mapped at 0xc0000000.
400 1.33 thorpej * There is an L1 page table at 0xa0004000.
401 1.1 matt */
402 1.1 matt
403 1.2 thorpej /*
404 1.2 thorpej * Fetch the SDRAM start/size from the i80312 SDRAM configration
405 1.2 thorpej * registers.
406 1.2 thorpej */
407 1.3 thorpej i80312_sdram_bounds(&obio_bs_tag, I80312_PMMR_BASE + I80312_MEM_BASE,
408 1.3 thorpej &memstart, &memsize);
409 1.2 thorpej
410 1.55 thorpej #ifdef VERBOSE_INIT_ARM
411 1.1 matt printf("initarm: Configuring system ...\n");
412 1.55 thorpej #endif
413 1.1 matt
414 1.2 thorpej /* Fake bootconfig structure for the benefit of pmap.c */
415 1.2 thorpej /* XXX must make the memory description h/w independant */
416 1.2 thorpej bootconfig.dramblocks = 1;
417 1.2 thorpej bootconfig.dram[0].address = memstart;
418 1.47 thorpej bootconfig.dram[0].pages = memsize / PAGE_SIZE;
419 1.2 thorpej
420 1.1 matt /*
421 1.1 matt * Set up the variables that define the availablilty of
422 1.2 thorpej * physical memory. For now, we're going to set
423 1.2 thorpej * physical_freestart to 0xa0200000 (where the kernel
424 1.2 thorpej * was loaded), and allocate the memory we need downwards.
425 1.33 thorpej * If we get too close to the L1 table that we set up, we
426 1.33 thorpej * will panic. We will update physical_freestart and
427 1.33 thorpej * physical_freeend later to reflect what pmap_bootstrap()
428 1.2 thorpej * wants to see.
429 1.2 thorpej *
430 1.2 thorpej * XXX pmap_bootstrap() needs an enema.
431 1.1 matt */
432 1.2 thorpej physical_start = bootconfig.dram[0].address;
433 1.47 thorpej physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
434 1.2 thorpej
435 1.2 thorpej physical_freestart = 0xa0009000UL;
436 1.2 thorpej physical_freeend = 0xa0200000UL;
437 1.2 thorpej
438 1.47 thorpej physmem = (physical_end - physical_start) / PAGE_SIZE;
439 1.1 matt
440 1.55 thorpej #ifdef VERBOSE_INIT_ARM
441 1.1 matt /* Tell the user about the memory */
442 1.1 matt printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
443 1.1 matt physical_start, physical_end - 1);
444 1.55 thorpej #endif
445 1.1 matt
446 1.1 matt /*
447 1.2 thorpej * Okay, the kernel starts 2MB in from the bottom of physical
448 1.2 thorpej * memory. We are going to allocate our bootstrap pages downwards
449 1.2 thorpej * from there.
450 1.2 thorpej *
451 1.2 thorpej * We need to allocate some fixed page tables to get the kernel
452 1.2 thorpej * going. We allocate one page directory and a number of page
453 1.2 thorpej * tables and store the physical addresses in the kernel_pt_table
454 1.2 thorpej * array.
455 1.1 matt *
456 1.2 thorpej * The kernel page directory must be on a 16K boundary. The page
457 1.2 thorpej * tables must be on 4K bounaries. What we do is allocate the
458 1.2 thorpej * page directory on the first 16K boundary that we encounter, and
459 1.2 thorpej * the page tables on 4K boundaries otherwise. Since we allocate
460 1.2 thorpej * at least 3 L2 page tables, we are guaranteed to encounter at
461 1.2 thorpej * least one 16K aligned region.
462 1.1 matt */
463 1.1 matt
464 1.1 matt #ifdef VERBOSE_INIT_ARM
465 1.1 matt printf("Allocating page tables\n");
466 1.1 matt #endif
467 1.1 matt
468 1.47 thorpej free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
469 1.1 matt
470 1.1 matt #ifdef VERBOSE_INIT_ARM
471 1.2 thorpej printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
472 1.1 matt physical_freestart, free_pages, free_pages);
473 1.1 matt #endif
474 1.1 matt
475 1.1 matt /* Define a macro to simplify memory allocation */
476 1.2 thorpej #define valloc_pages(var, np) \
477 1.2 thorpej alloc_pages((var).pv_pa, (np)); \
478 1.1 matt (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
479 1.1 matt
480 1.2 thorpej #define alloc_pages(var, np) \
481 1.47 thorpej physical_freeend -= ((np) * PAGE_SIZE); \
482 1.2 thorpej if (physical_freeend < physical_freestart) \
483 1.2 thorpej panic("initarm: out of memory"); \
484 1.2 thorpej (var) = physical_freeend; \
485 1.2 thorpej free_pages -= (np); \
486 1.47 thorpej memset((char *)(var), 0, ((np) * PAGE_SIZE));
487 1.1 matt
488 1.1 matt loop1 = 0;
489 1.1 matt kernel_l1pt.pv_pa = 0;
490 1.1 matt for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
491 1.1 matt /* Are we 16KB aligned for an L1 ? */
492 1.37 thorpej if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
493 1.1 matt && kernel_l1pt.pv_pa == 0) {
494 1.47 thorpej valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
495 1.1 matt } else {
496 1.48 thorpej valloc_pages(kernel_pt_table[loop1],
497 1.48 thorpej L2_TABLE_SIZE / PAGE_SIZE);
498 1.1 matt ++loop1;
499 1.1 matt }
500 1.1 matt }
501 1.1 matt
502 1.1 matt /* This should never be able to happen but better confirm that. */
503 1.37 thorpej if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
504 1.45 provos panic("initarm: Failed to align the kernel page directory");
505 1.1 matt
506 1.1 matt /*
507 1.1 matt * Allocate a page for the system page mapped to V0x00000000
508 1.1 matt * This page will just contain the system vectors and can be
509 1.1 matt * shared by all processes.
510 1.1 matt */
511 1.1 matt alloc_pages(systempage.pv_pa, 1);
512 1.1 matt
513 1.1 matt /* Allocate stacks for all modes */
514 1.1 matt valloc_pages(irqstack, IRQ_STACK_SIZE);
515 1.1 matt valloc_pages(abtstack, ABT_STACK_SIZE);
516 1.1 matt valloc_pages(undstack, UND_STACK_SIZE);
517 1.1 matt valloc_pages(kernelstack, UPAGES);
518 1.1 matt
519 1.8 thorpej /* Allocate enough pages for cleaning the Mini-Data cache. */
520 1.47 thorpej KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
521 1.8 thorpej valloc_pages(minidataclean, 1);
522 1.8 thorpej
523 1.1 matt #ifdef VERBOSE_INIT_ARM
524 1.2 thorpej printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
525 1.2 thorpej irqstack.pv_va);
526 1.2 thorpej printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
527 1.2 thorpej abtstack.pv_va);
528 1.2 thorpej printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
529 1.2 thorpej undstack.pv_va);
530 1.2 thorpej printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
531 1.2 thorpej kernelstack.pv_va);
532 1.1 matt #endif
533 1.1 matt
534 1.2 thorpej /*
535 1.2 thorpej * XXX Defer this to later so that we can reclaim the memory
536 1.2 thorpej * XXX used by the RedBoot page tables.
537 1.2 thorpej */
538 1.47 thorpej alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
539 1.1 matt
540 1.1 matt /*
541 1.1 matt * Ok we have allocated physical pages for the primary kernel
542 1.1 matt * page tables
543 1.1 matt */
544 1.1 matt
545 1.1 matt #ifdef VERBOSE_INIT_ARM
546 1.2 thorpej printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
547 1.1 matt #endif
548 1.1 matt
549 1.1 matt /*
550 1.24 skrll * Now we start construction of the L1 page table
551 1.1 matt * We start by mapping the L2 page tables into the L1.
552 1.1 matt * This means that we can replace L1 mappings later on if necessary
553 1.1 matt */
554 1.1 matt l1pagetable = kernel_l1pt.pv_pa;
555 1.1 matt
556 1.1 matt /* Map the L2 pages tables in the L1 page table */
557 1.49 thorpej pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
558 1.27 thorpej &kernel_pt_table[KERNEL_PT_SYS]);
559 1.27 thorpej for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
560 1.27 thorpej pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
561 1.27 thorpej &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
562 1.23 thorpej pmap_link_l2pt(l1pagetable, IQ80310_IOPXS_VBASE,
563 1.27 thorpej &kernel_pt_table[KERNEL_PT_IOPXS]);
564 1.27 thorpej for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
565 1.23 thorpej pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
566 1.27 thorpej &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
567 1.32 chris
568 1.32 chris /* update the top of the kernel VM */
569 1.33 thorpej pmap_curmaxkvaddr =
570 1.35 thorpej KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
571 1.1 matt
572 1.1 matt #ifdef VERBOSE_INIT_ARM
573 1.1 matt printf("Mapping kernel\n");
574 1.1 matt #endif
575 1.1 matt
576 1.1 matt /* Now we fill in the L2 pagetable for the kernel static code/data */
577 1.1 matt {
578 1.2 thorpej extern char etext[], _end[];
579 1.2 thorpej size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
580 1.2 thorpej size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
581 1.1 matt u_int logical;
582 1.1 matt
583 1.14 thorpej textsize = (textsize + PGOFSET) & ~PGOFSET;
584 1.1 matt totalsize = (totalsize + PGOFSET) & ~PGOFSET;
585 1.2 thorpej
586 1.2 thorpej logical = 0x00200000; /* offset of kernel in RAM */
587 1.2 thorpej
588 1.27 thorpej logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
589 1.1 matt physical_start + logical, textsize,
590 1.25 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
591 1.27 thorpej logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
592 1.1 matt physical_start + logical, totalsize - textsize,
593 1.25 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
594 1.1 matt }
595 1.1 matt
596 1.1 matt #ifdef VERBOSE_INIT_ARM
597 1.1 matt printf("Constructing L2 page tables\n");
598 1.1 matt #endif
599 1.1 matt
600 1.1 matt /* Map the stack pages */
601 1.27 thorpej pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
602 1.47 thorpej IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
603 1.27 thorpej pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
604 1.47 thorpej ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
605 1.27 thorpej pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
606 1.47 thorpej UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
607 1.27 thorpej pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
608 1.47 thorpej UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
609 1.25 thorpej
610 1.48 thorpej pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
611 1.48 thorpej L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
612 1.48 thorpej
613 1.48 thorpej for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
614 1.48 thorpej pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
615 1.48 thorpej kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
616 1.48 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
617 1.48 thorpej }
618 1.1 matt
619 1.8 thorpej /* Map the Mini-Data cache clean area. */
620 1.38 thorpej xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
621 1.38 thorpej minidataclean.pv_pa);
622 1.8 thorpej
623 1.36 thorpej /* Map the vector page. */
624 1.49 thorpej pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
625 1.22 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
626 1.1 matt
627 1.3 thorpej /*
628 1.3 thorpej * Map devices we can map w/ section mappings.
629 1.3 thorpej */
630 1.1 matt loop = 0;
631 1.1 matt while (l1_sec_table[loop].size) {
632 1.1 matt vm_size_t sz;
633 1.1 matt
634 1.1 matt #ifdef VERBOSE_INIT_ARM
635 1.1 matt printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
636 1.1 matt l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
637 1.1 matt l1_sec_table[loop].va);
638 1.1 matt #endif
639 1.37 thorpej for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
640 1.21 thorpej pmap_map_section(l1pagetable,
641 1.21 thorpej l1_sec_table[loop].va + sz,
642 1.1 matt l1_sec_table[loop].pa + sz,
643 1.21 thorpej l1_sec_table[loop].prot,
644 1.21 thorpej l1_sec_table[loop].cache);
645 1.1 matt ++loop;
646 1.1 matt }
647 1.3 thorpej
648 1.3 thorpej /*
649 1.3 thorpej * Map the PCI I/O spaces and i80312 registers. These are too
650 1.3 thorpej * small to be mapped w/ section mappings.
651 1.3 thorpej */
652 1.3 thorpej #ifdef VERBOSE_INIT_ARM
653 1.3 thorpej printf("Mapping PIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
654 1.3 thorpej I80312_PCI_XLATE_PIOW_BASE,
655 1.3 thorpej I80312_PCI_XLATE_PIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
656 1.3 thorpej IQ80310_PIOW_VBASE);
657 1.3 thorpej #endif
658 1.27 thorpej pmap_map_chunk(l1pagetable, IQ80310_PIOW_VBASE,
659 1.25 thorpej I80312_PCI_XLATE_PIOW_BASE, I80312_PCI_XLATE_IOSIZE,
660 1.25 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
661 1.3 thorpej
662 1.3 thorpej #ifdef VERBOSE_INIT_ARM
663 1.3 thorpej printf("Mapping SIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
664 1.3 thorpej I80312_PCI_XLATE_SIOW_BASE,
665 1.3 thorpej I80312_PCI_XLATE_SIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
666 1.3 thorpej IQ80310_SIOW_VBASE);
667 1.3 thorpej #endif
668 1.27 thorpej pmap_map_chunk(l1pagetable, IQ80310_SIOW_VBASE,
669 1.25 thorpej I80312_PCI_XLATE_SIOW_BASE, I80312_PCI_XLATE_IOSIZE,
670 1.25 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
671 1.3 thorpej
672 1.3 thorpej #ifdef VERBOSE_INIT_ARM
673 1.4 thorpej printf("Mapping 80312 0x%08lx -> 0x%08lx @ 0x%08lx\n",
674 1.3 thorpej I80312_PMMR_BASE,
675 1.3 thorpej I80312_PMMR_BASE + I80312_PMMR_SIZE - 1,
676 1.3 thorpej IQ80310_80312_VBASE);
677 1.3 thorpej #endif
678 1.27 thorpej pmap_map_chunk(l1pagetable, IQ80310_80312_VBASE,
679 1.25 thorpej I80312_PMMR_BASE, I80312_PMMR_SIZE,
680 1.25 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
681 1.8 thorpej
682 1.8 thorpej /*
683 1.8 thorpej * Give the XScale global cache clean code an appropriately
684 1.8 thorpej * sized chunk of unmapped VA space starting at 0xff000000
685 1.8 thorpej * (our device mappings end before this address).
686 1.8 thorpej */
687 1.8 thorpej xscale_cache_clean_addr = 0xff000000U;
688 1.1 matt
689 1.1 matt /*
690 1.1 matt * Now we have the real page tables in place so we can switch to them.
691 1.2 thorpej * Once this is done we will be running with the REAL kernel page
692 1.2 thorpej * tables.
693 1.2 thorpej */
694 1.2 thorpej
695 1.2 thorpej /*
696 1.2 thorpej * Update the physical_freestart/physical_freeend/free_pages
697 1.2 thorpej * variables.
698 1.1 matt */
699 1.2 thorpej {
700 1.2 thorpej extern char _end[];
701 1.2 thorpej
702 1.33 thorpej physical_freestart = physical_start +
703 1.33 thorpej (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
704 1.33 thorpej KERNEL_BASE);
705 1.2 thorpej physical_freeend = physical_end;
706 1.47 thorpej free_pages =
707 1.47 thorpej (physical_freeend - physical_freestart) / PAGE_SIZE;
708 1.2 thorpej }
709 1.1 matt
710 1.1 matt /* Switch tables */
711 1.1 matt #ifdef VERBOSE_INIT_ARM
712 1.2 thorpej printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
713 1.1 matt physical_freestart, free_pages, free_pages);
714 1.1 matt printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
715 1.1 matt #endif
716 1.48 thorpej cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
717 1.1 matt setttb(kernel_l1pt.pv_pa);
718 1.30 thorpej cpu_tlb_flushID();
719 1.48 thorpej cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
720 1.48 thorpej
721 1.48 thorpej /*
722 1.48 thorpej * Moved from cpu_startup() as data_abort_handler() references
723 1.48 thorpej * this during uvm init
724 1.48 thorpej */
725 1.48 thorpej proc0paddr = (struct user *)kernelstack.pv_va;
726 1.48 thorpej lwp0.l_addr = proc0paddr;
727 1.1 matt
728 1.1 matt #ifdef VERBOSE_INIT_ARM
729 1.1 matt printf("done!\n");
730 1.1 matt #endif
731 1.1 matt
732 1.1 matt #ifdef VERBOSE_INIT_ARM
733 1.1 matt printf("bootstrap done.\n");
734 1.1 matt #endif
735 1.1 matt
736 1.49 thorpej arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
737 1.1 matt
738 1.1 matt /*
739 1.1 matt * Pages were allocated during the secondary bootstrap for the
740 1.1 matt * stacks for different CPU modes.
741 1.1 matt * We must now set the r13 registers in the different CPU modes to
742 1.1 matt * point to these stacks.
743 1.1 matt * Since the ARM stacks use STMFD etc. we must set r13 to the top end
744 1.1 matt * of the stack memory.
745 1.1 matt */
746 1.55 thorpej #ifdef VERBOSE_INIT_ARM
747 1.1 matt printf("init subsystems: stacks ");
748 1.55 thorpej #endif
749 1.1 matt
750 1.47 thorpej set_stackptr(PSR_IRQ32_MODE,
751 1.47 thorpej irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
752 1.47 thorpej set_stackptr(PSR_ABT32_MODE,
753 1.47 thorpej abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
754 1.47 thorpej set_stackptr(PSR_UND32_MODE,
755 1.47 thorpej undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
756 1.1 matt
757 1.1 matt /*
758 1.1 matt * Well we should set a data abort handler.
759 1.2 thorpej * Once things get going this will change as we will need a proper
760 1.2 thorpej * handler.
761 1.1 matt * Until then we will use a handler that just panics but tells us
762 1.1 matt * why.
763 1.1 matt * Initialisation of the vectors will just panic on a data abort.
764 1.1 matt * This just fills in a slighly better one.
765 1.1 matt */
766 1.55 thorpej #ifdef VERBOSE_INIT_ARM
767 1.1 matt printf("vectors ");
768 1.55 thorpej #endif
769 1.1 matt data_abort_handler_address = (u_int)data_abort_handler;
770 1.1 matt prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
771 1.1 matt undefined_handler_address = (u_int)undefinedinstruction_bounce;
772 1.1 matt
773 1.1 matt /* Initialise the undefined instruction handlers */
774 1.55 thorpej #ifdef VERBOSE_INIT_ARM
775 1.1 matt printf("undefined ");
776 1.55 thorpej #endif
777 1.1 matt undefined_init();
778 1.1 matt
779 1.42 thorpej /* Load memory into UVM. */
780 1.55 thorpej #ifdef VERBOSE_INIT_ARM
781 1.42 thorpej printf("page ");
782 1.55 thorpej #endif
783 1.42 thorpej uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
784 1.42 thorpej uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
785 1.42 thorpej atop(physical_freestart), atop(physical_freeend),
786 1.42 thorpej VM_FREELIST_DEFAULT);
787 1.42 thorpej
788 1.1 matt /* Boot strap pmap telling it where the kernel page table is */
789 1.55 thorpej #ifdef VERBOSE_INIT_ARM
790 1.1 matt printf("pmap ");
791 1.55 thorpej #endif
792 1.53 thorpej pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
793 1.53 thorpej KERNEL_VM_BASE + KERNEL_VM_SIZE);
794 1.1 matt
795 1.1 matt /* Setup the IRQ system */
796 1.55 thorpej #ifdef VERBOSE_INIT_ARM
797 1.1 matt printf("irq ");
798 1.55 thorpej #endif
799 1.18 thorpej iq80310_intr_init();
800 1.55 thorpej
801 1.55 thorpej #ifdef VERBOSE_INIT_ARM
802 1.1 matt printf("done.\n");
803 1.55 thorpej #endif
804 1.1 matt
805 1.1 matt #ifdef IPKDB
806 1.1 matt /* Initialise ipkdb */
807 1.1 matt ipkdb_init();
808 1.1 matt if (boothowto & RB_KDB)
809 1.1 matt ipkdb_connect(0);
810 1.1 matt #endif
811 1.1 matt
812 1.50 ragge #if NKSYMS || defined(DDB) || defined(LKM)
813 1.50 ragge /* Firmware doesn't load symbols. */
814 1.50 ragge ksyms_init(0, NULL, NULL);
815 1.50 ragge #endif
816 1.50 ragge
817 1.1 matt #ifdef DDB
818 1.1 matt db_machine_init();
819 1.1 matt if (boothowto & RB_KDB)
820 1.1 matt Debugger();
821 1.1 matt #endif
822 1.1 matt
823 1.1 matt /* We return the new stack pointer address */
824 1.1 matt return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
825 1.1 matt }
826 1.1 matt
827 1.1 matt void
828 1.1 matt consinit(void)
829 1.1 matt {
830 1.15 thorpej static const bus_addr_t comcnaddrs[] = {
831 1.15 thorpej IQ80310_UART2, /* com0 (J9) */
832 1.15 thorpej IQ80310_UART1, /* com1 (J10) */
833 1.15 thorpej };
834 1.2 thorpej static int consinit_called;
835 1.1 matt
836 1.1 matt if (consinit_called != 0)
837 1.1 matt return;
838 1.1 matt
839 1.1 matt consinit_called = 1;
840 1.1 matt
841 1.2 thorpej #if NCOM > 0
842 1.15 thorpej if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
843 1.2 thorpej COM_FREQ, comcnmode))
844 1.19 thorpej panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
845 1.1 matt #else
846 1.19 thorpej panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
847 1.1 matt #endif
848 1.1 matt }
849