iq80310_machdep.c revision 1.10 1 /* $NetBSD: iq80310_machdep.c,v 1.10 2001/11/23 21:18:34 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997,1998 Mark Brinicombe.
5 * Copyright (c) 1997,1998 Causality Limited.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Mark Brinicombe
19 * for the NetBSD Project.
20 * 4. The name of the company nor the name of the author may be used to
21 * endorse or promote products derived from this software without specific
22 * prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
25 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
26 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
28 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
29 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
37 * boards using RedBoot firmware.
38 */
39
40 #include "opt_ddb.h"
41 #include "opt_pmap_debug.h"
42
43 #include <sys/param.h>
44 #include <sys/device.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/exec.h>
48 #include <sys/proc.h>
49 #include <sys/msgbuf.h>
50 #include <sys/reboot.h>
51 #include <sys/termios.h>
52
53 #include <dev/cons.h>
54
55 #include <machine/db_machdep.h>
56 #include <ddb/db_sym.h>
57 #include <ddb/db_extern.h>
58
59 #include <machine/bootconfig.h>
60 #include <machine/bus.h>
61 #include <machine/cpu.h>
62 #include <machine/frame.h>
63 #include <machine/irqhandler.h>
64 #include <arm/undefined.h>
65
66 #include <arm/xscale/i80312reg.h>
67 #include <arm/xscale/i80312var.h>
68
69 #include <dev/pci/ppbreg.h>
70
71 #include <evbarm/iq80310/iq80310reg.h>
72 #include <evbarm/iq80310/iq80310var.h>
73 #include <evbarm/iq80310/obiovar.h>
74
75 #include "opt_ipkdb.h"
76
77 /*
78 * Address to call from cpu_reset() to reset the machine.
79 * This is machine architecture dependant as it varies depending
80 * on where the ROM appears when you turn the MMU off.
81 */
82
83 u_int cpu_reset_address = 0;
84
85 /* Define various stack sizes in pages */
86 #define IRQ_STACK_SIZE 1
87 #define ABT_STACK_SIZE 1
88 #ifdef IPKDB
89 #define UND_STACK_SIZE 2
90 #else
91 #define UND_STACK_SIZE 1
92 #endif
93
94 BootConfig bootconfig; /* Boot config storage */
95 static char bootargs[MAX_BOOT_STRING + 1];
96 char *boot_args = NULL;
97 char *boot_file = NULL;
98
99 vm_offset_t physical_start;
100 vm_offset_t physical_freestart;
101 vm_offset_t physical_freeend;
102 vm_offset_t physical_end;
103 u_int free_pages;
104 vm_offset_t pagetables_start;
105 int physmem = 0;
106
107 /*int debug_flags;*/
108 #ifndef PMAP_STATIC_L1S
109 int max_processes = 64; /* Default number */
110 #endif /* !PMAP_STATIC_L1S */
111
112 /* Physical and virtual addresses for some global pages */
113 pv_addr_t systempage;
114 pv_addr_t irqstack;
115 pv_addr_t undstack;
116 pv_addr_t abtstack;
117 pv_addr_t kernelstack;
118 pv_addr_t minidataclean;
119
120 vm_offset_t msgbufphys;
121
122 extern u_int data_abort_handler_address;
123 extern u_int prefetch_abort_handler_address;
124 extern u_int undefined_handler_address;
125
126 #ifdef PMAP_DEBUG
127 extern int pmap_debug_level;
128 #endif
129
130 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
131 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
132 #define KERNEL_PT_IOPXS 2 /* Page table for mapping i80312 */
133 #define KERNEL_PT_VMDATA 3 /* Page tables for mapping kernel VM */
134 #define KERNEL_PT_VMDATA_NUM (KERNEL_VM_SIZE >> (PDSHIFT + 2))
135 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
136
137 pt_entry_t kernel_pt_table[NUM_KERNEL_PTS];
138
139 struct user *proc0paddr;
140
141 /* Prototypes */
142
143 void consinit(void);
144
145 void map_section(vm_offset_t pt, vm_offset_t va, vm_offset_t pa,
146 int cacheable);
147 void map_pagetable(vm_offset_t pt, vm_offset_t va, vm_offset_t pa);
148 void map_entry(vm_offset_t pt, vm_offset_t va, vm_offset_t pa);
149 void map_entry_nc(vm_offset_t pt, vm_offset_t va, vm_offset_t pa);
150 void map_entry_ro(vm_offset_t pt, vm_offset_t va, vm_offset_t pa);
151 vm_size_t map_chunk(vm_offset_t pd, vm_offset_t pt, vm_offset_t va,
152 vm_offset_t pa, vm_size_t size, u_int acc, u_int flg);
153
154 void process_kernel_args(char *);
155 void data_abort_handler(trapframe_t *frame);
156 void prefetch_abort_handler(trapframe_t *frame);
157 void undefinedinstruction_bounce(trapframe_t *frame);
158
159 extern void parse_mi_bootargs(char *args);
160 extern void dumpsys(void);
161
162 #include "com.h"
163 #if NCOM > 0
164 #include <dev/ic/comreg.h>
165 #include <dev/ic/comvar.h>
166 #endif
167
168 #ifndef CONSPEED
169 #define CONSPEED B115200 /* What RedBoot uses */
170 #endif
171 #ifndef CONMODE
172 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
173 #endif
174
175 int comcnspeed = CONSPEED;
176 int comcnmode = CONMODE;
177
178 /*
179 * void cpu_reboot(int howto, char *bootstr)
180 *
181 * Reboots the system
182 *
183 * Deal with any syncing, unmounting, dumping and shutdown hooks,
184 * then reset the CPU.
185 */
186 void
187 cpu_reboot(int howto, char *bootstr)
188 {
189 #ifdef DIAGNOSTIC
190 /* info */
191 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
192 #endif
193
194 /*
195 * If we are still cold then hit the air brakes
196 * and crash to earth fast
197 */
198 if (cold) {
199 doshutdownhooks();
200 printf("The operating system has halted.\n");
201 printf("Please press any key to reboot.\n\n");
202 cngetc();
203 printf("rebooting...\n");
204 cpu_reset();
205 /*NOTREACHED*/
206 }
207
208 /* Disable console buffering */
209 /* cnpollc(1);*/
210
211 /*
212 * If RB_NOSYNC was not specified sync the discs.
213 * Note: Unless cold is set to 1 here, syslogd will die during the
214 * unmount. It looks like syslogd is getting woken up only to find
215 * that it cannot page part of the binary in as the filesystem has
216 * been unmounted.
217 */
218 if (!(howto & RB_NOSYNC))
219 bootsync();
220
221 /* Say NO to interrupts */
222 splhigh();
223
224 /* Do a dump if requested. */
225 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
226 dumpsys();
227
228 /* Run any shutdown hooks */
229 doshutdownhooks();
230
231 /* Make sure IRQ's are disabled */
232 IRQdisable;
233
234 if (howto & RB_HALT) {
235 printf("The operating system has halted.\n");
236 printf("Please press any key to reboot.\n\n");
237 cngetc();
238 }
239
240 printf("rebooting...\n");
241 cpu_reset();
242 /*NOTREACHED*/
243 }
244
245 /*
246 * Mapping table for core kernel memory. This memory is mapped at init
247 * time with section mappings.
248 */
249 struct l1_sec_map {
250 vaddr_t va;
251 vaddr_t pa;
252 vsize_t size;
253 int flags;
254 } l1_sec_table[] = {
255 /*
256 * Map the on-board devices VA == PA so that we can access them
257 * with the MMU on or off.
258 */
259 {
260 IQ80310_OBIO_BASE,
261 IQ80310_OBIO_BASE,
262 IQ80310_OBIO_SIZE,
263 0,
264 },
265
266 {
267 0,
268 0,
269 0,
270 0,
271 }
272 };
273
274 /*
275 * u_int initarm(...)
276 *
277 * Initial entry point on startup. This gets called before main() is
278 * entered.
279 * It should be responsible for setting up everything that must be
280 * in place when main is called.
281 * This includes
282 * Taking a copy of the boot configuration structure.
283 * Initialising the physical console so characters can be printed.
284 * Setting up page tables for the kernel
285 * Relocating the kernel to the bottom of physical memory
286 */
287 u_int
288 initarm(void)
289 {
290 extern vaddr_t xscale_cache_clean_addr, xscale_minidata_clean_addr;
291 extern vsize_t xscale_minidata_clean_size;
292 int loop;
293 int loop1;
294 u_int l1pagetable;
295 u_int l2pagetable;
296 extern char page0[], page0_end[];
297 pv_addr_t kernel_l1pt;
298 pv_addr_t kernel_ptpt;
299 paddr_t memstart;
300 psize_t memsize;
301
302 /*
303 * Clear out the 7-segment display. Whee, the first visual
304 * indication that we're running kernel code.
305 */
306 iq80310_7seg(' ', ' ');
307
308 /*
309 * Heads up ... Setup the CPU / MMU / TLB functions
310 */
311 if (set_cpufuncs())
312 panic("cpu not recognized!");
313
314 /* Calibrate the delay loop. */
315 iq80310_calibrate_delay();
316
317 /*
318 * Since we map the on-board devices VA==PA, and the kernel
319 * is running VA==PA, it's possible for us to initialize
320 * the console now.
321 */
322 consinit();
323
324 /* Talk to the user */
325 printf("\nNetBSD/evbarm (IQ80310) booting ...\n");
326
327 /*
328 * Reset the secondary PCI bus. RedBoot doesn't stop devices
329 * on the PCI bus before handing us control, so we have to
330 * do this.
331 *
332 * XXX This is arguably a bug in RedBoot, and doing this reset
333 * XXX could be problematic in the future if we encounter an
334 * XXX application where the PPB in the i80312 is used as a
335 * XXX PPB.
336 */
337 {
338 uint32_t reg;
339
340 printf("Resetting secondary PCI bus...\n");
341 reg = bus_space_read_4(&obio_bs_tag,
342 I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL);
343 bus_space_write_4(&obio_bs_tag,
344 I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
345 reg | PPB_BC_SECONDARY_RESET);
346 delay(10 * 1000); /* 10ms enough? */
347 bus_space_write_4(&obio_bs_tag,
348 I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
349 reg);
350 }
351
352 /*
353 * Okay, RedBoot has provided us with the following memory map:
354 *
355 * Physical Address Range Description
356 * ----------------------- ----------------------------------
357 * 0x00000000 - 0x00000fff flash Memory
358 * 0x00001000 - 0x00001fff 80312 Internal Registers
359 * 0x00002000 - 0x007fffff flash Memory
360 * 0x00800000 - 0x7fffffff PCI ATU Outbound Direct Window
361 * 0x80000000 - 0x83ffffff Primary PCI 32-bit Memory
362 * 0x84000000 - 0x87ffffff Primary PCI 64-bit Memory
363 * 0x88000000 - 0x8bffffff Secondary PCI 32-bit Memory
364 * 0x8c000000 - 0x8fffffff Secondary PCI 64-bit Memory
365 * 0x90000000 - 0x9000ffff Primary PCI IO Space
366 * 0x90010000 - 0x9001ffff Secondary PCI IO Space
367 * 0x90020000 - 0x9fffffff Unused
368 * 0xa0000000 - 0xbfffffff SDRAM
369 * 0xc0000000 - 0xefffffff Unused
370 * 0xf0000000 - 0xffffffff 80200 Internal Registers
371 *
372 *
373 * Virtual Address Range C B Description
374 * ----------------------- - - ----------------------------------
375 * 0x00000000 - 0x00000fff Y Y SDRAM
376 * 0x00001000 - 0x00001fff N N 80312 Internal Registers
377 * 0x00002000 - 0x007fffff Y N flash Memory
378 * 0x00800000 - 0x7fffffff N N PCI ATU Outbound Direct Window
379 * 0x80000000 - 0x83ffffff N N Primary PCI 32-bit Memory
380 * 0x84000000 - 0x87ffffff N N Primary PCI 64-bit Memory
381 * 0x88000000 - 0x8bffffff N N Secondary PCI 32-bit Memory
382 * 0x8c000000 - 0x8fffffff N N Secondary PCI 64-bit Memory
383 * 0x90000000 - 0x9000ffff N N Primary PCI IO Space
384 * 0x90010000 - 0x9001ffff N N Secondary PCI IO Space
385 * 0xa0000000 - 0xa0000fff Y N flash
386 * 0xa0001000 - 0xbfffffff Y Y SDRAM
387 * 0xc0000000 - 0xcfffffff Y Y Cache Flush Region
388 * 0xf0000000 - 0xffffffff N N 80200 Internal Registers
389 *
390 * The first level page table is at 0xa0004000. There are also
391 * 2 second-level tables at 0xa0008000 and 0xa0008400.
392 *
393 * This corresponds roughly to the physical memory map, i.e.
394 * we are quite nearly running VA==PA.
395 */
396
397 /*
398 * Examine the boot args string for options we need to know about
399 * now.
400 */
401 #if 0
402 process_kernel_args((char *)nwbootinfo.bt_args);
403 #endif
404
405 /*
406 * Fetch the SDRAM start/size from the i80312 SDRAM configration
407 * registers.
408 */
409 i80312_sdram_bounds(&obio_bs_tag, I80312_PMMR_BASE + I80312_MEM_BASE,
410 &memstart, &memsize);
411
412 printf("initarm: Configuring system ...\n");
413
414 /* Fake bootconfig structure for the benefit of pmap.c */
415 /* XXX must make the memory description h/w independant */
416 bootconfig.dramblocks = 1;
417 bootconfig.dram[0].address = memstart;
418 bootconfig.dram[0].pages = memsize / NBPG;
419
420 /*
421 * Set up the variables that define the availablilty of
422 * physical memory. For now, we're going to set
423 * physical_freestart to 0xa0200000 (where the kernel
424 * was loaded), and allocate the memory we need downwards.
425 * If we get too close to the page tables that RedBoot
426 * set up, we will panic. We will update physical_freestart
427 * and physical_freeend later to reflect what pmap_bootstrap()
428 * wants to see.
429 *
430 * XXX pmap_bootstrap() needs an enema.
431 */
432 physical_start = bootconfig.dram[0].address;
433 physical_end = physical_start + (bootconfig.dram[0].pages * NBPG);
434
435 physical_freestart = 0xa0009000UL;
436 physical_freeend = 0xa0200000UL;
437
438 physmem = (physical_end - physical_start) / NBPG;
439
440 /* Tell the user about the memory */
441 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
442 physical_start, physical_end - 1);
443
444 /*
445 * Okay, the kernel starts 2MB in from the bottom of physical
446 * memory. We are going to allocate our bootstrap pages downwards
447 * from there.
448 *
449 * We need to allocate some fixed page tables to get the kernel
450 * going. We allocate one page directory and a number of page
451 * tables and store the physical addresses in the kernel_pt_table
452 * array.
453 *
454 * The kernel page directory must be on a 16K boundary. The page
455 * tables must be on 4K bounaries. What we do is allocate the
456 * page directory on the first 16K boundary that we encounter, and
457 * the page tables on 4K boundaries otherwise. Since we allocate
458 * at least 3 L2 page tables, we are guaranteed to encounter at
459 * least one 16K aligned region.
460 */
461
462 #ifdef VERBOSE_INIT_ARM
463 printf("Allocating page tables\n");
464 #endif
465
466 free_pages = (physical_freeend - physical_freestart) / NBPG;
467
468 #ifdef VERBOSE_INIT_ARM
469 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
470 physical_freestart, free_pages, free_pages);
471 #endif
472
473 /* Define a macro to simplify memory allocation */
474 #define valloc_pages(var, np) \
475 alloc_pages((var).pv_pa, (np)); \
476 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
477
478 #define alloc_pages(var, np) \
479 physical_freeend -= ((np) * NBPG); \
480 if (physical_freeend < physical_freestart) \
481 panic("initarm: out of memory"); \
482 (var) = physical_freeend; \
483 free_pages -= (np); \
484 memset((char *)(var), 0, ((np) * NBPG));
485
486 loop1 = 0;
487 kernel_l1pt.pv_pa = 0;
488 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
489 /* Are we 16KB aligned for an L1 ? */
490 if (((physical_freeend - PD_SIZE) & (PD_SIZE - 1)) == 0
491 && kernel_l1pt.pv_pa == 0) {
492 valloc_pages(kernel_l1pt, PD_SIZE / NBPG);
493 } else {
494 alloc_pages(kernel_pt_table[loop1], PT_SIZE / NBPG);
495 ++loop1;
496 }
497 }
498
499 /* This should never be able to happen but better confirm that. */
500 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (PD_SIZE-1)) != 0)
501 panic("initarm: Failed to align the kernel page directory\n");
502
503 /*
504 * Allocate a page for the system page mapped to V0x00000000
505 * This page will just contain the system vectors and can be
506 * shared by all processes.
507 */
508 alloc_pages(systempage.pv_pa, 1);
509
510 /* Allocate a page for the page table to map kernel page tables. */
511 valloc_pages(kernel_ptpt, PT_SIZE / NBPG);
512
513 /* Allocate stacks for all modes */
514 valloc_pages(irqstack, IRQ_STACK_SIZE);
515 valloc_pages(abtstack, ABT_STACK_SIZE);
516 valloc_pages(undstack, UND_STACK_SIZE);
517 valloc_pages(kernelstack, UPAGES);
518
519 /* Allocate enough pages for cleaning the Mini-Data cache. */
520 KASSERT(xscale_minidata_clean_size <= NBPG);
521 valloc_pages(minidataclean, 1);
522 xscale_minidata_clean_addr = minidataclean.pv_va;
523
524 #ifdef VERBOSE_INIT_ARM
525 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
526 irqstack.pv_va);
527 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
528 abtstack.pv_va);
529 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
530 undstack.pv_va);
531 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
532 kernelstack.pv_va);
533 #endif
534
535 /*
536 * XXX Defer this to later so that we can reclaim the memory
537 * XXX used by the RedBoot page tables.
538 */
539 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / NBPG);
540
541 /*
542 * Ok we have allocated physical pages for the primary kernel
543 * page tables
544 */
545
546 #ifdef VERBOSE_INIT_ARM
547 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
548 #endif
549
550 /*
551 * Now we start consturction of the L1 page table
552 * We start by mapping the L2 page tables into the L1.
553 * This means that we can replace L1 mappings later on if necessary
554 */
555 l1pagetable = kernel_l1pt.pv_pa;
556
557 /* Map the L2 pages tables in the L1 page table */
558 map_pagetable(l1pagetable, 0x00000000,
559 kernel_pt_table[KERNEL_PT_SYS]);
560 map_pagetable(l1pagetable, KERNEL_BASE,
561 kernel_pt_table[KERNEL_PT_KERNEL]);
562 map_pagetable(l1pagetable, IQ80310_IOPXS_VBASE,
563 kernel_pt_table[KERNEL_PT_IOPXS]);
564 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
565 map_pagetable(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
566 kernel_pt_table[KERNEL_PT_VMDATA + loop]);
567 map_pagetable(l1pagetable, PROCESS_PAGE_TBLS_BASE,
568 kernel_ptpt.pv_pa);
569
570 #ifdef VERBOSE_INIT_ARM
571 printf("Mapping kernel\n");
572 #endif
573
574 /* Now we fill in the L2 pagetable for the kernel static code/data */
575 l2pagetable = kernel_pt_table[KERNEL_PT_KERNEL];
576
577 {
578 extern char etext[], _end[];
579 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
580 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
581 u_int logical;
582
583 /* Round down text size and round up total size. */
584 textsize = textsize & ~PGOFSET;
585 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
586
587 logical = 0x00200000; /* offset of kernel in RAM */
588
589 /*
590 * This maps the kernel text/data/bss VA==PA.
591 */
592 logical += map_chunk(0, l2pagetable, KERNEL_BASE + logical,
593 physical_start + logical, textsize,
594 AP_KRW, PT_CACHEABLE);
595 logical += map_chunk(0, l2pagetable, KERNEL_BASE + logical,
596 physical_start + logical, totalsize - textsize,
597 AP_KRW, PT_CACHEABLE);
598
599 #if 0 /* XXX No symbols yet. */
600 logical += map_chunk(0, l2pagetable, KERNEL_BASE + logical,
601 physical_start + logical, kernexec->a_syms + sizeof(int)
602 + *(u_int *)((int)end + kernexec->a_syms + sizeof(int)),
603 AP_KRW, PT_CACHEABLE);
604 #endif
605 }
606
607 #ifdef VERBOSE_INIT_ARM
608 printf("Constructing L2 page tables\n");
609 #endif
610
611 /* Map the stack pages */
612 map_chunk(0, l2pagetable, irqstack.pv_va, irqstack.pv_pa,
613 IRQ_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
614 map_chunk(0, l2pagetable, abtstack.pv_va, abtstack.pv_pa,
615 ABT_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
616 map_chunk(0, l2pagetable, undstack.pv_va, undstack.pv_pa,
617 UND_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
618 map_chunk(0, l2pagetable, kernelstack.pv_va, kernelstack.pv_pa,
619 UPAGES * NBPG, AP_KRW, PT_CACHEABLE);
620 map_chunk(0, l2pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
621 PD_SIZE, AP_KRW, 0);
622
623 /* Map the Mini-Data cache clean area. */
624 map_chunk(0, l2pagetable, minidataclean.pv_va, minidataclean.pv_pa,
625 NBPG, AP_KRW, PT_CACHEABLE);
626
627 /* Map the page table that maps the kernel pages */
628 map_entry_nc(l2pagetable, kernel_ptpt.pv_pa, kernel_ptpt.pv_pa);
629
630 /*
631 * Map entries in the page table used to map PTE's
632 * Basically every kernel page table gets mapped here
633 */
634 /* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */
635 l2pagetable = kernel_ptpt.pv_pa;
636 map_entry_nc(l2pagetable, (KERNEL_BASE >> (PGSHIFT-2)),
637 kernel_pt_table[KERNEL_PT_KERNEL]);
638 map_entry_nc(l2pagetable, (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT-2)),
639 kernel_ptpt.pv_pa);
640 map_entry_nc(l2pagetable, (0x00000000 >> (PGSHIFT-2)),
641 kernel_pt_table[KERNEL_PT_SYS]);
642 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
643 map_entry_nc(l2pagetable, ((KERNEL_VM_BASE +
644 (loop * 0x00400000)) >> (PGSHIFT-2)),
645 kernel_pt_table[KERNEL_PT_VMDATA + loop]);
646
647 /*
648 * Map the system page in the kernel page table for the bottom 1Meg
649 * of the virtual memory map.
650 */
651 l2pagetable = kernel_pt_table[KERNEL_PT_SYS];
652 map_entry(l2pagetable, 0x00000000, systempage.pv_pa);
653
654 /*
655 * Map devices we can map w/ section mappings.
656 */
657 loop = 0;
658 while (l1_sec_table[loop].size) {
659 vm_size_t sz;
660
661 #ifdef VERBOSE_INIT_ARM
662 printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
663 l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
664 l1_sec_table[loop].va);
665 #endif
666 for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_SEC_SIZE)
667 map_section(l1pagetable, l1_sec_table[loop].va + sz,
668 l1_sec_table[loop].pa + sz,
669 l1_sec_table[loop].flags);
670 ++loop;
671 }
672
673 /*
674 * Map the PCI I/O spaces and i80312 registers. These are too
675 * small to be mapped w/ section mappings.
676 */
677 l2pagetable = kernel_pt_table[KERNEL_PT_IOPXS];
678 #ifdef VERBOSE_INIT_ARM
679 printf("Mapping PIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
680 I80312_PCI_XLATE_PIOW_BASE,
681 I80312_PCI_XLATE_PIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
682 IQ80310_PIOW_VBASE);
683 #endif
684 map_chunk(0, l2pagetable, IQ80310_PIOW_VBASE,
685 I80312_PCI_XLATE_PIOW_BASE, I80312_PCI_XLATE_IOSIZE, AP_KRW, 0);
686
687 #ifdef VERBOSE_INIT_ARM
688 printf("Mapping SIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
689 I80312_PCI_XLATE_SIOW_BASE,
690 I80312_PCI_XLATE_SIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
691 IQ80310_SIOW_VBASE);
692 #endif
693 map_chunk(0, l2pagetable, IQ80310_SIOW_VBASE,
694 I80312_PCI_XLATE_SIOW_BASE, I80312_PCI_XLATE_IOSIZE, AP_KRW, 0);
695
696 #ifdef VERBOSE_INIT_ARM
697 printf("Mapping 80312 0x%08lx -> 0x%08lx @ 0x%08lx\n",
698 I80312_PMMR_BASE,
699 I80312_PMMR_BASE + I80312_PMMR_SIZE - 1,
700 IQ80310_80312_VBASE);
701 #endif
702 map_chunk(0, l2pagetable, IQ80310_80312_VBASE,
703 I80312_PMMR_BASE, I80312_PMMR_SIZE, AP_KRW, 0);
704
705 /*
706 * Give the XScale global cache clean code an appropriately
707 * sized chunk of unmapped VA space starting at 0xff000000
708 * (our device mappings end before this address).
709 */
710 xscale_cache_clean_addr = 0xff000000U;
711
712 /*
713 * Now we have the real page tables in place so we can switch to them.
714 * Once this is done we will be running with the REAL kernel page
715 * tables.
716 */
717
718 /*
719 * Update the physical_freestart/physical_freeend/free_pages
720 * variables.
721 */
722 {
723 extern char _end[];
724
725 physical_freestart = (((uintptr_t) _end) + PGOFSET) & ~PGOFSET;
726 physical_freeend = physical_end;
727 free_pages = (physical_freeend - physical_freestart) / NBPG;
728 }
729
730 /* Switch tables */
731 #ifdef VERBOSE_INIT_ARM
732 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
733 physical_freestart, free_pages, free_pages);
734 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
735 #endif
736 setttb(kernel_l1pt.pv_pa);
737
738 #ifdef VERBOSE_INIT_ARM
739 printf("done!\n");
740 #endif
741
742 #ifdef VERBOSE_INIT_ARM
743 printf("bootstrap done.\n");
744 #endif
745
746 /* Right, set up the vectors at the bottom of page 0 */
747 memcpy((char *)0x00000000, page0, page0_end - page0);
748
749 /* We have modified a text page so sync the icache */
750 cpu_cache_syncI();
751
752 /*
753 * Pages were allocated during the secondary bootstrap for the
754 * stacks for different CPU modes.
755 * We must now set the r13 registers in the different CPU modes to
756 * point to these stacks.
757 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
758 * of the stack memory.
759 */
760 printf("init subsystems: stacks ");
761
762 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * NBPG);
763 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * NBPG);
764 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * NBPG);
765
766 /*
767 * Well we should set a data abort handler.
768 * Once things get going this will change as we will need a proper
769 * handler.
770 * Until then we will use a handler that just panics but tells us
771 * why.
772 * Initialisation of the vectors will just panic on a data abort.
773 * This just fills in a slighly better one.
774 */
775 printf("vectors ");
776 data_abort_handler_address = (u_int)data_abort_handler;
777 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
778 undefined_handler_address = (u_int)undefinedinstruction_bounce;
779
780 /* At last !
781 * We now have the kernel in physical memory from the bottom upwards.
782 * Kernel page tables are physically above this.
783 * The kernel is mapped to KERNEL_TEXT_BASE
784 * The kernel data PTs will handle the mapping of 0xf1000000-0xf3ffffff
785 * The page tables are mapped to 0xefc00000
786 */
787
788 /* Initialise the undefined instruction handlers */
789 printf("undefined ");
790 undefined_init();
791
792 /* Boot strap pmap telling it where the kernel page table is */
793 printf("pmap ");
794 pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, kernel_ptpt);
795
796 /* Setup the IRQ system */
797 printf("irq ");
798 irq_init();
799 printf("done.\n");
800
801 #ifdef IPKDB
802 /* Initialise ipkdb */
803 ipkdb_init();
804 if (boothowto & RB_KDB)
805 ipkdb_connect(0);
806 #endif
807
808 #ifdef DDB
809 db_machine_init();
810
811 /* Firmware doesn't load symbols. */
812 ddb_init(0, NULL, NULL);
813
814 if (boothowto & RB_KDB)
815 Debugger();
816 #endif
817
818 /* We return the new stack pointer address */
819 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
820 }
821
822 void
823 process_kernel_args(char *args)
824 {
825
826 boothowto = 0;
827
828 /* Make a local copy of the bootargs */
829 strncpy(bootargs, args, MAX_BOOT_STRING);
830
831 args = bootargs;
832 boot_file = bootargs;
833
834 /* Skip the kernel image filename */
835 while (*args != ' ' && *args != 0)
836 ++args;
837
838 if (*args != 0)
839 *args++ = 0;
840
841 while (*args == ' ')
842 ++args;
843
844 boot_args = args;
845
846 printf("bootfile: %s\n", boot_file);
847 printf("bootargs: %s\n", boot_args);
848
849 parse_mi_bootargs(boot_args);
850 }
851
852 void
853 consinit(void)
854 {
855 static int consinit_called;
856
857 if (consinit_called != 0)
858 return;
859
860 consinit_called = 1;
861
862 #if NCOM > 0
863 if (comcnattach(&obio_bs_tag, IQ80310_UART2, comcnspeed,
864 COM_FREQ, comcnmode))
865 panic("can't init serial console @%lx", IQ80310_UART1);
866 #else
867 panic("serial console @%lx not configured", IQ80310_UART1);
868 #endif
869 }
870