iq80310_machdep.c revision 1.11 1 /* $NetBSD: iq80310_machdep.c,v 1.11 2001/11/27 00:34:48 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997,1998 Mark Brinicombe.
5 * Copyright (c) 1997,1998 Causality Limited.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Mark Brinicombe
19 * for the NetBSD Project.
20 * 4. The name of the company nor the name of the author may be used to
21 * endorse or promote products derived from this software without specific
22 * prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
25 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
26 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
28 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
29 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
37 * boards using RedBoot firmware.
38 */
39
40 #include "opt_ddb.h"
41 #include "opt_pmap_debug.h"
42
43 #include <sys/param.h>
44 #include <sys/device.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/exec.h>
48 #include <sys/proc.h>
49 #include <sys/msgbuf.h>
50 #include <sys/reboot.h>
51 #include <sys/termios.h>
52
53 #include <dev/cons.h>
54
55 #include <machine/db_machdep.h>
56 #include <ddb/db_sym.h>
57 #include <ddb/db_extern.h>
58
59 #include <machine/bootconfig.h>
60 #include <machine/bus.h>
61 #include <machine/cpu.h>
62 #include <machine/frame.h>
63 #include <arm/undefined.h>
64
65 #include <arm/xscale/i80312reg.h>
66 #include <arm/xscale/i80312var.h>
67
68 #include <dev/pci/ppbreg.h>
69
70 #include <evbarm/iq80310/iq80310reg.h>
71 #include <evbarm/iq80310/iq80310var.h>
72 #include <evbarm/iq80310/obiovar.h>
73
74 #include "opt_ipkdb.h"
75
76 /*
77 * Address to call from cpu_reset() to reset the machine.
78 * This is machine architecture dependant as it varies depending
79 * on where the ROM appears when you turn the MMU off.
80 */
81
82 u_int cpu_reset_address = 0;
83
84 /* Define various stack sizes in pages */
85 #define IRQ_STACK_SIZE 1
86 #define ABT_STACK_SIZE 1
87 #ifdef IPKDB
88 #define UND_STACK_SIZE 2
89 #else
90 #define UND_STACK_SIZE 1
91 #endif
92
93 BootConfig bootconfig; /* Boot config storage */
94 static char bootargs[MAX_BOOT_STRING + 1];
95 char *boot_args = NULL;
96 char *boot_file = NULL;
97
98 vm_offset_t physical_start;
99 vm_offset_t physical_freestart;
100 vm_offset_t physical_freeend;
101 vm_offset_t physical_end;
102 u_int free_pages;
103 vm_offset_t pagetables_start;
104 int physmem = 0;
105
106 /*int debug_flags;*/
107 #ifndef PMAP_STATIC_L1S
108 int max_processes = 64; /* Default number */
109 #endif /* !PMAP_STATIC_L1S */
110
111 /* Physical and virtual addresses for some global pages */
112 pv_addr_t systempage;
113 pv_addr_t irqstack;
114 pv_addr_t undstack;
115 pv_addr_t abtstack;
116 pv_addr_t kernelstack;
117 pv_addr_t minidataclean;
118
119 vm_offset_t msgbufphys;
120
121 extern u_int data_abort_handler_address;
122 extern u_int prefetch_abort_handler_address;
123 extern u_int undefined_handler_address;
124
125 #ifdef PMAP_DEBUG
126 extern int pmap_debug_level;
127 #endif
128
129 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
130 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
131 #define KERNEL_PT_IOPXS 2 /* Page table for mapping i80312 */
132 #define KERNEL_PT_VMDATA 3 /* Page tables for mapping kernel VM */
133 #define KERNEL_PT_VMDATA_NUM (KERNEL_VM_SIZE >> (PDSHIFT + 2))
134 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
135
136 pt_entry_t kernel_pt_table[NUM_KERNEL_PTS];
137
138 struct user *proc0paddr;
139
140 /* Prototypes */
141
142 void consinit(void);
143
144 void map_section(vm_offset_t pt, vm_offset_t va, vm_offset_t pa,
145 int cacheable);
146 void map_pagetable(vm_offset_t pt, vm_offset_t va, vm_offset_t pa);
147 void map_entry(vm_offset_t pt, vm_offset_t va, vm_offset_t pa);
148 void map_entry_nc(vm_offset_t pt, vm_offset_t va, vm_offset_t pa);
149 void map_entry_ro(vm_offset_t pt, vm_offset_t va, vm_offset_t pa);
150 vm_size_t map_chunk(vm_offset_t pd, vm_offset_t pt, vm_offset_t va,
151 vm_offset_t pa, vm_size_t size, u_int acc, u_int flg);
152
153 void process_kernel_args(char *);
154 void data_abort_handler(trapframe_t *frame);
155 void prefetch_abort_handler(trapframe_t *frame);
156 void undefinedinstruction_bounce(trapframe_t *frame);
157
158 extern void parse_mi_bootargs(char *args);
159 extern void dumpsys(void);
160
161 #include "com.h"
162 #if NCOM > 0
163 #include <dev/ic/comreg.h>
164 #include <dev/ic/comvar.h>
165 #endif
166
167 #ifndef CONSPEED
168 #define CONSPEED B115200 /* What RedBoot uses */
169 #endif
170 #ifndef CONMODE
171 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
172 #endif
173
174 int comcnspeed = CONSPEED;
175 int comcnmode = CONMODE;
176
177 /*
178 * void cpu_reboot(int howto, char *bootstr)
179 *
180 * Reboots the system
181 *
182 * Deal with any syncing, unmounting, dumping and shutdown hooks,
183 * then reset the CPU.
184 */
185 void
186 cpu_reboot(int howto, char *bootstr)
187 {
188 #ifdef DIAGNOSTIC
189 /* info */
190 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
191 #endif
192
193 /*
194 * If we are still cold then hit the air brakes
195 * and crash to earth fast
196 */
197 if (cold) {
198 doshutdownhooks();
199 printf("The operating system has halted.\n");
200 printf("Please press any key to reboot.\n\n");
201 cngetc();
202 printf("rebooting...\n");
203 cpu_reset();
204 /*NOTREACHED*/
205 }
206
207 /* Disable console buffering */
208 /* cnpollc(1);*/
209
210 /*
211 * If RB_NOSYNC was not specified sync the discs.
212 * Note: Unless cold is set to 1 here, syslogd will die during the
213 * unmount. It looks like syslogd is getting woken up only to find
214 * that it cannot page part of the binary in as the filesystem has
215 * been unmounted.
216 */
217 if (!(howto & RB_NOSYNC))
218 bootsync();
219
220 /* Say NO to interrupts */
221 splhigh();
222
223 /* Do a dump if requested. */
224 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
225 dumpsys();
226
227 /* Run any shutdown hooks */
228 doshutdownhooks();
229
230 /* Make sure IRQ's are disabled */
231 IRQdisable;
232
233 if (howto & RB_HALT) {
234 printf("The operating system has halted.\n");
235 printf("Please press any key to reboot.\n\n");
236 cngetc();
237 }
238
239 printf("rebooting...\n");
240 cpu_reset();
241 /*NOTREACHED*/
242 }
243
244 /*
245 * Mapping table for core kernel memory. This memory is mapped at init
246 * time with section mappings.
247 */
248 struct l1_sec_map {
249 vaddr_t va;
250 vaddr_t pa;
251 vsize_t size;
252 int flags;
253 } l1_sec_table[] = {
254 /*
255 * Map the on-board devices VA == PA so that we can access them
256 * with the MMU on or off.
257 */
258 {
259 IQ80310_OBIO_BASE,
260 IQ80310_OBIO_BASE,
261 IQ80310_OBIO_SIZE,
262 0,
263 },
264
265 {
266 0,
267 0,
268 0,
269 0,
270 }
271 };
272
273 /*
274 * u_int initarm(...)
275 *
276 * Initial entry point on startup. This gets called before main() is
277 * entered.
278 * It should be responsible for setting up everything that must be
279 * in place when main is called.
280 * This includes
281 * Taking a copy of the boot configuration structure.
282 * Initialising the physical console so characters can be printed.
283 * Setting up page tables for the kernel
284 * Relocating the kernel to the bottom of physical memory
285 */
286 u_int
287 initarm(void)
288 {
289 extern vaddr_t xscale_cache_clean_addr, xscale_minidata_clean_addr;
290 extern vsize_t xscale_minidata_clean_size;
291 int loop;
292 int loop1;
293 u_int l1pagetable;
294 u_int l2pagetable;
295 extern char page0[], page0_end[];
296 pv_addr_t kernel_l1pt;
297 pv_addr_t kernel_ptpt;
298 paddr_t memstart;
299 psize_t memsize;
300
301 /*
302 * Clear out the 7-segment display. Whee, the first visual
303 * indication that we're running kernel code.
304 */
305 iq80310_7seg(' ', ' ');
306
307 /*
308 * Heads up ... Setup the CPU / MMU / TLB functions
309 */
310 if (set_cpufuncs())
311 panic("cpu not recognized!");
312
313 /* Calibrate the delay loop. */
314 iq80310_calibrate_delay();
315
316 /*
317 * Since we map the on-board devices VA==PA, and the kernel
318 * is running VA==PA, it's possible for us to initialize
319 * the console now.
320 */
321 consinit();
322
323 /* Talk to the user */
324 printf("\nNetBSD/evbarm (IQ80310) booting ...\n");
325
326 /*
327 * Reset the secondary PCI bus. RedBoot doesn't stop devices
328 * on the PCI bus before handing us control, so we have to
329 * do this.
330 *
331 * XXX This is arguably a bug in RedBoot, and doing this reset
332 * XXX could be problematic in the future if we encounter an
333 * XXX application where the PPB in the i80312 is used as a
334 * XXX PPB.
335 */
336 {
337 uint32_t reg;
338
339 printf("Resetting secondary PCI bus...\n");
340 reg = bus_space_read_4(&obio_bs_tag,
341 I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL);
342 bus_space_write_4(&obio_bs_tag,
343 I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
344 reg | PPB_BC_SECONDARY_RESET);
345 delay(10 * 1000); /* 10ms enough? */
346 bus_space_write_4(&obio_bs_tag,
347 I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
348 reg);
349 }
350
351 /*
352 * Okay, RedBoot has provided us with the following memory map:
353 *
354 * Physical Address Range Description
355 * ----------------------- ----------------------------------
356 * 0x00000000 - 0x00000fff flash Memory
357 * 0x00001000 - 0x00001fff 80312 Internal Registers
358 * 0x00002000 - 0x007fffff flash Memory
359 * 0x00800000 - 0x7fffffff PCI ATU Outbound Direct Window
360 * 0x80000000 - 0x83ffffff Primary PCI 32-bit Memory
361 * 0x84000000 - 0x87ffffff Primary PCI 64-bit Memory
362 * 0x88000000 - 0x8bffffff Secondary PCI 32-bit Memory
363 * 0x8c000000 - 0x8fffffff Secondary PCI 64-bit Memory
364 * 0x90000000 - 0x9000ffff Primary PCI IO Space
365 * 0x90010000 - 0x9001ffff Secondary PCI IO Space
366 * 0x90020000 - 0x9fffffff Unused
367 * 0xa0000000 - 0xbfffffff SDRAM
368 * 0xc0000000 - 0xefffffff Unused
369 * 0xf0000000 - 0xffffffff 80200 Internal Registers
370 *
371 *
372 * Virtual Address Range C B Description
373 * ----------------------- - - ----------------------------------
374 * 0x00000000 - 0x00000fff Y Y SDRAM
375 * 0x00001000 - 0x00001fff N N 80312 Internal Registers
376 * 0x00002000 - 0x007fffff Y N flash Memory
377 * 0x00800000 - 0x7fffffff N N PCI ATU Outbound Direct Window
378 * 0x80000000 - 0x83ffffff N N Primary PCI 32-bit Memory
379 * 0x84000000 - 0x87ffffff N N Primary PCI 64-bit Memory
380 * 0x88000000 - 0x8bffffff N N Secondary PCI 32-bit Memory
381 * 0x8c000000 - 0x8fffffff N N Secondary PCI 64-bit Memory
382 * 0x90000000 - 0x9000ffff N N Primary PCI IO Space
383 * 0x90010000 - 0x9001ffff N N Secondary PCI IO Space
384 * 0xa0000000 - 0xa0000fff Y N flash
385 * 0xa0001000 - 0xbfffffff Y Y SDRAM
386 * 0xc0000000 - 0xcfffffff Y Y Cache Flush Region
387 * 0xf0000000 - 0xffffffff N N 80200 Internal Registers
388 *
389 * The first level page table is at 0xa0004000. There are also
390 * 2 second-level tables at 0xa0008000 and 0xa0008400.
391 *
392 * This corresponds roughly to the physical memory map, i.e.
393 * we are quite nearly running VA==PA.
394 */
395
396 /*
397 * Examine the boot args string for options we need to know about
398 * now.
399 */
400 #if 0
401 process_kernel_args((char *)nwbootinfo.bt_args);
402 #endif
403
404 /*
405 * Fetch the SDRAM start/size from the i80312 SDRAM configration
406 * registers.
407 */
408 i80312_sdram_bounds(&obio_bs_tag, I80312_PMMR_BASE + I80312_MEM_BASE,
409 &memstart, &memsize);
410
411 printf("initarm: Configuring system ...\n");
412
413 /* Fake bootconfig structure for the benefit of pmap.c */
414 /* XXX must make the memory description h/w independant */
415 bootconfig.dramblocks = 1;
416 bootconfig.dram[0].address = memstart;
417 bootconfig.dram[0].pages = memsize / NBPG;
418
419 /*
420 * Set up the variables that define the availablilty of
421 * physical memory. For now, we're going to set
422 * physical_freestart to 0xa0200000 (where the kernel
423 * was loaded), and allocate the memory we need downwards.
424 * If we get too close to the page tables that RedBoot
425 * set up, we will panic. We will update physical_freestart
426 * and physical_freeend later to reflect what pmap_bootstrap()
427 * wants to see.
428 *
429 * XXX pmap_bootstrap() needs an enema.
430 */
431 physical_start = bootconfig.dram[0].address;
432 physical_end = physical_start + (bootconfig.dram[0].pages * NBPG);
433
434 physical_freestart = 0xa0009000UL;
435 physical_freeend = 0xa0200000UL;
436
437 physmem = (physical_end - physical_start) / NBPG;
438
439 /* Tell the user about the memory */
440 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
441 physical_start, physical_end - 1);
442
443 /*
444 * Okay, the kernel starts 2MB in from the bottom of physical
445 * memory. We are going to allocate our bootstrap pages downwards
446 * from there.
447 *
448 * We need to allocate some fixed page tables to get the kernel
449 * going. We allocate one page directory and a number of page
450 * tables and store the physical addresses in the kernel_pt_table
451 * array.
452 *
453 * The kernel page directory must be on a 16K boundary. The page
454 * tables must be on 4K bounaries. What we do is allocate the
455 * page directory on the first 16K boundary that we encounter, and
456 * the page tables on 4K boundaries otherwise. Since we allocate
457 * at least 3 L2 page tables, we are guaranteed to encounter at
458 * least one 16K aligned region.
459 */
460
461 #ifdef VERBOSE_INIT_ARM
462 printf("Allocating page tables\n");
463 #endif
464
465 free_pages = (physical_freeend - physical_freestart) / NBPG;
466
467 #ifdef VERBOSE_INIT_ARM
468 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
469 physical_freestart, free_pages, free_pages);
470 #endif
471
472 /* Define a macro to simplify memory allocation */
473 #define valloc_pages(var, np) \
474 alloc_pages((var).pv_pa, (np)); \
475 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
476
477 #define alloc_pages(var, np) \
478 physical_freeend -= ((np) * NBPG); \
479 if (physical_freeend < physical_freestart) \
480 panic("initarm: out of memory"); \
481 (var) = physical_freeend; \
482 free_pages -= (np); \
483 memset((char *)(var), 0, ((np) * NBPG));
484
485 loop1 = 0;
486 kernel_l1pt.pv_pa = 0;
487 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
488 /* Are we 16KB aligned for an L1 ? */
489 if (((physical_freeend - PD_SIZE) & (PD_SIZE - 1)) == 0
490 && kernel_l1pt.pv_pa == 0) {
491 valloc_pages(kernel_l1pt, PD_SIZE / NBPG);
492 } else {
493 alloc_pages(kernel_pt_table[loop1], PT_SIZE / NBPG);
494 ++loop1;
495 }
496 }
497
498 /* This should never be able to happen but better confirm that. */
499 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (PD_SIZE-1)) != 0)
500 panic("initarm: Failed to align the kernel page directory\n");
501
502 /*
503 * Allocate a page for the system page mapped to V0x00000000
504 * This page will just contain the system vectors and can be
505 * shared by all processes.
506 */
507 alloc_pages(systempage.pv_pa, 1);
508
509 /* Allocate a page for the page table to map kernel page tables. */
510 valloc_pages(kernel_ptpt, PT_SIZE / NBPG);
511
512 /* Allocate stacks for all modes */
513 valloc_pages(irqstack, IRQ_STACK_SIZE);
514 valloc_pages(abtstack, ABT_STACK_SIZE);
515 valloc_pages(undstack, UND_STACK_SIZE);
516 valloc_pages(kernelstack, UPAGES);
517
518 /* Allocate enough pages for cleaning the Mini-Data cache. */
519 KASSERT(xscale_minidata_clean_size <= NBPG);
520 valloc_pages(minidataclean, 1);
521 xscale_minidata_clean_addr = minidataclean.pv_va;
522
523 #ifdef VERBOSE_INIT_ARM
524 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
525 irqstack.pv_va);
526 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
527 abtstack.pv_va);
528 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
529 undstack.pv_va);
530 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
531 kernelstack.pv_va);
532 #endif
533
534 /*
535 * XXX Defer this to later so that we can reclaim the memory
536 * XXX used by the RedBoot page tables.
537 */
538 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / NBPG);
539
540 /*
541 * Ok we have allocated physical pages for the primary kernel
542 * page tables
543 */
544
545 #ifdef VERBOSE_INIT_ARM
546 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
547 #endif
548
549 /*
550 * Now we start consturction of the L1 page table
551 * We start by mapping the L2 page tables into the L1.
552 * This means that we can replace L1 mappings later on if necessary
553 */
554 l1pagetable = kernel_l1pt.pv_pa;
555
556 /* Map the L2 pages tables in the L1 page table */
557 map_pagetable(l1pagetable, 0x00000000,
558 kernel_pt_table[KERNEL_PT_SYS]);
559 map_pagetable(l1pagetable, KERNEL_BASE,
560 kernel_pt_table[KERNEL_PT_KERNEL]);
561 map_pagetable(l1pagetable, IQ80310_IOPXS_VBASE,
562 kernel_pt_table[KERNEL_PT_IOPXS]);
563 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
564 map_pagetable(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
565 kernel_pt_table[KERNEL_PT_VMDATA + loop]);
566 map_pagetable(l1pagetable, PROCESS_PAGE_TBLS_BASE,
567 kernel_ptpt.pv_pa);
568
569 #ifdef VERBOSE_INIT_ARM
570 printf("Mapping kernel\n");
571 #endif
572
573 /* Now we fill in the L2 pagetable for the kernel static code/data */
574 l2pagetable = kernel_pt_table[KERNEL_PT_KERNEL];
575
576 {
577 extern char etext[], _end[];
578 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
579 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
580 u_int logical;
581
582 /* Round down text size and round up total size. */
583 textsize = textsize & ~PGOFSET;
584 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
585
586 logical = 0x00200000; /* offset of kernel in RAM */
587
588 /*
589 * This maps the kernel text/data/bss VA==PA.
590 */
591 logical += map_chunk(0, l2pagetable, KERNEL_BASE + logical,
592 physical_start + logical, textsize,
593 AP_KRW, PT_CACHEABLE);
594 logical += map_chunk(0, l2pagetable, KERNEL_BASE + logical,
595 physical_start + logical, totalsize - textsize,
596 AP_KRW, PT_CACHEABLE);
597
598 #if 0 /* XXX No symbols yet. */
599 logical += map_chunk(0, l2pagetable, KERNEL_BASE + logical,
600 physical_start + logical, kernexec->a_syms + sizeof(int)
601 + *(u_int *)((int)end + kernexec->a_syms + sizeof(int)),
602 AP_KRW, PT_CACHEABLE);
603 #endif
604 }
605
606 #ifdef VERBOSE_INIT_ARM
607 printf("Constructing L2 page tables\n");
608 #endif
609
610 /* Map the stack pages */
611 map_chunk(0, l2pagetable, irqstack.pv_va, irqstack.pv_pa,
612 IRQ_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
613 map_chunk(0, l2pagetable, abtstack.pv_va, abtstack.pv_pa,
614 ABT_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
615 map_chunk(0, l2pagetable, undstack.pv_va, undstack.pv_pa,
616 UND_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
617 map_chunk(0, l2pagetable, kernelstack.pv_va, kernelstack.pv_pa,
618 UPAGES * NBPG, AP_KRW, PT_CACHEABLE);
619 map_chunk(0, l2pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
620 PD_SIZE, AP_KRW, 0);
621
622 /* Map the Mini-Data cache clean area. */
623 map_chunk(0, l2pagetable, minidataclean.pv_va, minidataclean.pv_pa,
624 NBPG, AP_KRW, PT_CACHEABLE);
625
626 /* Map the page table that maps the kernel pages */
627 map_entry_nc(l2pagetable, kernel_ptpt.pv_pa, kernel_ptpt.pv_pa);
628
629 /*
630 * Map entries in the page table used to map PTE's
631 * Basically every kernel page table gets mapped here
632 */
633 /* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */
634 l2pagetable = kernel_ptpt.pv_pa;
635 map_entry_nc(l2pagetable, (KERNEL_BASE >> (PGSHIFT-2)),
636 kernel_pt_table[KERNEL_PT_KERNEL]);
637 map_entry_nc(l2pagetable, (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT-2)),
638 kernel_ptpt.pv_pa);
639 map_entry_nc(l2pagetable, (0x00000000 >> (PGSHIFT-2)),
640 kernel_pt_table[KERNEL_PT_SYS]);
641 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
642 map_entry_nc(l2pagetable, ((KERNEL_VM_BASE +
643 (loop * 0x00400000)) >> (PGSHIFT-2)),
644 kernel_pt_table[KERNEL_PT_VMDATA + loop]);
645
646 /*
647 * Map the system page in the kernel page table for the bottom 1Meg
648 * of the virtual memory map.
649 */
650 l2pagetable = kernel_pt_table[KERNEL_PT_SYS];
651 map_entry(l2pagetable, 0x00000000, systempage.pv_pa);
652
653 /*
654 * Map devices we can map w/ section mappings.
655 */
656 loop = 0;
657 while (l1_sec_table[loop].size) {
658 vm_size_t sz;
659
660 #ifdef VERBOSE_INIT_ARM
661 printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
662 l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
663 l1_sec_table[loop].va);
664 #endif
665 for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_SEC_SIZE)
666 map_section(l1pagetable, l1_sec_table[loop].va + sz,
667 l1_sec_table[loop].pa + sz,
668 l1_sec_table[loop].flags);
669 ++loop;
670 }
671
672 /*
673 * Map the PCI I/O spaces and i80312 registers. These are too
674 * small to be mapped w/ section mappings.
675 */
676 l2pagetable = kernel_pt_table[KERNEL_PT_IOPXS];
677 #ifdef VERBOSE_INIT_ARM
678 printf("Mapping PIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
679 I80312_PCI_XLATE_PIOW_BASE,
680 I80312_PCI_XLATE_PIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
681 IQ80310_PIOW_VBASE);
682 #endif
683 map_chunk(0, l2pagetable, IQ80310_PIOW_VBASE,
684 I80312_PCI_XLATE_PIOW_BASE, I80312_PCI_XLATE_IOSIZE, AP_KRW, 0);
685
686 #ifdef VERBOSE_INIT_ARM
687 printf("Mapping SIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
688 I80312_PCI_XLATE_SIOW_BASE,
689 I80312_PCI_XLATE_SIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
690 IQ80310_SIOW_VBASE);
691 #endif
692 map_chunk(0, l2pagetable, IQ80310_SIOW_VBASE,
693 I80312_PCI_XLATE_SIOW_BASE, I80312_PCI_XLATE_IOSIZE, AP_KRW, 0);
694
695 #ifdef VERBOSE_INIT_ARM
696 printf("Mapping 80312 0x%08lx -> 0x%08lx @ 0x%08lx\n",
697 I80312_PMMR_BASE,
698 I80312_PMMR_BASE + I80312_PMMR_SIZE - 1,
699 IQ80310_80312_VBASE);
700 #endif
701 map_chunk(0, l2pagetable, IQ80310_80312_VBASE,
702 I80312_PMMR_BASE, I80312_PMMR_SIZE, AP_KRW, 0);
703
704 /*
705 * Give the XScale global cache clean code an appropriately
706 * sized chunk of unmapped VA space starting at 0xff000000
707 * (our device mappings end before this address).
708 */
709 xscale_cache_clean_addr = 0xff000000U;
710
711 /*
712 * Now we have the real page tables in place so we can switch to them.
713 * Once this is done we will be running with the REAL kernel page
714 * tables.
715 */
716
717 /*
718 * Update the physical_freestart/physical_freeend/free_pages
719 * variables.
720 */
721 {
722 extern char _end[];
723
724 physical_freestart = (((uintptr_t) _end) + PGOFSET) & ~PGOFSET;
725 physical_freeend = physical_end;
726 free_pages = (physical_freeend - physical_freestart) / NBPG;
727 }
728
729 /* Switch tables */
730 #ifdef VERBOSE_INIT_ARM
731 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
732 physical_freestart, free_pages, free_pages);
733 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
734 #endif
735 setttb(kernel_l1pt.pv_pa);
736
737 #ifdef VERBOSE_INIT_ARM
738 printf("done!\n");
739 #endif
740
741 #ifdef VERBOSE_INIT_ARM
742 printf("bootstrap done.\n");
743 #endif
744
745 /* Right, set up the vectors at the bottom of page 0 */
746 memcpy((char *)0x00000000, page0, page0_end - page0);
747
748 /* We have modified a text page so sync the icache */
749 cpu_cache_syncI();
750
751 /*
752 * Pages were allocated during the secondary bootstrap for the
753 * stacks for different CPU modes.
754 * We must now set the r13 registers in the different CPU modes to
755 * point to these stacks.
756 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
757 * of the stack memory.
758 */
759 printf("init subsystems: stacks ");
760
761 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * NBPG);
762 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * NBPG);
763 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * NBPG);
764
765 /*
766 * Well we should set a data abort handler.
767 * Once things get going this will change as we will need a proper
768 * handler.
769 * Until then we will use a handler that just panics but tells us
770 * why.
771 * Initialisation of the vectors will just panic on a data abort.
772 * This just fills in a slighly better one.
773 */
774 printf("vectors ");
775 data_abort_handler_address = (u_int)data_abort_handler;
776 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
777 undefined_handler_address = (u_int)undefinedinstruction_bounce;
778
779 /* At last !
780 * We now have the kernel in physical memory from the bottom upwards.
781 * Kernel page tables are physically above this.
782 * The kernel is mapped to KERNEL_TEXT_BASE
783 * The kernel data PTs will handle the mapping of 0xf1000000-0xf3ffffff
784 * The page tables are mapped to 0xefc00000
785 */
786
787 /* Initialise the undefined instruction handlers */
788 printf("undefined ");
789 undefined_init();
790
791 /* Boot strap pmap telling it where the kernel page table is */
792 printf("pmap ");
793 pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, kernel_ptpt);
794
795 /* Setup the IRQ system */
796 printf("irq ");
797 irq_init();
798 printf("done.\n");
799
800 #ifdef IPKDB
801 /* Initialise ipkdb */
802 ipkdb_init();
803 if (boothowto & RB_KDB)
804 ipkdb_connect(0);
805 #endif
806
807 #ifdef DDB
808 db_machine_init();
809
810 /* Firmware doesn't load symbols. */
811 ddb_init(0, NULL, NULL);
812
813 if (boothowto & RB_KDB)
814 Debugger();
815 #endif
816
817 /* We return the new stack pointer address */
818 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
819 }
820
821 void
822 process_kernel_args(char *args)
823 {
824
825 boothowto = 0;
826
827 /* Make a local copy of the bootargs */
828 strncpy(bootargs, args, MAX_BOOT_STRING);
829
830 args = bootargs;
831 boot_file = bootargs;
832
833 /* Skip the kernel image filename */
834 while (*args != ' ' && *args != 0)
835 ++args;
836
837 if (*args != 0)
838 *args++ = 0;
839
840 while (*args == ' ')
841 ++args;
842
843 boot_args = args;
844
845 printf("bootfile: %s\n", boot_file);
846 printf("bootargs: %s\n", boot_args);
847
848 parse_mi_bootargs(boot_args);
849 }
850
851 void
852 consinit(void)
853 {
854 static int consinit_called;
855
856 if (consinit_called != 0)
857 return;
858
859 consinit_called = 1;
860
861 #if NCOM > 0
862 if (comcnattach(&obio_bs_tag, IQ80310_UART2, comcnspeed,
863 COM_FREQ, comcnmode))
864 panic("can't init serial console @%lx", IQ80310_UART1);
865 #else
866 panic("serial console @%lx not configured", IQ80310_UART1);
867 #endif
868 }
869