Home | History | Annotate | Line # | Download | only in iq80310
iq80310_machdep.c revision 1.27
      1 /*	$NetBSD: iq80310_machdep.c,v 1.27 2002/02/21 21:58:02 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1997,1998 Mark Brinicombe.
     40  * Copyright (c) 1997,1998 Causality Limited.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by Mark Brinicombe
     54  *	for the NetBSD Project.
     55  * 4. The name of the company nor the name of the author may be used to
     56  *    endorse or promote products derived from this software without specific
     57  *    prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
     72  * boards using RedBoot firmware.
     73  */
     74 
     75 #include "opt_ddb.h"
     76 #include "opt_pmap_debug.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/device.h>
     80 #include <sys/systm.h>
     81 #include <sys/kernel.h>
     82 #include <sys/exec.h>
     83 #include <sys/proc.h>
     84 #include <sys/msgbuf.h>
     85 #include <sys/reboot.h>
     86 #include <sys/termios.h>
     87 
     88 #include <dev/cons.h>
     89 
     90 #include <machine/db_machdep.h>
     91 #include <ddb/db_sym.h>
     92 #include <ddb/db_extern.h>
     93 
     94 #include <machine/bootconfig.h>
     95 #include <machine/bus.h>
     96 #include <machine/cpu.h>
     97 #include <machine/frame.h>
     98 #include <arm/undefined.h>
     99 
    100 #include <arm/arm32/machdep.h>
    101 
    102 #include <arm/xscale/i80312reg.h>
    103 #include <arm/xscale/i80312var.h>
    104 
    105 #include <dev/pci/ppbreg.h>
    106 
    107 #include <evbarm/iq80310/iq80310reg.h>
    108 #include <evbarm/iq80310/iq80310var.h>
    109 #include <evbarm/iq80310/obiovar.h>
    110 
    111 #include "opt_ipkdb.h"
    112 
    113 /*
    114  * Address to call from cpu_reset() to reset the machine.
    115  * This is machine architecture dependant as it varies depending
    116  * on where the ROM appears when you turn the MMU off.
    117  */
    118 
    119 u_int cpu_reset_address = 0;
    120 
    121 /* Define various stack sizes in pages */
    122 #define IRQ_STACK_SIZE	1
    123 #define ABT_STACK_SIZE	1
    124 #ifdef IPKDB
    125 #define UND_STACK_SIZE	2
    126 #else
    127 #define UND_STACK_SIZE	1
    128 #endif
    129 
    130 BootConfig bootconfig;		/* Boot config storage */
    131 char *boot_args = NULL;
    132 char *boot_file = NULL;
    133 
    134 vm_offset_t physical_start;
    135 vm_offset_t physical_freestart;
    136 vm_offset_t physical_freeend;
    137 vm_offset_t physical_end;
    138 u_int free_pages;
    139 vm_offset_t pagetables_start;
    140 int physmem = 0;
    141 
    142 /*int debug_flags;*/
    143 #ifndef PMAP_STATIC_L1S
    144 int max_processes = 64;			/* Default number */
    145 #endif	/* !PMAP_STATIC_L1S */
    146 
    147 /* Physical and virtual addresses for some global pages */
    148 pv_addr_t systempage;
    149 pv_addr_t irqstack;
    150 pv_addr_t undstack;
    151 pv_addr_t abtstack;
    152 pv_addr_t kernelstack;
    153 pv_addr_t minidataclean;
    154 
    155 vm_offset_t msgbufphys;
    156 
    157 extern u_int data_abort_handler_address;
    158 extern u_int prefetch_abort_handler_address;
    159 extern u_int undefined_handler_address;
    160 
    161 #ifdef PMAP_DEBUG
    162 extern int pmap_debug_level;
    163 #endif
    164 
    165 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
    166 
    167 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
    168 #define	KERNEL_PT_KERNEL_NUM	2
    169 
    170 					/* L2 table for mapping i80312 */
    171 #define	KERNEL_PT_IOPXS		(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
    172 
    173 					/* L2 tables for mapping kernel VM */
    174 #define KERNEL_PT_VMDATA	(KERNEL_PT_IOPXS + 1)
    175 #define	KERNEL_PT_VMDATA_NUM	(KERNEL_VM_SIZE >> (PDSHIFT + 2))
    176 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    177 
    178 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    179 
    180 struct user *proc0paddr;
    181 
    182 /* Prototypes */
    183 
    184 void	consinit(void);
    185 
    186 #include "com.h"
    187 #if NCOM > 0
    188 #include <dev/ic/comreg.h>
    189 #include <dev/ic/comvar.h>
    190 #endif
    191 
    192 /*
    193  * Define the default console speed for the board.  This is generally
    194  * what the firmware provided with the board defaults to.
    195  */
    196 #ifndef CONSPEED
    197 #if defined(IOP310_TEAMASA_NPWR)
    198 #define CONSPEED B19200
    199 #else /* Default to stock IQ80310 */
    200 #define CONSPEED B115200
    201 #endif /* list of IQ80310-based designs */
    202 #endif /* ! CONSPEED */
    203 
    204 #ifndef CONUNIT
    205 #define	CONUNIT	0
    206 #endif
    207 
    208 #ifndef CONMODE
    209 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    210 #endif
    211 
    212 int comcnspeed = CONSPEED;
    213 int comcnmode = CONMODE;
    214 int comcnunit = CONUNIT;
    215 
    216 /*
    217  * void cpu_reboot(int howto, char *bootstr)
    218  *
    219  * Reboots the system
    220  *
    221  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    222  * then reset the CPU.
    223  */
    224 void
    225 cpu_reboot(int howto, char *bootstr)
    226 {
    227 #ifdef DIAGNOSTIC
    228 	/* info */
    229 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
    230 #endif
    231 
    232 	/*
    233 	 * If we are still cold then hit the air brakes
    234 	 * and crash to earth fast
    235 	 */
    236 	if (cold) {
    237 		doshutdownhooks();
    238 		printf("The operating system has halted.\n");
    239 		printf("Please press any key to reboot.\n\n");
    240 		cngetc();
    241 		printf("rebooting...\n");
    242 		cpu_reset();
    243 		/*NOTREACHED*/
    244 	}
    245 
    246 	/* Disable console buffering */
    247 
    248 	/*
    249 	 * If RB_NOSYNC was not specified sync the discs.
    250 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    251 	 * unmount.  It looks like syslogd is getting woken up only to find
    252 	 * that it cannot page part of the binary in as the filesystem has
    253 	 * been unmounted.
    254 	 */
    255 	if (!(howto & RB_NOSYNC))
    256 		bootsync();
    257 
    258 	/* Say NO to interrupts */
    259 	splhigh();
    260 
    261 	/* Do a dump if requested. */
    262 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    263 		dumpsys();
    264 
    265 	/* Run any shutdown hooks */
    266 	doshutdownhooks();
    267 
    268 	/* Make sure IRQ's are disabled */
    269 	IRQdisable;
    270 
    271 	if (howto & RB_HALT) {
    272 		printf("The operating system has halted.\n");
    273 		printf("Please press any key to reboot.\n\n");
    274 		cngetc();
    275 	}
    276 
    277 	printf("rebooting...\n");
    278 	cpu_reset();
    279 	/*NOTREACHED*/
    280 }
    281 
    282 /*
    283  * Mapping table for core kernel memory. This memory is mapped at init
    284  * time with section mappings.
    285  */
    286 struct l1_sec_map {
    287 	vaddr_t	va;
    288 	vaddr_t	pa;
    289 	vsize_t	size;
    290 	vm_prot_t prot;
    291 	int cache;
    292 } l1_sec_table[] = {
    293     /*
    294      * Map the on-board devices VA == PA so that we can access them
    295      * with the MMU on or off.
    296      */
    297     {
    298 	IQ80310_OBIO_BASE,
    299 	IQ80310_OBIO_BASE,
    300 	IQ80310_OBIO_SIZE,
    301 	VM_PROT_READ|VM_PROT_WRITE,
    302 	PTE_NOCACHE,
    303     },
    304 
    305     {
    306 	0,
    307 	0,
    308 	0,
    309 	0,
    310 	0,
    311     }
    312 };
    313 
    314 /*
    315  * u_int initarm(...)
    316  *
    317  * Initial entry point on startup. This gets called before main() is
    318  * entered.
    319  * It should be responsible for setting up everything that must be
    320  * in place when main is called.
    321  * This includes
    322  *   Taking a copy of the boot configuration structure.
    323  *   Initialising the physical console so characters can be printed.
    324  *   Setting up page tables for the kernel
    325  *   Relocating the kernel to the bottom of physical memory
    326  */
    327 u_int
    328 initarm(void *arg)
    329 {
    330 	extern vaddr_t xscale_cache_clean_addr, xscale_minidata_clean_addr;
    331 	extern vsize_t xscale_minidata_clean_size;
    332 	int loop;
    333 	int loop1;
    334 	u_int l1pagetable;
    335 	u_int l2pagetable;
    336 	extern char page0[], page0_end[];
    337 	pv_addr_t kernel_l1pt;
    338 	pv_addr_t kernel_ptpt;
    339 	paddr_t memstart;
    340 	psize_t memsize;
    341 
    342 	/*
    343 	 * Clear out the 7-segment display.  Whee, the first visual
    344 	 * indication that we're running kernel code.
    345 	 */
    346 	iq80310_7seg(' ', ' ');
    347 
    348 	/*
    349 	 * Heads up ... Setup the CPU / MMU / TLB functions
    350 	 */
    351 	if (set_cpufuncs())
    352 		panic("cpu not recognized!");
    353 
    354 	/* Calibrate the delay loop. */
    355 	iq80310_calibrate_delay();
    356 
    357 	/*
    358 	 * Since we map the on-board devices VA==PA, and the kernel
    359 	 * is running VA==PA, it's possible for us to initialize
    360 	 * the console now.
    361 	 */
    362 	consinit();
    363 
    364 	/* Talk to the user */
    365 	printf("\nNetBSD/evbarm (IQ80310) booting ...\n");
    366 
    367 	/*
    368 	 * Reset the secondary PCI bus.  RedBoot doesn't stop devices
    369 	 * on the PCI bus before handing us control, so we have to
    370 	 * do this.
    371 	 *
    372 	 * XXX This is arguably a bug in RedBoot, and doing this reset
    373 	 * XXX could be problematic in the future if we encounter an
    374 	 * XXX application where the PPB in the i80312 is used as a
    375 	 * XXX PPB.
    376 	 */
    377 	{
    378 		uint32_t reg;
    379 
    380 		printf("Resetting secondary PCI bus...\n");
    381 		reg = bus_space_read_4(&obio_bs_tag,
    382 		    I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL);
    383 		bus_space_write_4(&obio_bs_tag,
    384 		    I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
    385 		    reg | PPB_BC_SECONDARY_RESET);
    386 		delay(10 * 1000);	/* 10ms enough? */
    387 		bus_space_write_4(&obio_bs_tag,
    388 		    I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
    389 		    reg);
    390 	}
    391 
    392 	/*
    393 	 * Okay, RedBoot has provided us with the following memory map:
    394 	 *
    395 	 * Physical Address Range     Description
    396 	 * -----------------------    ----------------------------------
    397 	 * 0x00000000 - 0x00000fff    flash Memory
    398 	 * 0x00001000 - 0x00001fff    80312 Internal Registers
    399 	 * 0x00002000 - 0x007fffff    flash Memory
    400 	 * 0x00800000 - 0x7fffffff    PCI ATU Outbound Direct Window
    401 	 * 0x80000000 - 0x83ffffff    Primary PCI 32-bit Memory
    402 	 * 0x84000000 - 0x87ffffff    Primary PCI 64-bit Memory
    403 	 * 0x88000000 - 0x8bffffff    Secondary PCI 32-bit Memory
    404 	 * 0x8c000000 - 0x8fffffff    Secondary PCI 64-bit Memory
    405 	 * 0x90000000 - 0x9000ffff    Primary PCI IO Space
    406 	 * 0x90010000 - 0x9001ffff    Secondary PCI IO Space
    407 	 * 0x90020000 - 0x9fffffff    Unused
    408 	 * 0xa0000000 - 0xbfffffff    SDRAM
    409 	 * 0xc0000000 - 0xefffffff    Unused
    410 	 * 0xf0000000 - 0xffffffff    80200 Internal Registers
    411 	 *
    412 	 *
    413 	 * Virtual Address Range    C B  Description
    414 	 * -----------------------  - -  ----------------------------------
    415 	 * 0x00000000 - 0x00000fff  Y Y  SDRAM
    416 	 * 0x00001000 - 0x00001fff  N N  80312 Internal Registers
    417 	 * 0x00002000 - 0x007fffff  Y N  flash Memory
    418 	 * 0x00800000 - 0x7fffffff  N N  PCI ATU Outbound Direct Window
    419 	 * 0x80000000 - 0x83ffffff  N N  Primary PCI 32-bit Memory
    420 	 * 0x84000000 - 0x87ffffff  N N  Primary PCI 64-bit Memory
    421 	 * 0x88000000 - 0x8bffffff  N N  Secondary PCI 32-bit Memory
    422 	 * 0x8c000000 - 0x8fffffff  N N  Secondary PCI 64-bit Memory
    423 	 * 0x90000000 - 0x9000ffff  N N  Primary PCI IO Space
    424 	 * 0x90010000 - 0x9001ffff  N N  Secondary PCI IO Space
    425 	 * 0xa0000000 - 0xa0000fff  Y N  flash
    426 	 * 0xa0001000 - 0xbfffffff  Y Y  SDRAM
    427 	 * 0xc0000000 - 0xcfffffff  Y Y  Cache Flush Region
    428 	 * 0xf0000000 - 0xffffffff  N N  80200 Internal Registers
    429 	 *
    430 	 * The first level page table is at 0xa0004000.  There are also
    431 	 * 2 second-level tables at 0xa0008000 and 0xa0008400.
    432 	 *
    433 	 * This corresponds roughly to the physical memory map, i.e.
    434 	 * we are quite nearly running VA==PA.
    435 	 */
    436 
    437 	/*
    438 	 * Examine the boot args string for options we need to know about
    439 	 * now.
    440 	 */
    441 #if 0
    442 	process_kernel_args((char *)nwbootinfo.bt_args);
    443 #endif
    444 
    445 	/*
    446 	 * Fetch the SDRAM start/size from the i80312 SDRAM configration
    447 	 * registers.
    448 	 */
    449 	i80312_sdram_bounds(&obio_bs_tag, I80312_PMMR_BASE + I80312_MEM_BASE,
    450 	    &memstart, &memsize);
    451 
    452 	printf("initarm: Configuring system ...\n");
    453 
    454 	/* Fake bootconfig structure for the benefit of pmap.c */
    455 	/* XXX must make the memory description h/w independant */
    456 	bootconfig.dramblocks = 1;
    457 	bootconfig.dram[0].address = memstart;
    458 	bootconfig.dram[0].pages = memsize / NBPG;
    459 
    460 	/*
    461 	 * Set up the variables that define the availablilty of
    462 	 * physical memory.  For now, we're going to set
    463 	 * physical_freestart to 0xa0200000 (where the kernel
    464 	 * was loaded), and allocate the memory we need downwards.
    465 	 * If we get too close to the page tables that RedBoot
    466 	 * set up, we will panic.  We will update physical_freestart
    467 	 * and physical_freeend later to reflect what pmap_bootstrap()
    468 	 * wants to see.
    469 	 *
    470 	 * XXX pmap_bootstrap() needs an enema.
    471 	 */
    472 	physical_start = bootconfig.dram[0].address;
    473 	physical_end = physical_start + (bootconfig.dram[0].pages * NBPG);
    474 
    475 	physical_freestart = 0xa0009000UL;
    476 	physical_freeend = 0xa0200000UL;
    477 
    478 	physmem = (physical_end - physical_start) / NBPG;
    479 
    480 	/* Tell the user about the memory */
    481 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    482 	    physical_start, physical_end - 1);
    483 
    484 	/*
    485 	 * Okay, the kernel starts 2MB in from the bottom of physical
    486 	 * memory.  We are going to allocate our bootstrap pages downwards
    487 	 * from there.
    488 	 *
    489 	 * We need to allocate some fixed page tables to get the kernel
    490 	 * going.  We allocate one page directory and a number of page
    491 	 * tables and store the physical addresses in the kernel_pt_table
    492 	 * array.
    493 	 *
    494 	 * The kernel page directory must be on a 16K boundary.  The page
    495 	 * tables must be on 4K bounaries.  What we do is allocate the
    496 	 * page directory on the first 16K boundary that we encounter, and
    497 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    498 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    499 	 * least one 16K aligned region.
    500 	 */
    501 
    502 #ifdef VERBOSE_INIT_ARM
    503 	printf("Allocating page tables\n");
    504 #endif
    505 
    506 	free_pages = (physical_freeend - physical_freestart) / NBPG;
    507 
    508 #ifdef VERBOSE_INIT_ARM
    509 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    510 	       physical_freestart, free_pages, free_pages);
    511 #endif
    512 
    513 	/* Define a macro to simplify memory allocation */
    514 #define	valloc_pages(var, np)				\
    515 	alloc_pages((var).pv_pa, (np));			\
    516 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    517 
    518 #define alloc_pages(var, np)				\
    519 	physical_freeend -= ((np) * NBPG);		\
    520 	if (physical_freeend < physical_freestart)	\
    521 		panic("initarm: out of memory");	\
    522 	(var) = physical_freeend;			\
    523 	free_pages -= (np);				\
    524 	memset((char *)(var), 0, ((np) * NBPG));
    525 
    526 	loop1 = 0;
    527 	kernel_l1pt.pv_pa = 0;
    528 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    529 		/* Are we 16KB aligned for an L1 ? */
    530 		if (((physical_freeend - PD_SIZE) & (PD_SIZE - 1)) == 0
    531 		    && kernel_l1pt.pv_pa == 0) {
    532 			valloc_pages(kernel_l1pt, PD_SIZE / NBPG);
    533 		} else {
    534 			alloc_pages(kernel_pt_table[loop1].pv_pa,
    535 			    PT_SIZE / NBPG);
    536 			kernel_pt_table[loop1].pv_va =
    537 			    kernel_pt_table[loop1].pv_pa;
    538 			++loop1;
    539 		}
    540 	}
    541 
    542 	/* This should never be able to happen but better confirm that. */
    543 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (PD_SIZE-1)) != 0)
    544 		panic("initarm: Failed to align the kernel page directory\n");
    545 
    546 	/*
    547 	 * Allocate a page for the system page mapped to V0x00000000
    548 	 * This page will just contain the system vectors and can be
    549 	 * shared by all processes.
    550 	 */
    551 	alloc_pages(systempage.pv_pa, 1);
    552 
    553 	/* Allocate a page for the page table to map kernel page tables. */
    554 	valloc_pages(kernel_ptpt, PT_SIZE / NBPG);
    555 
    556 	/* Allocate stacks for all modes */
    557 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    558 	valloc_pages(abtstack, ABT_STACK_SIZE);
    559 	valloc_pages(undstack, UND_STACK_SIZE);
    560 	valloc_pages(kernelstack, UPAGES);
    561 
    562 	/* Allocate enough pages for cleaning the Mini-Data cache. */
    563 	KASSERT(xscale_minidata_clean_size <= NBPG);
    564 	valloc_pages(minidataclean, 1);
    565 	xscale_minidata_clean_addr = minidataclean.pv_va;
    566 
    567 #ifdef VERBOSE_INIT_ARM
    568 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    569 	    irqstack.pv_va);
    570 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    571 	    abtstack.pv_va);
    572 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    573 	    undstack.pv_va);
    574 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    575 	    kernelstack.pv_va);
    576 #endif
    577 
    578 	/*
    579 	 * XXX Defer this to later so that we can reclaim the memory
    580 	 * XXX used by the RedBoot page tables.
    581 	 */
    582 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / NBPG);
    583 
    584 	/*
    585 	 * Ok we have allocated physical pages for the primary kernel
    586 	 * page tables
    587 	 */
    588 
    589 #ifdef VERBOSE_INIT_ARM
    590 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    591 #endif
    592 
    593 	/*
    594 	 * Now we start construction of the L1 page table
    595 	 * We start by mapping the L2 page tables into the L1.
    596 	 * This means that we can replace L1 mappings later on if necessary
    597 	 */
    598 	l1pagetable = kernel_l1pt.pv_pa;
    599 
    600 	/* Map the L2 pages tables in the L1 page table */
    601 	pmap_link_l2pt(l1pagetable, 0x00000000,
    602 	    &kernel_pt_table[KERNEL_PT_SYS]);
    603 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    604 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    605 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    606 	pmap_link_l2pt(l1pagetable, IQ80310_IOPXS_VBASE,
    607 	    &kernel_pt_table[KERNEL_PT_IOPXS]);
    608 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    609 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    610 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    611 	pmap_link_l2pt(l1pagetable, PROCESS_PAGE_TBLS_BASE, &kernel_ptpt);
    612 
    613 #ifdef VERBOSE_INIT_ARM
    614 	printf("Mapping kernel\n");
    615 #endif
    616 
    617 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    618 	l2pagetable = kernel_pt_table[KERNEL_PT_KERNEL].pv_va;
    619 
    620 	{
    621 		extern char etext[], _end[];
    622 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    623 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    624 		u_int logical;
    625 
    626 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    627 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    628 
    629 		logical = 0x00200000;	/* offset of kernel in RAM */
    630 
    631 		/*
    632 		 * This maps the kernel text/data/bss VA==PA.
    633 		 */
    634 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    635 		    physical_start + logical, textsize,
    636 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    637 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    638 		    physical_start + logical, totalsize - textsize,
    639 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    640 
    641 #if 0 /* XXX No symbols yet. */
    642 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    643 		    physical_start + logical, kernexec->a_syms + sizeof(int)
    644 		    + *(u_int *)((int)end + kernexec->a_syms + sizeof(int)),
    645 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    646 #endif
    647 	}
    648 
    649 #ifdef VERBOSE_INIT_ARM
    650 	printf("Constructing L2 page tables\n");
    651 #endif
    652 
    653 	/* Map the stack pages */
    654 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    655 	    IRQ_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    656 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    657 	    ABT_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    658 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    659 	    UND_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    660 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    661 	    UPAGES * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    662 
    663 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    664 	    PD_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    665 
    666 	/* Map the Mini-Data cache clean area. */
    667 	pmap_map_chunk(l1pagetable, minidataclean.pv_va, minidataclean.pv_pa,
    668 	    NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    669 
    670 	/* Map the page table that maps the kernel pages */
    671 	pmap_map_entry(l2pagetable, kernel_ptpt.pv_pa, kernel_ptpt.pv_pa,
    672 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    673 
    674 	/*
    675 	 * Map entries in the page table used to map PTE's
    676 	 * Basically every kernel page table gets mapped here
    677 	 */
    678 	/* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */
    679 	l2pagetable = kernel_ptpt.pv_pa;
    680 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    681 		pmap_map_entry(l2pagetable, ((KERNEL_BASE +
    682 		    (loop * 0x00400000)) >> (PGSHIFT-2)),
    683 		    kernel_pt_table[KERNEL_PT_KERNEL + loop].pv_pa,
    684 		    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    685 	pmap_map_entry(l2pagetable, (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT-2)),
    686 	    kernel_ptpt.pv_pa,
    687 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    688 	pmap_map_entry(l2pagetable, (0x00000000 >> (PGSHIFT-2)),
    689 	    kernel_pt_table[KERNEL_PT_SYS].pv_pa,
    690 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    691 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    692 		pmap_map_entry(l2pagetable, ((KERNEL_VM_BASE +
    693 		    (loop * 0x00400000)) >> (PGSHIFT-2)),
    694 		    kernel_pt_table[KERNEL_PT_VMDATA + loop].pv_pa,
    695 		    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    696 
    697 	/*
    698 	 * Map the system page in the kernel page table for the bottom 1Meg
    699 	 * of the virtual memory map.
    700 	 */
    701 	l2pagetable = kernel_pt_table[KERNEL_PT_SYS].pv_va;
    702 	pmap_map_entry(l2pagetable, 0x00000000, systempage.pv_pa,
    703 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    704 
    705 	/*
    706 	 * Map devices we can map w/ section mappings.
    707 	 */
    708 	loop = 0;
    709 	while (l1_sec_table[loop].size) {
    710 		vm_size_t sz;
    711 
    712 #ifdef VERBOSE_INIT_ARM
    713 		printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
    714 		    l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
    715 		    l1_sec_table[loop].va);
    716 #endif
    717 		for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_SEC_SIZE)
    718 			pmap_map_section(l1pagetable,
    719 			    l1_sec_table[loop].va + sz,
    720 			    l1_sec_table[loop].pa + sz,
    721 			    l1_sec_table[loop].prot,
    722 			    l1_sec_table[loop].cache);
    723 		++loop;
    724 	}
    725 
    726 	/*
    727 	 * Map the PCI I/O spaces and i80312 registers.  These are too
    728 	 * small to be mapped w/ section mappings.
    729 	 */
    730 	l2pagetable = kernel_pt_table[KERNEL_PT_IOPXS].pv_va;
    731 #ifdef VERBOSE_INIT_ARM
    732 	printf("Mapping PIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
    733 	    I80312_PCI_XLATE_PIOW_BASE,
    734 	    I80312_PCI_XLATE_PIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
    735 	    IQ80310_PIOW_VBASE);
    736 #endif
    737 	pmap_map_chunk(l1pagetable, IQ80310_PIOW_VBASE,
    738 	    I80312_PCI_XLATE_PIOW_BASE, I80312_PCI_XLATE_IOSIZE,
    739 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    740 
    741 #ifdef VERBOSE_INIT_ARM
    742 	printf("Mapping SIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
    743 	    I80312_PCI_XLATE_SIOW_BASE,
    744 	    I80312_PCI_XLATE_SIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
    745 	    IQ80310_SIOW_VBASE);
    746 #endif
    747 	pmap_map_chunk(l1pagetable, IQ80310_SIOW_VBASE,
    748 	    I80312_PCI_XLATE_SIOW_BASE, I80312_PCI_XLATE_IOSIZE,
    749 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    750 
    751 #ifdef VERBOSE_INIT_ARM
    752 	printf("Mapping 80312 0x%08lx -> 0x%08lx @ 0x%08lx\n",
    753 	    I80312_PMMR_BASE,
    754 	    I80312_PMMR_BASE + I80312_PMMR_SIZE - 1,
    755 	    IQ80310_80312_VBASE);
    756 #endif
    757 	pmap_map_chunk(l1pagetable, IQ80310_80312_VBASE,
    758 	    I80312_PMMR_BASE, I80312_PMMR_SIZE,
    759 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    760 
    761 	/*
    762 	 * Give the XScale global cache clean code an appropriately
    763 	 * sized chunk of unmapped VA space starting at 0xff000000
    764 	 * (our device mappings end before this address).
    765 	 */
    766 	xscale_cache_clean_addr = 0xff000000U;
    767 
    768 	/*
    769 	 * Now we have the real page tables in place so we can switch to them.
    770 	 * Once this is done we will be running with the REAL kernel page
    771 	 * tables.
    772 	 */
    773 
    774 	/*
    775 	 * Update the physical_freestart/physical_freeend/free_pages
    776 	 * variables.
    777 	 */
    778 	{
    779 		extern char _end[];
    780 
    781 		physical_freestart = (((uintptr_t) _end) + PGOFSET) & ~PGOFSET;
    782 		physical_freeend = physical_end;
    783 		free_pages = (physical_freeend - physical_freestart) / NBPG;
    784 	}
    785 
    786 	/* Switch tables */
    787 #ifdef VERBOSE_INIT_ARM
    788 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    789 	       physical_freestart, free_pages, free_pages);
    790 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    791 #endif
    792 	setttb(kernel_l1pt.pv_pa);
    793 
    794 #ifdef VERBOSE_INIT_ARM
    795 	printf("done!\n");
    796 #endif
    797 
    798 #ifdef VERBOSE_INIT_ARM
    799 	printf("bootstrap done.\n");
    800 #endif
    801 
    802 	/* Right, set up the vectors at the bottom of page 0 */
    803 	memcpy((char *)0x00000000, page0, page0_end - page0);
    804 
    805 	/* We have modified a text page so sync the icache */
    806 	cpu_icache_sync_all();
    807 
    808 	/*
    809 	 * Pages were allocated during the secondary bootstrap for the
    810 	 * stacks for different CPU modes.
    811 	 * We must now set the r13 registers in the different CPU modes to
    812 	 * point to these stacks.
    813 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    814 	 * of the stack memory.
    815 	 */
    816 	printf("init subsystems: stacks ");
    817 
    818 	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * NBPG);
    819 	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * NBPG);
    820 	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * NBPG);
    821 
    822 	/*
    823 	 * Well we should set a data abort handler.
    824 	 * Once things get going this will change as we will need a proper
    825 	 * handler.
    826 	 * Until then we will use a handler that just panics but tells us
    827 	 * why.
    828 	 * Initialisation of the vectors will just panic on a data abort.
    829 	 * This just fills in a slighly better one.
    830 	 */
    831 	printf("vectors ");
    832 	data_abort_handler_address = (u_int)data_abort_handler;
    833 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    834 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    835 
    836 	/* At last !
    837 	 * We now have the kernel in physical memory from the bottom upwards.
    838 	 * Kernel page tables are physically above this.
    839 	 * The kernel is mapped to KERNEL_TEXT_BASE
    840 	 * The kernel data PTs will handle the mapping of 0xf1000000-0xf3ffffff
    841 	 * The page tables are mapped to 0xefc00000
    842 	 */
    843 
    844 	/* Initialise the undefined instruction handlers */
    845 	printf("undefined ");
    846 	undefined_init();
    847 
    848 	/* Boot strap pmap telling it where the kernel page table is */
    849 	printf("pmap ");
    850 	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, kernel_ptpt);
    851 
    852 	/* Setup the IRQ system */
    853 	printf("irq ");
    854 	iq80310_intr_init();
    855 	printf("done.\n");
    856 
    857 #ifdef IPKDB
    858 	/* Initialise ipkdb */
    859 	ipkdb_init();
    860 	if (boothowto & RB_KDB)
    861 		ipkdb_connect(0);
    862 #endif
    863 
    864 #ifdef DDB
    865 	db_machine_init();
    866 
    867 	/* Firmware doesn't load symbols. */
    868 	ddb_init(0, NULL, NULL);
    869 
    870 	if (boothowto & RB_KDB)
    871 		Debugger();
    872 #endif
    873 
    874 	/* We return the new stack pointer address */
    875 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    876 }
    877 
    878 #if 0
    879 void
    880 process_kernel_args(char *args)
    881 {
    882 	static char bootargs[MAX_BOOT_STRING + 1];
    883 
    884 	boothowto = 0;
    885 
    886 	/* Make a local copy of the bootargs */
    887 	strncpy(bootargs, args, MAX_BOOT_STRING);
    888 
    889 	args = bootargs;
    890 	boot_file = bootargs;
    891 
    892 	/* Skip the kernel image filename */
    893 	while (*args != ' ' && *args != 0)
    894 		++args;
    895 
    896 	if (*args != 0)
    897 		*args++ = 0;
    898 
    899 	while (*args == ' ')
    900 		++args;
    901 
    902 	boot_args = args;
    903 
    904 	printf("bootfile: %s\n", boot_file);
    905 	printf("bootargs: %s\n", boot_args);
    906 
    907 	parse_mi_bootargs(boot_args);
    908 }
    909 #endif
    910 
    911 void
    912 consinit(void)
    913 {
    914 	static const bus_addr_t comcnaddrs[] = {
    915 		IQ80310_UART2,		/* com0 (J9) */
    916 		IQ80310_UART1,		/* com1 (J10) */
    917 	};
    918 	static int consinit_called;
    919 
    920 	if (consinit_called != 0)
    921 		return;
    922 
    923 	consinit_called = 1;
    924 
    925 #if NCOM > 0
    926 	if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
    927 	    COM_FREQ, comcnmode))
    928 		panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
    929 #else
    930 	panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
    931 #endif
    932 }
    933