iq80310_machdep.c revision 1.27 1 /* $NetBSD: iq80310_machdep.c,v 1.27 2002/02/21 21:58:02 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1997,1998 Mark Brinicombe.
40 * Copyright (c) 1997,1998 Causality Limited.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by Mark Brinicombe
54 * for the NetBSD Project.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
72 * boards using RedBoot firmware.
73 */
74
75 #include "opt_ddb.h"
76 #include "opt_pmap_debug.h"
77
78 #include <sys/param.h>
79 #include <sys/device.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/exec.h>
83 #include <sys/proc.h>
84 #include <sys/msgbuf.h>
85 #include <sys/reboot.h>
86 #include <sys/termios.h>
87
88 #include <dev/cons.h>
89
90 #include <machine/db_machdep.h>
91 #include <ddb/db_sym.h>
92 #include <ddb/db_extern.h>
93
94 #include <machine/bootconfig.h>
95 #include <machine/bus.h>
96 #include <machine/cpu.h>
97 #include <machine/frame.h>
98 #include <arm/undefined.h>
99
100 #include <arm/arm32/machdep.h>
101
102 #include <arm/xscale/i80312reg.h>
103 #include <arm/xscale/i80312var.h>
104
105 #include <dev/pci/ppbreg.h>
106
107 #include <evbarm/iq80310/iq80310reg.h>
108 #include <evbarm/iq80310/iq80310var.h>
109 #include <evbarm/iq80310/obiovar.h>
110
111 #include "opt_ipkdb.h"
112
113 /*
114 * Address to call from cpu_reset() to reset the machine.
115 * This is machine architecture dependant as it varies depending
116 * on where the ROM appears when you turn the MMU off.
117 */
118
119 u_int cpu_reset_address = 0;
120
121 /* Define various stack sizes in pages */
122 #define IRQ_STACK_SIZE 1
123 #define ABT_STACK_SIZE 1
124 #ifdef IPKDB
125 #define UND_STACK_SIZE 2
126 #else
127 #define UND_STACK_SIZE 1
128 #endif
129
130 BootConfig bootconfig; /* Boot config storage */
131 char *boot_args = NULL;
132 char *boot_file = NULL;
133
134 vm_offset_t physical_start;
135 vm_offset_t physical_freestart;
136 vm_offset_t physical_freeend;
137 vm_offset_t physical_end;
138 u_int free_pages;
139 vm_offset_t pagetables_start;
140 int physmem = 0;
141
142 /*int debug_flags;*/
143 #ifndef PMAP_STATIC_L1S
144 int max_processes = 64; /* Default number */
145 #endif /* !PMAP_STATIC_L1S */
146
147 /* Physical and virtual addresses for some global pages */
148 pv_addr_t systempage;
149 pv_addr_t irqstack;
150 pv_addr_t undstack;
151 pv_addr_t abtstack;
152 pv_addr_t kernelstack;
153 pv_addr_t minidataclean;
154
155 vm_offset_t msgbufphys;
156
157 extern u_int data_abort_handler_address;
158 extern u_int prefetch_abort_handler_address;
159 extern u_int undefined_handler_address;
160
161 #ifdef PMAP_DEBUG
162 extern int pmap_debug_level;
163 #endif
164
165 #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
166
167 #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
168 #define KERNEL_PT_KERNEL_NUM 2
169
170 /* L2 table for mapping i80312 */
171 #define KERNEL_PT_IOPXS (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
172
173 /* L2 tables for mapping kernel VM */
174 #define KERNEL_PT_VMDATA (KERNEL_PT_IOPXS + 1)
175 #define KERNEL_PT_VMDATA_NUM (KERNEL_VM_SIZE >> (PDSHIFT + 2))
176 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
177
178 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
179
180 struct user *proc0paddr;
181
182 /* Prototypes */
183
184 void consinit(void);
185
186 #include "com.h"
187 #if NCOM > 0
188 #include <dev/ic/comreg.h>
189 #include <dev/ic/comvar.h>
190 #endif
191
192 /*
193 * Define the default console speed for the board. This is generally
194 * what the firmware provided with the board defaults to.
195 */
196 #ifndef CONSPEED
197 #if defined(IOP310_TEAMASA_NPWR)
198 #define CONSPEED B19200
199 #else /* Default to stock IQ80310 */
200 #define CONSPEED B115200
201 #endif /* list of IQ80310-based designs */
202 #endif /* ! CONSPEED */
203
204 #ifndef CONUNIT
205 #define CONUNIT 0
206 #endif
207
208 #ifndef CONMODE
209 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
210 #endif
211
212 int comcnspeed = CONSPEED;
213 int comcnmode = CONMODE;
214 int comcnunit = CONUNIT;
215
216 /*
217 * void cpu_reboot(int howto, char *bootstr)
218 *
219 * Reboots the system
220 *
221 * Deal with any syncing, unmounting, dumping and shutdown hooks,
222 * then reset the CPU.
223 */
224 void
225 cpu_reboot(int howto, char *bootstr)
226 {
227 #ifdef DIAGNOSTIC
228 /* info */
229 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
230 #endif
231
232 /*
233 * If we are still cold then hit the air brakes
234 * and crash to earth fast
235 */
236 if (cold) {
237 doshutdownhooks();
238 printf("The operating system has halted.\n");
239 printf("Please press any key to reboot.\n\n");
240 cngetc();
241 printf("rebooting...\n");
242 cpu_reset();
243 /*NOTREACHED*/
244 }
245
246 /* Disable console buffering */
247
248 /*
249 * If RB_NOSYNC was not specified sync the discs.
250 * Note: Unless cold is set to 1 here, syslogd will die during the
251 * unmount. It looks like syslogd is getting woken up only to find
252 * that it cannot page part of the binary in as the filesystem has
253 * been unmounted.
254 */
255 if (!(howto & RB_NOSYNC))
256 bootsync();
257
258 /* Say NO to interrupts */
259 splhigh();
260
261 /* Do a dump if requested. */
262 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
263 dumpsys();
264
265 /* Run any shutdown hooks */
266 doshutdownhooks();
267
268 /* Make sure IRQ's are disabled */
269 IRQdisable;
270
271 if (howto & RB_HALT) {
272 printf("The operating system has halted.\n");
273 printf("Please press any key to reboot.\n\n");
274 cngetc();
275 }
276
277 printf("rebooting...\n");
278 cpu_reset();
279 /*NOTREACHED*/
280 }
281
282 /*
283 * Mapping table for core kernel memory. This memory is mapped at init
284 * time with section mappings.
285 */
286 struct l1_sec_map {
287 vaddr_t va;
288 vaddr_t pa;
289 vsize_t size;
290 vm_prot_t prot;
291 int cache;
292 } l1_sec_table[] = {
293 /*
294 * Map the on-board devices VA == PA so that we can access them
295 * with the MMU on or off.
296 */
297 {
298 IQ80310_OBIO_BASE,
299 IQ80310_OBIO_BASE,
300 IQ80310_OBIO_SIZE,
301 VM_PROT_READ|VM_PROT_WRITE,
302 PTE_NOCACHE,
303 },
304
305 {
306 0,
307 0,
308 0,
309 0,
310 0,
311 }
312 };
313
314 /*
315 * u_int initarm(...)
316 *
317 * Initial entry point on startup. This gets called before main() is
318 * entered.
319 * It should be responsible for setting up everything that must be
320 * in place when main is called.
321 * This includes
322 * Taking a copy of the boot configuration structure.
323 * Initialising the physical console so characters can be printed.
324 * Setting up page tables for the kernel
325 * Relocating the kernel to the bottom of physical memory
326 */
327 u_int
328 initarm(void *arg)
329 {
330 extern vaddr_t xscale_cache_clean_addr, xscale_minidata_clean_addr;
331 extern vsize_t xscale_minidata_clean_size;
332 int loop;
333 int loop1;
334 u_int l1pagetable;
335 u_int l2pagetable;
336 extern char page0[], page0_end[];
337 pv_addr_t kernel_l1pt;
338 pv_addr_t kernel_ptpt;
339 paddr_t memstart;
340 psize_t memsize;
341
342 /*
343 * Clear out the 7-segment display. Whee, the first visual
344 * indication that we're running kernel code.
345 */
346 iq80310_7seg(' ', ' ');
347
348 /*
349 * Heads up ... Setup the CPU / MMU / TLB functions
350 */
351 if (set_cpufuncs())
352 panic("cpu not recognized!");
353
354 /* Calibrate the delay loop. */
355 iq80310_calibrate_delay();
356
357 /*
358 * Since we map the on-board devices VA==PA, and the kernel
359 * is running VA==PA, it's possible for us to initialize
360 * the console now.
361 */
362 consinit();
363
364 /* Talk to the user */
365 printf("\nNetBSD/evbarm (IQ80310) booting ...\n");
366
367 /*
368 * Reset the secondary PCI bus. RedBoot doesn't stop devices
369 * on the PCI bus before handing us control, so we have to
370 * do this.
371 *
372 * XXX This is arguably a bug in RedBoot, and doing this reset
373 * XXX could be problematic in the future if we encounter an
374 * XXX application where the PPB in the i80312 is used as a
375 * XXX PPB.
376 */
377 {
378 uint32_t reg;
379
380 printf("Resetting secondary PCI bus...\n");
381 reg = bus_space_read_4(&obio_bs_tag,
382 I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL);
383 bus_space_write_4(&obio_bs_tag,
384 I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
385 reg | PPB_BC_SECONDARY_RESET);
386 delay(10 * 1000); /* 10ms enough? */
387 bus_space_write_4(&obio_bs_tag,
388 I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
389 reg);
390 }
391
392 /*
393 * Okay, RedBoot has provided us with the following memory map:
394 *
395 * Physical Address Range Description
396 * ----------------------- ----------------------------------
397 * 0x00000000 - 0x00000fff flash Memory
398 * 0x00001000 - 0x00001fff 80312 Internal Registers
399 * 0x00002000 - 0x007fffff flash Memory
400 * 0x00800000 - 0x7fffffff PCI ATU Outbound Direct Window
401 * 0x80000000 - 0x83ffffff Primary PCI 32-bit Memory
402 * 0x84000000 - 0x87ffffff Primary PCI 64-bit Memory
403 * 0x88000000 - 0x8bffffff Secondary PCI 32-bit Memory
404 * 0x8c000000 - 0x8fffffff Secondary PCI 64-bit Memory
405 * 0x90000000 - 0x9000ffff Primary PCI IO Space
406 * 0x90010000 - 0x9001ffff Secondary PCI IO Space
407 * 0x90020000 - 0x9fffffff Unused
408 * 0xa0000000 - 0xbfffffff SDRAM
409 * 0xc0000000 - 0xefffffff Unused
410 * 0xf0000000 - 0xffffffff 80200 Internal Registers
411 *
412 *
413 * Virtual Address Range C B Description
414 * ----------------------- - - ----------------------------------
415 * 0x00000000 - 0x00000fff Y Y SDRAM
416 * 0x00001000 - 0x00001fff N N 80312 Internal Registers
417 * 0x00002000 - 0x007fffff Y N flash Memory
418 * 0x00800000 - 0x7fffffff N N PCI ATU Outbound Direct Window
419 * 0x80000000 - 0x83ffffff N N Primary PCI 32-bit Memory
420 * 0x84000000 - 0x87ffffff N N Primary PCI 64-bit Memory
421 * 0x88000000 - 0x8bffffff N N Secondary PCI 32-bit Memory
422 * 0x8c000000 - 0x8fffffff N N Secondary PCI 64-bit Memory
423 * 0x90000000 - 0x9000ffff N N Primary PCI IO Space
424 * 0x90010000 - 0x9001ffff N N Secondary PCI IO Space
425 * 0xa0000000 - 0xa0000fff Y N flash
426 * 0xa0001000 - 0xbfffffff Y Y SDRAM
427 * 0xc0000000 - 0xcfffffff Y Y Cache Flush Region
428 * 0xf0000000 - 0xffffffff N N 80200 Internal Registers
429 *
430 * The first level page table is at 0xa0004000. There are also
431 * 2 second-level tables at 0xa0008000 and 0xa0008400.
432 *
433 * This corresponds roughly to the physical memory map, i.e.
434 * we are quite nearly running VA==PA.
435 */
436
437 /*
438 * Examine the boot args string for options we need to know about
439 * now.
440 */
441 #if 0
442 process_kernel_args((char *)nwbootinfo.bt_args);
443 #endif
444
445 /*
446 * Fetch the SDRAM start/size from the i80312 SDRAM configration
447 * registers.
448 */
449 i80312_sdram_bounds(&obio_bs_tag, I80312_PMMR_BASE + I80312_MEM_BASE,
450 &memstart, &memsize);
451
452 printf("initarm: Configuring system ...\n");
453
454 /* Fake bootconfig structure for the benefit of pmap.c */
455 /* XXX must make the memory description h/w independant */
456 bootconfig.dramblocks = 1;
457 bootconfig.dram[0].address = memstart;
458 bootconfig.dram[0].pages = memsize / NBPG;
459
460 /*
461 * Set up the variables that define the availablilty of
462 * physical memory. For now, we're going to set
463 * physical_freestart to 0xa0200000 (where the kernel
464 * was loaded), and allocate the memory we need downwards.
465 * If we get too close to the page tables that RedBoot
466 * set up, we will panic. We will update physical_freestart
467 * and physical_freeend later to reflect what pmap_bootstrap()
468 * wants to see.
469 *
470 * XXX pmap_bootstrap() needs an enema.
471 */
472 physical_start = bootconfig.dram[0].address;
473 physical_end = physical_start + (bootconfig.dram[0].pages * NBPG);
474
475 physical_freestart = 0xa0009000UL;
476 physical_freeend = 0xa0200000UL;
477
478 physmem = (physical_end - physical_start) / NBPG;
479
480 /* Tell the user about the memory */
481 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
482 physical_start, physical_end - 1);
483
484 /*
485 * Okay, the kernel starts 2MB in from the bottom of physical
486 * memory. We are going to allocate our bootstrap pages downwards
487 * from there.
488 *
489 * We need to allocate some fixed page tables to get the kernel
490 * going. We allocate one page directory and a number of page
491 * tables and store the physical addresses in the kernel_pt_table
492 * array.
493 *
494 * The kernel page directory must be on a 16K boundary. The page
495 * tables must be on 4K bounaries. What we do is allocate the
496 * page directory on the first 16K boundary that we encounter, and
497 * the page tables on 4K boundaries otherwise. Since we allocate
498 * at least 3 L2 page tables, we are guaranteed to encounter at
499 * least one 16K aligned region.
500 */
501
502 #ifdef VERBOSE_INIT_ARM
503 printf("Allocating page tables\n");
504 #endif
505
506 free_pages = (physical_freeend - physical_freestart) / NBPG;
507
508 #ifdef VERBOSE_INIT_ARM
509 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
510 physical_freestart, free_pages, free_pages);
511 #endif
512
513 /* Define a macro to simplify memory allocation */
514 #define valloc_pages(var, np) \
515 alloc_pages((var).pv_pa, (np)); \
516 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
517
518 #define alloc_pages(var, np) \
519 physical_freeend -= ((np) * NBPG); \
520 if (physical_freeend < physical_freestart) \
521 panic("initarm: out of memory"); \
522 (var) = physical_freeend; \
523 free_pages -= (np); \
524 memset((char *)(var), 0, ((np) * NBPG));
525
526 loop1 = 0;
527 kernel_l1pt.pv_pa = 0;
528 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
529 /* Are we 16KB aligned for an L1 ? */
530 if (((physical_freeend - PD_SIZE) & (PD_SIZE - 1)) == 0
531 && kernel_l1pt.pv_pa == 0) {
532 valloc_pages(kernel_l1pt, PD_SIZE / NBPG);
533 } else {
534 alloc_pages(kernel_pt_table[loop1].pv_pa,
535 PT_SIZE / NBPG);
536 kernel_pt_table[loop1].pv_va =
537 kernel_pt_table[loop1].pv_pa;
538 ++loop1;
539 }
540 }
541
542 /* This should never be able to happen but better confirm that. */
543 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (PD_SIZE-1)) != 0)
544 panic("initarm: Failed to align the kernel page directory\n");
545
546 /*
547 * Allocate a page for the system page mapped to V0x00000000
548 * This page will just contain the system vectors and can be
549 * shared by all processes.
550 */
551 alloc_pages(systempage.pv_pa, 1);
552
553 /* Allocate a page for the page table to map kernel page tables. */
554 valloc_pages(kernel_ptpt, PT_SIZE / NBPG);
555
556 /* Allocate stacks for all modes */
557 valloc_pages(irqstack, IRQ_STACK_SIZE);
558 valloc_pages(abtstack, ABT_STACK_SIZE);
559 valloc_pages(undstack, UND_STACK_SIZE);
560 valloc_pages(kernelstack, UPAGES);
561
562 /* Allocate enough pages for cleaning the Mini-Data cache. */
563 KASSERT(xscale_minidata_clean_size <= NBPG);
564 valloc_pages(minidataclean, 1);
565 xscale_minidata_clean_addr = minidataclean.pv_va;
566
567 #ifdef VERBOSE_INIT_ARM
568 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
569 irqstack.pv_va);
570 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
571 abtstack.pv_va);
572 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
573 undstack.pv_va);
574 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
575 kernelstack.pv_va);
576 #endif
577
578 /*
579 * XXX Defer this to later so that we can reclaim the memory
580 * XXX used by the RedBoot page tables.
581 */
582 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / NBPG);
583
584 /*
585 * Ok we have allocated physical pages for the primary kernel
586 * page tables
587 */
588
589 #ifdef VERBOSE_INIT_ARM
590 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
591 #endif
592
593 /*
594 * Now we start construction of the L1 page table
595 * We start by mapping the L2 page tables into the L1.
596 * This means that we can replace L1 mappings later on if necessary
597 */
598 l1pagetable = kernel_l1pt.pv_pa;
599
600 /* Map the L2 pages tables in the L1 page table */
601 pmap_link_l2pt(l1pagetable, 0x00000000,
602 &kernel_pt_table[KERNEL_PT_SYS]);
603 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
604 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
605 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
606 pmap_link_l2pt(l1pagetable, IQ80310_IOPXS_VBASE,
607 &kernel_pt_table[KERNEL_PT_IOPXS]);
608 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
609 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
610 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
611 pmap_link_l2pt(l1pagetable, PROCESS_PAGE_TBLS_BASE, &kernel_ptpt);
612
613 #ifdef VERBOSE_INIT_ARM
614 printf("Mapping kernel\n");
615 #endif
616
617 /* Now we fill in the L2 pagetable for the kernel static code/data */
618 l2pagetable = kernel_pt_table[KERNEL_PT_KERNEL].pv_va;
619
620 {
621 extern char etext[], _end[];
622 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
623 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
624 u_int logical;
625
626 textsize = (textsize + PGOFSET) & ~PGOFSET;
627 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
628
629 logical = 0x00200000; /* offset of kernel in RAM */
630
631 /*
632 * This maps the kernel text/data/bss VA==PA.
633 */
634 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
635 physical_start + logical, textsize,
636 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
637 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
638 physical_start + logical, totalsize - textsize,
639 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
640
641 #if 0 /* XXX No symbols yet. */
642 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
643 physical_start + logical, kernexec->a_syms + sizeof(int)
644 + *(u_int *)((int)end + kernexec->a_syms + sizeof(int)),
645 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
646 #endif
647 }
648
649 #ifdef VERBOSE_INIT_ARM
650 printf("Constructing L2 page tables\n");
651 #endif
652
653 /* Map the stack pages */
654 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
655 IRQ_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
656 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
657 ABT_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
658 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
659 UND_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
660 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
661 UPAGES * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
662
663 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
664 PD_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
665
666 /* Map the Mini-Data cache clean area. */
667 pmap_map_chunk(l1pagetable, minidataclean.pv_va, minidataclean.pv_pa,
668 NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
669
670 /* Map the page table that maps the kernel pages */
671 pmap_map_entry(l2pagetable, kernel_ptpt.pv_pa, kernel_ptpt.pv_pa,
672 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
673
674 /*
675 * Map entries in the page table used to map PTE's
676 * Basically every kernel page table gets mapped here
677 */
678 /* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */
679 l2pagetable = kernel_ptpt.pv_pa;
680 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
681 pmap_map_entry(l2pagetable, ((KERNEL_BASE +
682 (loop * 0x00400000)) >> (PGSHIFT-2)),
683 kernel_pt_table[KERNEL_PT_KERNEL + loop].pv_pa,
684 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
685 pmap_map_entry(l2pagetable, (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT-2)),
686 kernel_ptpt.pv_pa,
687 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
688 pmap_map_entry(l2pagetable, (0x00000000 >> (PGSHIFT-2)),
689 kernel_pt_table[KERNEL_PT_SYS].pv_pa,
690 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
691 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
692 pmap_map_entry(l2pagetable, ((KERNEL_VM_BASE +
693 (loop * 0x00400000)) >> (PGSHIFT-2)),
694 kernel_pt_table[KERNEL_PT_VMDATA + loop].pv_pa,
695 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
696
697 /*
698 * Map the system page in the kernel page table for the bottom 1Meg
699 * of the virtual memory map.
700 */
701 l2pagetable = kernel_pt_table[KERNEL_PT_SYS].pv_va;
702 pmap_map_entry(l2pagetable, 0x00000000, systempage.pv_pa,
703 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
704
705 /*
706 * Map devices we can map w/ section mappings.
707 */
708 loop = 0;
709 while (l1_sec_table[loop].size) {
710 vm_size_t sz;
711
712 #ifdef VERBOSE_INIT_ARM
713 printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
714 l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
715 l1_sec_table[loop].va);
716 #endif
717 for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_SEC_SIZE)
718 pmap_map_section(l1pagetable,
719 l1_sec_table[loop].va + sz,
720 l1_sec_table[loop].pa + sz,
721 l1_sec_table[loop].prot,
722 l1_sec_table[loop].cache);
723 ++loop;
724 }
725
726 /*
727 * Map the PCI I/O spaces and i80312 registers. These are too
728 * small to be mapped w/ section mappings.
729 */
730 l2pagetable = kernel_pt_table[KERNEL_PT_IOPXS].pv_va;
731 #ifdef VERBOSE_INIT_ARM
732 printf("Mapping PIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
733 I80312_PCI_XLATE_PIOW_BASE,
734 I80312_PCI_XLATE_PIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
735 IQ80310_PIOW_VBASE);
736 #endif
737 pmap_map_chunk(l1pagetable, IQ80310_PIOW_VBASE,
738 I80312_PCI_XLATE_PIOW_BASE, I80312_PCI_XLATE_IOSIZE,
739 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
740
741 #ifdef VERBOSE_INIT_ARM
742 printf("Mapping SIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
743 I80312_PCI_XLATE_SIOW_BASE,
744 I80312_PCI_XLATE_SIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
745 IQ80310_SIOW_VBASE);
746 #endif
747 pmap_map_chunk(l1pagetable, IQ80310_SIOW_VBASE,
748 I80312_PCI_XLATE_SIOW_BASE, I80312_PCI_XLATE_IOSIZE,
749 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
750
751 #ifdef VERBOSE_INIT_ARM
752 printf("Mapping 80312 0x%08lx -> 0x%08lx @ 0x%08lx\n",
753 I80312_PMMR_BASE,
754 I80312_PMMR_BASE + I80312_PMMR_SIZE - 1,
755 IQ80310_80312_VBASE);
756 #endif
757 pmap_map_chunk(l1pagetable, IQ80310_80312_VBASE,
758 I80312_PMMR_BASE, I80312_PMMR_SIZE,
759 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
760
761 /*
762 * Give the XScale global cache clean code an appropriately
763 * sized chunk of unmapped VA space starting at 0xff000000
764 * (our device mappings end before this address).
765 */
766 xscale_cache_clean_addr = 0xff000000U;
767
768 /*
769 * Now we have the real page tables in place so we can switch to them.
770 * Once this is done we will be running with the REAL kernel page
771 * tables.
772 */
773
774 /*
775 * Update the physical_freestart/physical_freeend/free_pages
776 * variables.
777 */
778 {
779 extern char _end[];
780
781 physical_freestart = (((uintptr_t) _end) + PGOFSET) & ~PGOFSET;
782 physical_freeend = physical_end;
783 free_pages = (physical_freeend - physical_freestart) / NBPG;
784 }
785
786 /* Switch tables */
787 #ifdef VERBOSE_INIT_ARM
788 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
789 physical_freestart, free_pages, free_pages);
790 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
791 #endif
792 setttb(kernel_l1pt.pv_pa);
793
794 #ifdef VERBOSE_INIT_ARM
795 printf("done!\n");
796 #endif
797
798 #ifdef VERBOSE_INIT_ARM
799 printf("bootstrap done.\n");
800 #endif
801
802 /* Right, set up the vectors at the bottom of page 0 */
803 memcpy((char *)0x00000000, page0, page0_end - page0);
804
805 /* We have modified a text page so sync the icache */
806 cpu_icache_sync_all();
807
808 /*
809 * Pages were allocated during the secondary bootstrap for the
810 * stacks for different CPU modes.
811 * We must now set the r13 registers in the different CPU modes to
812 * point to these stacks.
813 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
814 * of the stack memory.
815 */
816 printf("init subsystems: stacks ");
817
818 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * NBPG);
819 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * NBPG);
820 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * NBPG);
821
822 /*
823 * Well we should set a data abort handler.
824 * Once things get going this will change as we will need a proper
825 * handler.
826 * Until then we will use a handler that just panics but tells us
827 * why.
828 * Initialisation of the vectors will just panic on a data abort.
829 * This just fills in a slighly better one.
830 */
831 printf("vectors ");
832 data_abort_handler_address = (u_int)data_abort_handler;
833 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
834 undefined_handler_address = (u_int)undefinedinstruction_bounce;
835
836 /* At last !
837 * We now have the kernel in physical memory from the bottom upwards.
838 * Kernel page tables are physically above this.
839 * The kernel is mapped to KERNEL_TEXT_BASE
840 * The kernel data PTs will handle the mapping of 0xf1000000-0xf3ffffff
841 * The page tables are mapped to 0xefc00000
842 */
843
844 /* Initialise the undefined instruction handlers */
845 printf("undefined ");
846 undefined_init();
847
848 /* Boot strap pmap telling it where the kernel page table is */
849 printf("pmap ");
850 pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, kernel_ptpt);
851
852 /* Setup the IRQ system */
853 printf("irq ");
854 iq80310_intr_init();
855 printf("done.\n");
856
857 #ifdef IPKDB
858 /* Initialise ipkdb */
859 ipkdb_init();
860 if (boothowto & RB_KDB)
861 ipkdb_connect(0);
862 #endif
863
864 #ifdef DDB
865 db_machine_init();
866
867 /* Firmware doesn't load symbols. */
868 ddb_init(0, NULL, NULL);
869
870 if (boothowto & RB_KDB)
871 Debugger();
872 #endif
873
874 /* We return the new stack pointer address */
875 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
876 }
877
878 #if 0
879 void
880 process_kernel_args(char *args)
881 {
882 static char bootargs[MAX_BOOT_STRING + 1];
883
884 boothowto = 0;
885
886 /* Make a local copy of the bootargs */
887 strncpy(bootargs, args, MAX_BOOT_STRING);
888
889 args = bootargs;
890 boot_file = bootargs;
891
892 /* Skip the kernel image filename */
893 while (*args != ' ' && *args != 0)
894 ++args;
895
896 if (*args != 0)
897 *args++ = 0;
898
899 while (*args == ' ')
900 ++args;
901
902 boot_args = args;
903
904 printf("bootfile: %s\n", boot_file);
905 printf("bootargs: %s\n", boot_args);
906
907 parse_mi_bootargs(boot_args);
908 }
909 #endif
910
911 void
912 consinit(void)
913 {
914 static const bus_addr_t comcnaddrs[] = {
915 IQ80310_UART2, /* com0 (J9) */
916 IQ80310_UART1, /* com1 (J10) */
917 };
918 static int consinit_called;
919
920 if (consinit_called != 0)
921 return;
922
923 consinit_called = 1;
924
925 #if NCOM > 0
926 if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
927 COM_FREQ, comcnmode))
928 panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
929 #else
930 panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
931 #endif
932 }
933