Home | History | Annotate | Line # | Download | only in iq80310
iq80310_machdep.c revision 1.29
      1 /*	$NetBSD: iq80310_machdep.c,v 1.29 2002/02/22 17:23:13 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1997,1998 Mark Brinicombe.
     40  * Copyright (c) 1997,1998 Causality Limited.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by Mark Brinicombe
     54  *	for the NetBSD Project.
     55  * 4. The name of the company nor the name of the author may be used to
     56  *    endorse or promote products derived from this software without specific
     57  *    prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
     72  * boards using RedBoot firmware.
     73  */
     74 
     75 #include "opt_ddb.h"
     76 #include "opt_pmap_debug.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/device.h>
     80 #include <sys/systm.h>
     81 #include <sys/kernel.h>
     82 #include <sys/exec.h>
     83 #include <sys/proc.h>
     84 #include <sys/msgbuf.h>
     85 #include <sys/reboot.h>
     86 #include <sys/termios.h>
     87 
     88 #include <dev/cons.h>
     89 
     90 #include <machine/db_machdep.h>
     91 #include <ddb/db_sym.h>
     92 #include <ddb/db_extern.h>
     93 
     94 #include <machine/bootconfig.h>
     95 #include <machine/bus.h>
     96 #include <machine/cpu.h>
     97 #include <machine/frame.h>
     98 #include <arm/undefined.h>
     99 
    100 #include <arm/arm32/machdep.h>
    101 
    102 #include <arm/xscale/i80312reg.h>
    103 #include <arm/xscale/i80312var.h>
    104 
    105 #include <dev/pci/ppbreg.h>
    106 
    107 #include <evbarm/iq80310/iq80310reg.h>
    108 #include <evbarm/iq80310/iq80310var.h>
    109 #include <evbarm/iq80310/obiovar.h>
    110 
    111 #include "opt_ipkdb.h"
    112 
    113 /*
    114  * Address to call from cpu_reset() to reset the machine.
    115  * This is machine architecture dependant as it varies depending
    116  * on where the ROM appears when you turn the MMU off.
    117  */
    118 
    119 u_int cpu_reset_address = 0;
    120 
    121 /* Define various stack sizes in pages */
    122 #define IRQ_STACK_SIZE	1
    123 #define ABT_STACK_SIZE	1
    124 #ifdef IPKDB
    125 #define UND_STACK_SIZE	2
    126 #else
    127 #define UND_STACK_SIZE	1
    128 #endif
    129 
    130 BootConfig bootconfig;		/* Boot config storage */
    131 char *boot_args = NULL;
    132 char *boot_file = NULL;
    133 
    134 vm_offset_t physical_start;
    135 vm_offset_t physical_freestart;
    136 vm_offset_t physical_freeend;
    137 vm_offset_t physical_end;
    138 u_int free_pages;
    139 vm_offset_t pagetables_start;
    140 int physmem = 0;
    141 
    142 /*int debug_flags;*/
    143 #ifndef PMAP_STATIC_L1S
    144 int max_processes = 64;			/* Default number */
    145 #endif	/* !PMAP_STATIC_L1S */
    146 
    147 /* Physical and virtual addresses for some global pages */
    148 pv_addr_t systempage;
    149 pv_addr_t irqstack;
    150 pv_addr_t undstack;
    151 pv_addr_t abtstack;
    152 pv_addr_t kernelstack;
    153 pv_addr_t minidataclean;
    154 
    155 vm_offset_t msgbufphys;
    156 
    157 extern u_int data_abort_handler_address;
    158 extern u_int prefetch_abort_handler_address;
    159 extern u_int undefined_handler_address;
    160 
    161 #ifdef PMAP_DEBUG
    162 extern int pmap_debug_level;
    163 #endif
    164 
    165 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
    166 
    167 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
    168 #define	KERNEL_PT_KERNEL_NUM	2
    169 
    170 					/* L2 table for mapping i80312 */
    171 #define	KERNEL_PT_IOPXS		(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
    172 
    173 					/* L2 tables for mapping kernel VM */
    174 #define KERNEL_PT_VMDATA	(KERNEL_PT_IOPXS + 1)
    175 #define	KERNEL_PT_VMDATA_NUM	(KERNEL_VM_SIZE >> (PDSHIFT + 2))
    176 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    177 
    178 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    179 
    180 struct user *proc0paddr;
    181 
    182 /* Prototypes */
    183 
    184 void	consinit(void);
    185 
    186 #include "com.h"
    187 #if NCOM > 0
    188 #include <dev/ic/comreg.h>
    189 #include <dev/ic/comvar.h>
    190 #endif
    191 
    192 /*
    193  * Define the default console speed for the board.  This is generally
    194  * what the firmware provided with the board defaults to.
    195  */
    196 #ifndef CONSPEED
    197 #if defined(IOP310_TEAMASA_NPWR)
    198 #define CONSPEED B19200
    199 #else /* Default to stock IQ80310 */
    200 #define CONSPEED B115200
    201 #endif /* list of IQ80310-based designs */
    202 #endif /* ! CONSPEED */
    203 
    204 #ifndef CONUNIT
    205 #define	CONUNIT	0
    206 #endif
    207 
    208 #ifndef CONMODE
    209 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    210 #endif
    211 
    212 int comcnspeed = CONSPEED;
    213 int comcnmode = CONMODE;
    214 int comcnunit = CONUNIT;
    215 
    216 /*
    217  * void cpu_reboot(int howto, char *bootstr)
    218  *
    219  * Reboots the system
    220  *
    221  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    222  * then reset the CPU.
    223  */
    224 void
    225 cpu_reboot(int howto, char *bootstr)
    226 {
    227 #ifdef DIAGNOSTIC
    228 	/* info */
    229 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
    230 #endif
    231 
    232 	/*
    233 	 * If we are still cold then hit the air brakes
    234 	 * and crash to earth fast
    235 	 */
    236 	if (cold) {
    237 		doshutdownhooks();
    238 		printf("The operating system has halted.\n");
    239 		printf("Please press any key to reboot.\n\n");
    240 		cngetc();
    241 		printf("rebooting...\n");
    242 		cpu_reset();
    243 		/*NOTREACHED*/
    244 	}
    245 
    246 	/* Disable console buffering */
    247 
    248 	/*
    249 	 * If RB_NOSYNC was not specified sync the discs.
    250 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    251 	 * unmount.  It looks like syslogd is getting woken up only to find
    252 	 * that it cannot page part of the binary in as the filesystem has
    253 	 * been unmounted.
    254 	 */
    255 	if (!(howto & RB_NOSYNC))
    256 		bootsync();
    257 
    258 	/* Say NO to interrupts */
    259 	splhigh();
    260 
    261 	/* Do a dump if requested. */
    262 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    263 		dumpsys();
    264 
    265 	/* Run any shutdown hooks */
    266 	doshutdownhooks();
    267 
    268 	/* Make sure IRQ's are disabled */
    269 	IRQdisable;
    270 
    271 	if (howto & RB_HALT) {
    272 		printf("The operating system has halted.\n");
    273 		printf("Please press any key to reboot.\n\n");
    274 		cngetc();
    275 	}
    276 
    277 	printf("rebooting...\n");
    278 	cpu_reset();
    279 	/*NOTREACHED*/
    280 }
    281 
    282 /*
    283  * Mapping table for core kernel memory. This memory is mapped at init
    284  * time with section mappings.
    285  */
    286 struct l1_sec_map {
    287 	vaddr_t	va;
    288 	vaddr_t	pa;
    289 	vsize_t	size;
    290 	vm_prot_t prot;
    291 	int cache;
    292 } l1_sec_table[] = {
    293     /*
    294      * Map the on-board devices VA == PA so that we can access them
    295      * with the MMU on or off.
    296      */
    297     {
    298 	IQ80310_OBIO_BASE,
    299 	IQ80310_OBIO_BASE,
    300 	IQ80310_OBIO_SIZE,
    301 	VM_PROT_READ|VM_PROT_WRITE,
    302 	PTE_NOCACHE,
    303     },
    304 
    305     {
    306 	0,
    307 	0,
    308 	0,
    309 	0,
    310 	0,
    311     }
    312 };
    313 
    314 /*
    315  * u_int initarm(...)
    316  *
    317  * Initial entry point on startup. This gets called before main() is
    318  * entered.
    319  * It should be responsible for setting up everything that must be
    320  * in place when main is called.
    321  * This includes
    322  *   Taking a copy of the boot configuration structure.
    323  *   Initialising the physical console so characters can be printed.
    324  *   Setting up page tables for the kernel
    325  *   Relocating the kernel to the bottom of physical memory
    326  */
    327 u_int
    328 initarm(void *arg)
    329 {
    330 	extern vaddr_t xscale_cache_clean_addr, xscale_minidata_clean_addr;
    331 	extern vsize_t xscale_minidata_clean_size;
    332 	int loop;
    333 	int loop1;
    334 	u_int l1pagetable;
    335 	extern char page0[], page0_end[];
    336 	pv_addr_t kernel_l1pt;
    337 	pv_addr_t kernel_ptpt;
    338 	paddr_t memstart;
    339 	psize_t memsize;
    340 
    341 	/*
    342 	 * Clear out the 7-segment display.  Whee, the first visual
    343 	 * indication that we're running kernel code.
    344 	 */
    345 	iq80310_7seg(' ', ' ');
    346 
    347 	/*
    348 	 * Heads up ... Setup the CPU / MMU / TLB functions
    349 	 */
    350 	if (set_cpufuncs())
    351 		panic("cpu not recognized!");
    352 
    353 	/* Calibrate the delay loop. */
    354 	iq80310_calibrate_delay();
    355 
    356 	/*
    357 	 * Since we map the on-board devices VA==PA, and the kernel
    358 	 * is running VA==PA, it's possible for us to initialize
    359 	 * the console now.
    360 	 */
    361 	consinit();
    362 
    363 	/* Talk to the user */
    364 	printf("\nNetBSD/evbarm (IQ80310) booting ...\n");
    365 
    366 	/*
    367 	 * Reset the secondary PCI bus.  RedBoot doesn't stop devices
    368 	 * on the PCI bus before handing us control, so we have to
    369 	 * do this.
    370 	 *
    371 	 * XXX This is arguably a bug in RedBoot, and doing this reset
    372 	 * XXX could be problematic in the future if we encounter an
    373 	 * XXX application where the PPB in the i80312 is used as a
    374 	 * XXX PPB.
    375 	 */
    376 	{
    377 		uint32_t reg;
    378 
    379 		printf("Resetting secondary PCI bus...\n");
    380 		reg = bus_space_read_4(&obio_bs_tag,
    381 		    I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL);
    382 		bus_space_write_4(&obio_bs_tag,
    383 		    I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
    384 		    reg | PPB_BC_SECONDARY_RESET);
    385 		delay(10 * 1000);	/* 10ms enough? */
    386 		bus_space_write_4(&obio_bs_tag,
    387 		    I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
    388 		    reg);
    389 	}
    390 
    391 	/*
    392 	 * Okay, RedBoot has provided us with the following memory map:
    393 	 *
    394 	 * Physical Address Range     Description
    395 	 * -----------------------    ----------------------------------
    396 	 * 0x00000000 - 0x00000fff    flash Memory
    397 	 * 0x00001000 - 0x00001fff    80312 Internal Registers
    398 	 * 0x00002000 - 0x007fffff    flash Memory
    399 	 * 0x00800000 - 0x7fffffff    PCI ATU Outbound Direct Window
    400 	 * 0x80000000 - 0x83ffffff    Primary PCI 32-bit Memory
    401 	 * 0x84000000 - 0x87ffffff    Primary PCI 64-bit Memory
    402 	 * 0x88000000 - 0x8bffffff    Secondary PCI 32-bit Memory
    403 	 * 0x8c000000 - 0x8fffffff    Secondary PCI 64-bit Memory
    404 	 * 0x90000000 - 0x9000ffff    Primary PCI IO Space
    405 	 * 0x90010000 - 0x9001ffff    Secondary PCI IO Space
    406 	 * 0x90020000 - 0x9fffffff    Unused
    407 	 * 0xa0000000 - 0xbfffffff    SDRAM
    408 	 * 0xc0000000 - 0xefffffff    Unused
    409 	 * 0xf0000000 - 0xffffffff    80200 Internal Registers
    410 	 *
    411 	 *
    412 	 * Virtual Address Range    C B  Description
    413 	 * -----------------------  - -  ----------------------------------
    414 	 * 0x00000000 - 0x00000fff  Y Y  SDRAM
    415 	 * 0x00001000 - 0x00001fff  N N  80312 Internal Registers
    416 	 * 0x00002000 - 0x007fffff  Y N  flash Memory
    417 	 * 0x00800000 - 0x7fffffff  N N  PCI ATU Outbound Direct Window
    418 	 * 0x80000000 - 0x83ffffff  N N  Primary PCI 32-bit Memory
    419 	 * 0x84000000 - 0x87ffffff  N N  Primary PCI 64-bit Memory
    420 	 * 0x88000000 - 0x8bffffff  N N  Secondary PCI 32-bit Memory
    421 	 * 0x8c000000 - 0x8fffffff  N N  Secondary PCI 64-bit Memory
    422 	 * 0x90000000 - 0x9000ffff  N N  Primary PCI IO Space
    423 	 * 0x90010000 - 0x9001ffff  N N  Secondary PCI IO Space
    424 	 * 0xa0000000 - 0xa0000fff  Y N  flash
    425 	 * 0xa0001000 - 0xbfffffff  Y Y  SDRAM
    426 	 * 0xc0000000 - 0xcfffffff  Y Y  Cache Flush Region
    427 	 * 0xf0000000 - 0xffffffff  N N  80200 Internal Registers
    428 	 *
    429 	 * The first level page table is at 0xa0004000.  There are also
    430 	 * 2 second-level tables at 0xa0008000 and 0xa0008400.
    431 	 *
    432 	 * This corresponds roughly to the physical memory map, i.e.
    433 	 * we are quite nearly running VA==PA.
    434 	 */
    435 
    436 	/*
    437 	 * Examine the boot args string for options we need to know about
    438 	 * now.
    439 	 */
    440 #if 0
    441 	process_kernel_args((char *)nwbootinfo.bt_args);
    442 #endif
    443 
    444 	/*
    445 	 * Fetch the SDRAM start/size from the i80312 SDRAM configration
    446 	 * registers.
    447 	 */
    448 	i80312_sdram_bounds(&obio_bs_tag, I80312_PMMR_BASE + I80312_MEM_BASE,
    449 	    &memstart, &memsize);
    450 
    451 	printf("initarm: Configuring system ...\n");
    452 
    453 	/* Fake bootconfig structure for the benefit of pmap.c */
    454 	/* XXX must make the memory description h/w independant */
    455 	bootconfig.dramblocks = 1;
    456 	bootconfig.dram[0].address = memstart;
    457 	bootconfig.dram[0].pages = memsize / NBPG;
    458 
    459 	/*
    460 	 * Set up the variables that define the availablilty of
    461 	 * physical memory.  For now, we're going to set
    462 	 * physical_freestart to 0xa0200000 (where the kernel
    463 	 * was loaded), and allocate the memory we need downwards.
    464 	 * If we get too close to the page tables that RedBoot
    465 	 * set up, we will panic.  We will update physical_freestart
    466 	 * and physical_freeend later to reflect what pmap_bootstrap()
    467 	 * wants to see.
    468 	 *
    469 	 * XXX pmap_bootstrap() needs an enema.
    470 	 */
    471 	physical_start = bootconfig.dram[0].address;
    472 	physical_end = physical_start + (bootconfig.dram[0].pages * NBPG);
    473 
    474 	physical_freestart = 0xa0009000UL;
    475 	physical_freeend = 0xa0200000UL;
    476 
    477 	physmem = (physical_end - physical_start) / NBPG;
    478 
    479 	/* Tell the user about the memory */
    480 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    481 	    physical_start, physical_end - 1);
    482 
    483 	/*
    484 	 * Okay, the kernel starts 2MB in from the bottom of physical
    485 	 * memory.  We are going to allocate our bootstrap pages downwards
    486 	 * from there.
    487 	 *
    488 	 * We need to allocate some fixed page tables to get the kernel
    489 	 * going.  We allocate one page directory and a number of page
    490 	 * tables and store the physical addresses in the kernel_pt_table
    491 	 * array.
    492 	 *
    493 	 * The kernel page directory must be on a 16K boundary.  The page
    494 	 * tables must be on 4K bounaries.  What we do is allocate the
    495 	 * page directory on the first 16K boundary that we encounter, and
    496 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    497 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    498 	 * least one 16K aligned region.
    499 	 */
    500 
    501 #ifdef VERBOSE_INIT_ARM
    502 	printf("Allocating page tables\n");
    503 #endif
    504 
    505 	free_pages = (physical_freeend - physical_freestart) / NBPG;
    506 
    507 #ifdef VERBOSE_INIT_ARM
    508 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    509 	       physical_freestart, free_pages, free_pages);
    510 #endif
    511 
    512 	/* Define a macro to simplify memory allocation */
    513 #define	valloc_pages(var, np)				\
    514 	alloc_pages((var).pv_pa, (np));			\
    515 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    516 
    517 #define alloc_pages(var, np)				\
    518 	physical_freeend -= ((np) * NBPG);		\
    519 	if (physical_freeend < physical_freestart)	\
    520 		panic("initarm: out of memory");	\
    521 	(var) = physical_freeend;			\
    522 	free_pages -= (np);				\
    523 	memset((char *)(var), 0, ((np) * NBPG));
    524 
    525 	loop1 = 0;
    526 	kernel_l1pt.pv_pa = 0;
    527 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    528 		/* Are we 16KB aligned for an L1 ? */
    529 		if (((physical_freeend - PD_SIZE) & (PD_SIZE - 1)) == 0
    530 		    && kernel_l1pt.pv_pa == 0) {
    531 			valloc_pages(kernel_l1pt, PD_SIZE / NBPG);
    532 		} else {
    533 			alloc_pages(kernel_pt_table[loop1].pv_pa,
    534 			    PT_SIZE / NBPG);
    535 			kernel_pt_table[loop1].pv_va =
    536 			    kernel_pt_table[loop1].pv_pa;
    537 			++loop1;
    538 		}
    539 	}
    540 
    541 	/* This should never be able to happen but better confirm that. */
    542 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (PD_SIZE-1)) != 0)
    543 		panic("initarm: Failed to align the kernel page directory\n");
    544 
    545 	/*
    546 	 * Allocate a page for the system page mapped to V0x00000000
    547 	 * This page will just contain the system vectors and can be
    548 	 * shared by all processes.
    549 	 */
    550 	alloc_pages(systempage.pv_pa, 1);
    551 
    552 	/* Allocate a page for the page table to map kernel page tables. */
    553 	valloc_pages(kernel_ptpt, PT_SIZE / NBPG);
    554 
    555 	/* Allocate stacks for all modes */
    556 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    557 	valloc_pages(abtstack, ABT_STACK_SIZE);
    558 	valloc_pages(undstack, UND_STACK_SIZE);
    559 	valloc_pages(kernelstack, UPAGES);
    560 
    561 	/* Allocate enough pages for cleaning the Mini-Data cache. */
    562 	KASSERT(xscale_minidata_clean_size <= NBPG);
    563 	valloc_pages(minidataclean, 1);
    564 	xscale_minidata_clean_addr = minidataclean.pv_va;
    565 
    566 #ifdef VERBOSE_INIT_ARM
    567 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    568 	    irqstack.pv_va);
    569 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    570 	    abtstack.pv_va);
    571 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    572 	    undstack.pv_va);
    573 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    574 	    kernelstack.pv_va);
    575 #endif
    576 
    577 	/*
    578 	 * XXX Defer this to later so that we can reclaim the memory
    579 	 * XXX used by the RedBoot page tables.
    580 	 */
    581 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / NBPG);
    582 
    583 	/*
    584 	 * Ok we have allocated physical pages for the primary kernel
    585 	 * page tables
    586 	 */
    587 
    588 #ifdef VERBOSE_INIT_ARM
    589 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    590 #endif
    591 
    592 	/*
    593 	 * Now we start construction of the L1 page table
    594 	 * We start by mapping the L2 page tables into the L1.
    595 	 * This means that we can replace L1 mappings later on if necessary
    596 	 */
    597 	l1pagetable = kernel_l1pt.pv_pa;
    598 
    599 	/* Map the L2 pages tables in the L1 page table */
    600 	pmap_link_l2pt(l1pagetable, 0x00000000,
    601 	    &kernel_pt_table[KERNEL_PT_SYS]);
    602 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    603 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    604 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    605 	pmap_link_l2pt(l1pagetable, IQ80310_IOPXS_VBASE,
    606 	    &kernel_pt_table[KERNEL_PT_IOPXS]);
    607 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    608 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    609 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    610 	pmap_link_l2pt(l1pagetable, PROCESS_PAGE_TBLS_BASE, &kernel_ptpt);
    611 
    612 #ifdef VERBOSE_INIT_ARM
    613 	printf("Mapping kernel\n");
    614 #endif
    615 
    616 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    617 
    618 	{
    619 		extern char etext[], _end[];
    620 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    621 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    622 		u_int logical;
    623 
    624 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    625 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    626 
    627 		logical = 0x00200000;	/* offset of kernel in RAM */
    628 
    629 		/*
    630 		 * This maps the kernel text/data/bss VA==PA.
    631 		 */
    632 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    633 		    physical_start + logical, textsize,
    634 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    635 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    636 		    physical_start + logical, totalsize - textsize,
    637 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    638 
    639 #if 0 /* XXX No symbols yet. */
    640 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    641 		    physical_start + logical, kernexec->a_syms + sizeof(int)
    642 		    + *(u_int *)((int)end + kernexec->a_syms + sizeof(int)),
    643 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    644 #endif
    645 	}
    646 
    647 #ifdef VERBOSE_INIT_ARM
    648 	printf("Constructing L2 page tables\n");
    649 #endif
    650 
    651 	/* Map the stack pages */
    652 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    653 	    IRQ_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    654 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    655 	    ABT_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    656 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    657 	    UND_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    658 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    659 	    UPAGES * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    660 
    661 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    662 	    PD_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    663 
    664 	/* Map the Mini-Data cache clean area. */
    665 	pmap_map_chunk(l1pagetable, minidataclean.pv_va, minidataclean.pv_pa,
    666 	    NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    667 
    668 	/* Map the page table that maps the kernel pages */
    669 	pmap_map_entry(l1pagetable, kernel_ptpt.pv_va, kernel_ptpt.pv_pa,
    670 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    671 
    672 	/*
    673 	 * Map entries in the page table used to map PTE's
    674 	 * Basically every kernel page table gets mapped here
    675 	 */
    676 	/* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */
    677 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) {
    678 		pmap_map_entry(l1pagetable,
    679 		    PROCESS_PAGE_TBLS_BASE + ((KERNEL_BASE +
    680 		    (loop * 0x00400000)) >> (PGSHIFT-2)),
    681 		    kernel_pt_table[KERNEL_PT_KERNEL + loop].pv_pa,
    682 		    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    683 	}
    684 	pmap_map_entry(l1pagetable,
    685 	    PROCESS_PAGE_TBLS_BASE + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT-2)),
    686 	    kernel_ptpt.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    687 	pmap_map_entry(l1pagetable,
    688 	    PROCESS_PAGE_TBLS_BASE + (0x00000000 >> (PGSHIFT-2)),
    689 	    kernel_pt_table[KERNEL_PT_SYS].pv_pa,
    690 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    691 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    692 		pmap_map_entry(l1pagetable,
    693 		    PROCESS_PAGE_TBLS_BASE + ((KERNEL_VM_BASE +
    694 		    (loop * 0x00400000)) >> (PGSHIFT-2)),
    695 		    kernel_pt_table[KERNEL_PT_VMDATA + loop].pv_pa,
    696 		    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    697 
    698 	/*
    699 	 * Map the system page in the kernel page table for the bottom 1Meg
    700 	 * of the virtual memory map.
    701 	 */
    702 	pmap_map_entry(l1pagetable, 0x00000000, systempage.pv_pa,
    703 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    704 
    705 	/*
    706 	 * Map devices we can map w/ section mappings.
    707 	 */
    708 	loop = 0;
    709 	while (l1_sec_table[loop].size) {
    710 		vm_size_t sz;
    711 
    712 #ifdef VERBOSE_INIT_ARM
    713 		printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
    714 		    l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
    715 		    l1_sec_table[loop].va);
    716 #endif
    717 		for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_SEC_SIZE)
    718 			pmap_map_section(l1pagetable,
    719 			    l1_sec_table[loop].va + sz,
    720 			    l1_sec_table[loop].pa + sz,
    721 			    l1_sec_table[loop].prot,
    722 			    l1_sec_table[loop].cache);
    723 		++loop;
    724 	}
    725 
    726 	/*
    727 	 * Map the PCI I/O spaces and i80312 registers.  These are too
    728 	 * small to be mapped w/ section mappings.
    729 	 */
    730 #ifdef VERBOSE_INIT_ARM
    731 	printf("Mapping PIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
    732 	    I80312_PCI_XLATE_PIOW_BASE,
    733 	    I80312_PCI_XLATE_PIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
    734 	    IQ80310_PIOW_VBASE);
    735 #endif
    736 	pmap_map_chunk(l1pagetable, IQ80310_PIOW_VBASE,
    737 	    I80312_PCI_XLATE_PIOW_BASE, I80312_PCI_XLATE_IOSIZE,
    738 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    739 
    740 #ifdef VERBOSE_INIT_ARM
    741 	printf("Mapping SIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
    742 	    I80312_PCI_XLATE_SIOW_BASE,
    743 	    I80312_PCI_XLATE_SIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
    744 	    IQ80310_SIOW_VBASE);
    745 #endif
    746 	pmap_map_chunk(l1pagetable, IQ80310_SIOW_VBASE,
    747 	    I80312_PCI_XLATE_SIOW_BASE, I80312_PCI_XLATE_IOSIZE,
    748 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    749 
    750 #ifdef VERBOSE_INIT_ARM
    751 	printf("Mapping 80312 0x%08lx -> 0x%08lx @ 0x%08lx\n",
    752 	    I80312_PMMR_BASE,
    753 	    I80312_PMMR_BASE + I80312_PMMR_SIZE - 1,
    754 	    IQ80310_80312_VBASE);
    755 #endif
    756 	pmap_map_chunk(l1pagetable, IQ80310_80312_VBASE,
    757 	    I80312_PMMR_BASE, I80312_PMMR_SIZE,
    758 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    759 
    760 	/*
    761 	 * Give the XScale global cache clean code an appropriately
    762 	 * sized chunk of unmapped VA space starting at 0xff000000
    763 	 * (our device mappings end before this address).
    764 	 */
    765 	xscale_cache_clean_addr = 0xff000000U;
    766 
    767 	/*
    768 	 * Now we have the real page tables in place so we can switch to them.
    769 	 * Once this is done we will be running with the REAL kernel page
    770 	 * tables.
    771 	 */
    772 
    773 	/*
    774 	 * Update the physical_freestart/physical_freeend/free_pages
    775 	 * variables.
    776 	 */
    777 	{
    778 		extern char _end[];
    779 
    780 		physical_freestart = (((uintptr_t) _end) + PGOFSET) & ~PGOFSET;
    781 		physical_freeend = physical_end;
    782 		free_pages = (physical_freeend - physical_freestart) / NBPG;
    783 	}
    784 
    785 	/* Switch tables */
    786 #ifdef VERBOSE_INIT_ARM
    787 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    788 	       physical_freestart, free_pages, free_pages);
    789 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    790 #endif
    791 	setttb(kernel_l1pt.pv_pa);
    792 
    793 #ifdef VERBOSE_INIT_ARM
    794 	printf("done!\n");
    795 #endif
    796 
    797 #ifdef VERBOSE_INIT_ARM
    798 	printf("bootstrap done.\n");
    799 #endif
    800 
    801 	/* Right, set up the vectors at the bottom of page 0 */
    802 	memcpy((char *)0x00000000, page0, page0_end - page0);
    803 
    804 	/* We have modified a text page so sync the icache */
    805 	cpu_icache_sync_all();
    806 
    807 	/*
    808 	 * Pages were allocated during the secondary bootstrap for the
    809 	 * stacks for different CPU modes.
    810 	 * We must now set the r13 registers in the different CPU modes to
    811 	 * point to these stacks.
    812 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    813 	 * of the stack memory.
    814 	 */
    815 	printf("init subsystems: stacks ");
    816 
    817 	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * NBPG);
    818 	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * NBPG);
    819 	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * NBPG);
    820 
    821 	/*
    822 	 * Well we should set a data abort handler.
    823 	 * Once things get going this will change as we will need a proper
    824 	 * handler.
    825 	 * Until then we will use a handler that just panics but tells us
    826 	 * why.
    827 	 * Initialisation of the vectors will just panic on a data abort.
    828 	 * This just fills in a slighly better one.
    829 	 */
    830 	printf("vectors ");
    831 	data_abort_handler_address = (u_int)data_abort_handler;
    832 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    833 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    834 
    835 	/* At last !
    836 	 * We now have the kernel in physical memory from the bottom upwards.
    837 	 * Kernel page tables are physically above this.
    838 	 * The kernel is mapped to KERNEL_TEXT_BASE
    839 	 * The kernel data PTs will handle the mapping of 0xf1000000-0xf3ffffff
    840 	 * The page tables are mapped to 0xefc00000
    841 	 */
    842 
    843 	/* Initialise the undefined instruction handlers */
    844 	printf("undefined ");
    845 	undefined_init();
    846 
    847 	/* Boot strap pmap telling it where the kernel page table is */
    848 	printf("pmap ");
    849 	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, kernel_ptpt);
    850 
    851 	/* Setup the IRQ system */
    852 	printf("irq ");
    853 	iq80310_intr_init();
    854 	printf("done.\n");
    855 
    856 #ifdef IPKDB
    857 	/* Initialise ipkdb */
    858 	ipkdb_init();
    859 	if (boothowto & RB_KDB)
    860 		ipkdb_connect(0);
    861 #endif
    862 
    863 #ifdef DDB
    864 	db_machine_init();
    865 
    866 	/* Firmware doesn't load symbols. */
    867 	ddb_init(0, NULL, NULL);
    868 
    869 	if (boothowto & RB_KDB)
    870 		Debugger();
    871 #endif
    872 
    873 	/* We return the new stack pointer address */
    874 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    875 }
    876 
    877 #if 0
    878 void
    879 process_kernel_args(char *args)
    880 {
    881 	static char bootargs[MAX_BOOT_STRING + 1];
    882 
    883 	boothowto = 0;
    884 
    885 	/* Make a local copy of the bootargs */
    886 	strncpy(bootargs, args, MAX_BOOT_STRING);
    887 
    888 	args = bootargs;
    889 	boot_file = bootargs;
    890 
    891 	/* Skip the kernel image filename */
    892 	while (*args != ' ' && *args != 0)
    893 		++args;
    894 
    895 	if (*args != 0)
    896 		*args++ = 0;
    897 
    898 	while (*args == ' ')
    899 		++args;
    900 
    901 	boot_args = args;
    902 
    903 	printf("bootfile: %s\n", boot_file);
    904 	printf("bootargs: %s\n", boot_args);
    905 
    906 	parse_mi_bootargs(boot_args);
    907 }
    908 #endif
    909 
    910 void
    911 consinit(void)
    912 {
    913 	static const bus_addr_t comcnaddrs[] = {
    914 		IQ80310_UART2,		/* com0 (J9) */
    915 		IQ80310_UART1,		/* com1 (J10) */
    916 	};
    917 	static int consinit_called;
    918 
    919 	if (consinit_called != 0)
    920 		return;
    921 
    922 	consinit_called = 1;
    923 
    924 #if NCOM > 0
    925 	if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
    926 	    COM_FREQ, comcnmode))
    927 		panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
    928 #else
    929 	panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
    930 #endif
    931 }
    932