iq80310_machdep.c revision 1.60 1 /* $NetBSD: iq80310_machdep.c,v 1.60 2003/06/15 18:43:49 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1997,1998 Mark Brinicombe.
40 * Copyright (c) 1997,1998 Causality Limited.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by Mark Brinicombe
54 * for the NetBSD Project.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
72 * boards using RedBoot firmware.
73 */
74
75 #include "opt_ddb.h"
76 #include "opt_pmap_debug.h"
77
78 #include <sys/param.h>
79 #include <sys/device.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/exec.h>
83 #include <sys/proc.h>
84 #include <sys/msgbuf.h>
85 #include <sys/reboot.h>
86 #include <sys/termios.h>
87 #include <sys/ksyms.h>
88
89 #include <uvm/uvm_extern.h>
90
91 #include <dev/cons.h>
92
93 #include <machine/db_machdep.h>
94 #include <ddb/db_sym.h>
95 #include <ddb/db_extern.h>
96
97 #include <machine/bootconfig.h>
98 #include <machine/bus.h>
99 #include <machine/cpu.h>
100 #include <machine/frame.h>
101 #include <arm/undefined.h>
102
103 #include <arm/arm32/machdep.h>
104
105 #include <arm/xscale/i80312reg.h>
106 #include <arm/xscale/i80312var.h>
107
108 #include <dev/pci/ppbreg.h>
109
110 #include <evbarm/iq80310/iq80310reg.h>
111 #include <evbarm/iq80310/iq80310var.h>
112 #include <evbarm/iq80310/obiovar.h>
113
114 #include "opt_ipkdb.h"
115 #include "ksyms.h"
116
117 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
118 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
119 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
120
121 /*
122 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
123 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
124 */
125 #define KERNEL_VM_SIZE 0x0C000000
126
127 /*
128 * Address to call from cpu_reset() to reset the machine.
129 * This is machine architecture dependant as it varies depending
130 * on where the ROM appears when you turn the MMU off.
131 */
132
133 u_int cpu_reset_address = 0;
134
135 /* Define various stack sizes in pages */
136 #define IRQ_STACK_SIZE 1
137 #define ABT_STACK_SIZE 1
138 #ifdef IPKDB
139 #define UND_STACK_SIZE 2
140 #else
141 #define UND_STACK_SIZE 1
142 #endif
143
144 BootConfig bootconfig; /* Boot config storage */
145 char *boot_args = NULL;
146 char *boot_file = NULL;
147
148 vm_offset_t physical_start;
149 vm_offset_t physical_freestart;
150 vm_offset_t physical_freeend;
151 vm_offset_t physical_end;
152 u_int free_pages;
153 vm_offset_t pagetables_start;
154 int physmem = 0;
155
156 /*int debug_flags;*/
157 #ifndef PMAP_STATIC_L1S
158 int max_processes = 64; /* Default number */
159 #endif /* !PMAP_STATIC_L1S */
160
161 /* Physical and virtual addresses for some global pages */
162 pv_addr_t systempage;
163 pv_addr_t irqstack;
164 pv_addr_t undstack;
165 pv_addr_t abtstack;
166 pv_addr_t kernelstack;
167 pv_addr_t minidataclean;
168
169 vm_offset_t msgbufphys;
170
171 extern u_int data_abort_handler_address;
172 extern u_int prefetch_abort_handler_address;
173 extern u_int undefined_handler_address;
174
175 #ifdef PMAP_DEBUG
176 extern int pmap_debug_level;
177 #endif
178
179 #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
180
181 #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
182 #define KERNEL_PT_KERNEL_NUM 2
183
184 /* L2 table for mapping i80312 */
185 #define KERNEL_PT_IOPXS (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
186
187 /* L2 tables for mapping kernel VM */
188 #define KERNEL_PT_VMDATA (KERNEL_PT_IOPXS + 1)
189 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
190 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
191
192 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
193
194 struct user *proc0paddr;
195
196 /* Prototypes */
197
198 void consinit(void);
199
200 #include "com.h"
201 #if NCOM > 0
202 #include <dev/ic/comreg.h>
203 #include <dev/ic/comvar.h>
204 #endif
205
206 /*
207 * Define the default console speed for the board. This is generally
208 * what the firmware provided with the board defaults to.
209 */
210 #ifndef CONSPEED
211 #define CONSPEED B115200
212 #endif /* ! CONSPEED */
213
214 #ifndef CONUNIT
215 #define CONUNIT 0
216 #endif
217
218 #ifndef CONMODE
219 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
220 #endif
221
222 int comcnspeed = CONSPEED;
223 int comcnmode = CONMODE;
224 int comcnunit = CONUNIT;
225
226 /*
227 * void cpu_reboot(int howto, char *bootstr)
228 *
229 * Reboots the system
230 *
231 * Deal with any syncing, unmounting, dumping and shutdown hooks,
232 * then reset the CPU.
233 */
234 void
235 cpu_reboot(int howto, char *bootstr)
236 {
237
238 /*
239 * If we are still cold then hit the air brakes
240 * and crash to earth fast
241 */
242 if (cold) {
243 doshutdownhooks();
244 printf("The operating system has halted.\n");
245 printf("Please press any key to reboot.\n\n");
246 cngetc();
247 printf("rebooting...\n");
248 cpu_reset();
249 /*NOTREACHED*/
250 }
251
252 /* Disable console buffering */
253
254 /*
255 * If RB_NOSYNC was not specified sync the discs.
256 * Note: Unless cold is set to 1 here, syslogd will die during the
257 * unmount. It looks like syslogd is getting woken up only to find
258 * that it cannot page part of the binary in as the filesystem has
259 * been unmounted.
260 */
261 if (!(howto & RB_NOSYNC))
262 bootsync();
263
264 /* Say NO to interrupts */
265 splhigh();
266
267 /* Do a dump if requested. */
268 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
269 dumpsys();
270
271 /* Run any shutdown hooks */
272 doshutdownhooks();
273
274 /* Make sure IRQ's are disabled */
275 IRQdisable;
276
277 if (howto & RB_HALT) {
278 iq80310_7seg('.', '.');
279 printf("The operating system has halted.\n");
280 printf("Please press any key to reboot.\n\n");
281 cngetc();
282 }
283
284 printf("rebooting...\n");
285 cpu_reset();
286 /*NOTREACHED*/
287 }
288
289 /* Static device mappings. */
290 static const struct pmap_devmap iq80310_devmap[] = {
291 /*
292 * Map the on-board devices VA == PA so that we can access them
293 * with the MMU on or off.
294 */
295 {
296 IQ80310_OBIO_BASE,
297 IQ80310_OBIO_BASE,
298 IQ80310_OBIO_SIZE,
299 VM_PROT_READ|VM_PROT_WRITE,
300 PTE_NOCACHE,
301 },
302 {
303 IQ80310_PIOW_VBASE,
304 I80312_PCI_XLATE_PIOW_BASE,
305 I80312_PCI_XLATE_IOSIZE,
306 VM_PROT_READ|VM_PROT_WRITE,
307 PTE_NOCACHE,
308 },
309 {
310 IQ80310_SIOW_VBASE,
311 I80312_PCI_XLATE_SIOW_BASE,
312 I80312_PCI_XLATE_IOSIZE,
313 VM_PROT_READ|VM_PROT_WRITE,
314 PTE_NOCACHE,
315 },
316 {
317 IQ80310_80312_VBASE,
318 I80312_PMMR_BASE,
319 I80312_PMMR_SIZE,
320 VM_PROT_READ|VM_PROT_WRITE,
321 PTE_NOCACHE,
322 },
323
324 {
325 0,
326 0,
327 0,
328 0,
329 0,
330 }
331 };
332
333 /*
334 * u_int initarm(...)
335 *
336 * Initial entry point on startup. This gets called before main() is
337 * entered.
338 * It should be responsible for setting up everything that must be
339 * in place when main is called.
340 * This includes
341 * Taking a copy of the boot configuration structure.
342 * Initialising the physical console so characters can be printed.
343 * Setting up page tables for the kernel
344 * Relocating the kernel to the bottom of physical memory
345 */
346 u_int
347 initarm(void *arg)
348 {
349 extern vaddr_t xscale_cache_clean_addr;
350 #ifdef DIAGNOSTIC
351 extern vsize_t xscale_minidata_clean_size;
352 #endif
353 int loop;
354 int loop1;
355 u_int l1pagetable;
356 pv_addr_t kernel_l1pt;
357 paddr_t memstart;
358 psize_t memsize;
359
360 /*
361 * Clear out the 7-segment display. Whee, the first visual
362 * indication that we're running kernel code.
363 */
364 iq80310_7seg(' ', ' ');
365
366 /*
367 * Heads up ... Setup the CPU / MMU / TLB functions
368 */
369 if (set_cpufuncs())
370 panic("cpu not recognized!");
371
372 /* Calibrate the delay loop. */
373 iq80310_calibrate_delay();
374
375 /*
376 * Since we map the on-board devices VA==PA, and the kernel
377 * is running VA==PA, it's possible for us to initialize
378 * the console now.
379 */
380 consinit();
381
382 #ifdef VERBOSE_INIT_ARM
383 /* Talk to the user */
384 printf("\nNetBSD/evbarm (IQ80310) booting ...\n");
385 #endif
386
387 /*
388 * Reset the secondary PCI bus. RedBoot doesn't stop devices
389 * on the PCI bus before handing us control, so we have to
390 * do this.
391 *
392 * XXX This is arguably a bug in RedBoot, and doing this reset
393 * XXX could be problematic in the future if we encounter an
394 * XXX application where the PPB in the i80312 is used as a
395 * XXX PPB.
396 */
397 {
398 uint32_t reg;
399
400 #ifdef VERBOSE_INIT_ARM
401 printf("Resetting secondary PCI bus...\n");
402 #endif
403 reg = bus_space_read_4(&obio_bs_tag,
404 I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL);
405 bus_space_write_4(&obio_bs_tag,
406 I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
407 reg | PPB_BC_SECONDARY_RESET);
408 delay(10 * 1000); /* 10ms enough? */
409 bus_space_write_4(&obio_bs_tag,
410 I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
411 reg);
412 }
413
414 /*
415 * We are currently running with the MMU enabled and the
416 * entire address space mapped VA==PA, except for the
417 * first 64M of RAM is also double-mapped at 0xc0000000.
418 * There is an L1 page table at 0xa0004000.
419 */
420
421 /*
422 * Fetch the SDRAM start/size from the i80312 SDRAM configration
423 * registers.
424 */
425 i80312_sdram_bounds(&obio_bs_tag, I80312_PMMR_BASE + I80312_MEM_BASE,
426 &memstart, &memsize);
427
428 #ifdef VERBOSE_INIT_ARM
429 printf("initarm: Configuring system ...\n");
430 #endif
431
432 /* Fake bootconfig structure for the benefit of pmap.c */
433 /* XXX must make the memory description h/w independant */
434 bootconfig.dramblocks = 1;
435 bootconfig.dram[0].address = memstart;
436 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
437
438 /*
439 * Set up the variables that define the availablilty of
440 * physical memory. For now, we're going to set
441 * physical_freestart to 0xa0200000 (where the kernel
442 * was loaded), and allocate the memory we need downwards.
443 * If we get too close to the L1 table that we set up, we
444 * will panic. We will update physical_freestart and
445 * physical_freeend later to reflect what pmap_bootstrap()
446 * wants to see.
447 *
448 * XXX pmap_bootstrap() needs an enema.
449 */
450 physical_start = bootconfig.dram[0].address;
451 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
452
453 physical_freestart = 0xa0009000UL;
454 physical_freeend = 0xa0200000UL;
455
456 physmem = (physical_end - physical_start) / PAGE_SIZE;
457
458 #ifdef VERBOSE_INIT_ARM
459 /* Tell the user about the memory */
460 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
461 physical_start, physical_end - 1);
462 #endif
463
464 /*
465 * Okay, the kernel starts 2MB in from the bottom of physical
466 * memory. We are going to allocate our bootstrap pages downwards
467 * from there.
468 *
469 * We need to allocate some fixed page tables to get the kernel
470 * going. We allocate one page directory and a number of page
471 * tables and store the physical addresses in the kernel_pt_table
472 * array.
473 *
474 * The kernel page directory must be on a 16K boundary. The page
475 * tables must be on 4K bounaries. What we do is allocate the
476 * page directory on the first 16K boundary that we encounter, and
477 * the page tables on 4K boundaries otherwise. Since we allocate
478 * at least 3 L2 page tables, we are guaranteed to encounter at
479 * least one 16K aligned region.
480 */
481
482 #ifdef VERBOSE_INIT_ARM
483 printf("Allocating page tables\n");
484 #endif
485
486 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
487
488 #ifdef VERBOSE_INIT_ARM
489 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
490 physical_freestart, free_pages, free_pages);
491 #endif
492
493 /* Define a macro to simplify memory allocation */
494 #define valloc_pages(var, np) \
495 alloc_pages((var).pv_pa, (np)); \
496 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
497
498 #define alloc_pages(var, np) \
499 physical_freeend -= ((np) * PAGE_SIZE); \
500 if (physical_freeend < physical_freestart) \
501 panic("initarm: out of memory"); \
502 (var) = physical_freeend; \
503 free_pages -= (np); \
504 memset((char *)(var), 0, ((np) * PAGE_SIZE));
505
506 loop1 = 0;
507 kernel_l1pt.pv_pa = 0;
508 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
509 /* Are we 16KB aligned for an L1 ? */
510 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
511 && kernel_l1pt.pv_pa == 0) {
512 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
513 } else {
514 valloc_pages(kernel_pt_table[loop1],
515 L2_TABLE_SIZE / PAGE_SIZE);
516 ++loop1;
517 }
518 }
519
520 /* This should never be able to happen but better confirm that. */
521 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
522 panic("initarm: Failed to align the kernel page directory");
523
524 /*
525 * Allocate a page for the system page mapped to V0x00000000
526 * This page will just contain the system vectors and can be
527 * shared by all processes.
528 */
529 alloc_pages(systempage.pv_pa, 1);
530
531 /* Allocate stacks for all modes */
532 valloc_pages(irqstack, IRQ_STACK_SIZE);
533 valloc_pages(abtstack, ABT_STACK_SIZE);
534 valloc_pages(undstack, UND_STACK_SIZE);
535 valloc_pages(kernelstack, UPAGES);
536
537 /* Allocate enough pages for cleaning the Mini-Data cache. */
538 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
539 valloc_pages(minidataclean, 1);
540
541 #ifdef VERBOSE_INIT_ARM
542 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
543 irqstack.pv_va);
544 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
545 abtstack.pv_va);
546 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
547 undstack.pv_va);
548 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
549 kernelstack.pv_va);
550 #endif
551
552 /*
553 * XXX Defer this to later so that we can reclaim the memory
554 * XXX used by the RedBoot page tables.
555 */
556 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
557
558 /*
559 * Ok we have allocated physical pages for the primary kernel
560 * page tables
561 */
562
563 #ifdef VERBOSE_INIT_ARM
564 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
565 #endif
566
567 /*
568 * Now we start construction of the L1 page table
569 * We start by mapping the L2 page tables into the L1.
570 * This means that we can replace L1 mappings later on if necessary
571 */
572 l1pagetable = kernel_l1pt.pv_pa;
573
574 /* Map the L2 pages tables in the L1 page table */
575 pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
576 &kernel_pt_table[KERNEL_PT_SYS]);
577 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
578 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
579 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
580 pmap_link_l2pt(l1pagetable, IQ80310_IOPXS_VBASE,
581 &kernel_pt_table[KERNEL_PT_IOPXS]);
582 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
583 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
584 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
585
586 /* update the top of the kernel VM */
587 pmap_curmaxkvaddr =
588 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
589
590 #ifdef VERBOSE_INIT_ARM
591 printf("Mapping kernel\n");
592 #endif
593
594 /* Now we fill in the L2 pagetable for the kernel static code/data */
595 {
596 extern char etext[], _end[];
597 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
598 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
599 u_int logical;
600
601 textsize = (textsize + PGOFSET) & ~PGOFSET;
602 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
603
604 logical = 0x00200000; /* offset of kernel in RAM */
605
606 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
607 physical_start + logical, textsize,
608 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
609 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
610 physical_start + logical, totalsize - textsize,
611 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
612 }
613
614 #ifdef VERBOSE_INIT_ARM
615 printf("Constructing L2 page tables\n");
616 #endif
617
618 /* Map the stack pages */
619 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
620 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
621 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
622 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
623 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
624 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
625 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
626 UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
627
628 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
629 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
630
631 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
632 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
633 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
634 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
635 }
636
637 /* Map the Mini-Data cache clean area. */
638 xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
639 minidataclean.pv_pa);
640
641 /* Map the vector page. */
642 pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
643 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
644
645 /* Map the statically mapped devices. */
646 pmap_devmap_bootstrap(l1pagetable, iq80310_devmap);
647
648 /*
649 * Give the XScale global cache clean code an appropriately
650 * sized chunk of unmapped VA space starting at 0xff000000
651 * (our device mappings end before this address).
652 */
653 xscale_cache_clean_addr = 0xff000000U;
654
655 /*
656 * Now we have the real page tables in place so we can switch to them.
657 * Once this is done we will be running with the REAL kernel page
658 * tables.
659 */
660
661 /*
662 * Update the physical_freestart/physical_freeend/free_pages
663 * variables.
664 */
665 {
666 extern char _end[];
667
668 physical_freestart = physical_start +
669 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
670 KERNEL_BASE);
671 physical_freeend = physical_end;
672 free_pages =
673 (physical_freeend - physical_freestart) / PAGE_SIZE;
674 }
675
676 /* Switch tables */
677 #ifdef VERBOSE_INIT_ARM
678 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
679 physical_freestart, free_pages, free_pages);
680 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
681 #endif
682 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
683 setttb(kernel_l1pt.pv_pa);
684 cpu_tlb_flushID();
685 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
686
687 /*
688 * Moved from cpu_startup() as data_abort_handler() references
689 * this during uvm init
690 */
691 proc0paddr = (struct user *)kernelstack.pv_va;
692 lwp0.l_addr = proc0paddr;
693
694 #ifdef VERBOSE_INIT_ARM
695 printf("done!\n");
696 #endif
697
698 #ifdef VERBOSE_INIT_ARM
699 printf("bootstrap done.\n");
700 #endif
701
702 arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
703
704 /*
705 * Pages were allocated during the secondary bootstrap for the
706 * stacks for different CPU modes.
707 * We must now set the r13 registers in the different CPU modes to
708 * point to these stacks.
709 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
710 * of the stack memory.
711 */
712 #ifdef VERBOSE_INIT_ARM
713 printf("init subsystems: stacks ");
714 #endif
715
716 set_stackptr(PSR_IRQ32_MODE,
717 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
718 set_stackptr(PSR_ABT32_MODE,
719 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
720 set_stackptr(PSR_UND32_MODE,
721 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
722
723 /*
724 * Well we should set a data abort handler.
725 * Once things get going this will change as we will need a proper
726 * handler.
727 * Until then we will use a handler that just panics but tells us
728 * why.
729 * Initialisation of the vectors will just panic on a data abort.
730 * This just fills in a slighly better one.
731 */
732 #ifdef VERBOSE_INIT_ARM
733 printf("vectors ");
734 #endif
735 data_abort_handler_address = (u_int)data_abort_handler;
736 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
737 undefined_handler_address = (u_int)undefinedinstruction_bounce;
738
739 /* Initialise the undefined instruction handlers */
740 #ifdef VERBOSE_INIT_ARM
741 printf("undefined ");
742 #endif
743 undefined_init();
744
745 /* Load memory into UVM. */
746 #ifdef VERBOSE_INIT_ARM
747 printf("page ");
748 #endif
749 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
750 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
751 atop(physical_freestart), atop(physical_freeend),
752 VM_FREELIST_DEFAULT);
753
754 /* Boot strap pmap telling it where the kernel page table is */
755 #ifdef VERBOSE_INIT_ARM
756 printf("pmap ");
757 #endif
758 pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
759 KERNEL_VM_BASE + KERNEL_VM_SIZE);
760
761 /* Setup the IRQ system */
762 #ifdef VERBOSE_INIT_ARM
763 printf("irq ");
764 #endif
765 iq80310_intr_init();
766
767 #ifdef VERBOSE_INIT_ARM
768 printf("done.\n");
769 #endif
770
771 #ifdef IPKDB
772 /* Initialise ipkdb */
773 ipkdb_init();
774 if (boothowto & RB_KDB)
775 ipkdb_connect(0);
776 #endif
777
778 #if NKSYMS || defined(DDB) || defined(LKM)
779 /* Firmware doesn't load symbols. */
780 ksyms_init(0, NULL, NULL);
781 #endif
782
783 #ifdef DDB
784 db_machine_init();
785 if (boothowto & RB_KDB)
786 Debugger();
787 #endif
788
789 /* We return the new stack pointer address */
790 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
791 }
792
793 void
794 consinit(void)
795 {
796 static const bus_addr_t comcnaddrs[] = {
797 IQ80310_UART2, /* com0 (J9) */
798 IQ80310_UART1, /* com1 (J10) */
799 };
800 static int consinit_called;
801
802 if (consinit_called != 0)
803 return;
804
805 consinit_called = 1;
806
807 /*
808 * Console devices are mapped VA==PA. Our devmap reflects
809 * this, so register it now so drivers can map the console
810 * device.
811 */
812 pmap_devmap_register(iq80310_devmap);
813
814 #if NCOM > 0
815 if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
816 COM_FREQ, COM_TYPE_NORMAL, comcnmode))
817 panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
818 #else
819 panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
820 #endif
821 }
822