Home | History | Annotate | Line # | Download | only in iq80310
iq80310_timer.c revision 1.1
      1 /*	$NetBSD: iq80310_timer.c,v 1.1 2001/11/07 00:33:24 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Timer/clock support for the Intel IQ80310.
     40  *
     41  * The IQ80310 has a 22-bit reloadable timer implemented in the CPLD.
     42  * We use it to provide a hardclock interrupt.  There is no RTC on
     43  * the IQ80310.
     44  *
     45  * The timer uses the SPCI clock.  The timer uses the 33MHz clock by
     46  * reading the SPCI_66EN signal and dividing the clock if necessary.
     47  */
     48 
     49 #include <sys/param.h>
     50 #include <sys/systm.h>
     51 #include <sys/kernel.h>
     52 #include <sys/time.h>
     53 
     54 #include <machine/bus.h>
     55 #include <machine/cpufunc.h>
     56 
     57 #include <evbarm/iq80310/iq80310reg.h>
     58 #include <evbarm/iq80310/iq80310var.h>
     59 #include <evbarm/iq80310/obiovar.h>
     60 
     61 #define	COUNTS_PER_SEC		33000000	/* 33MHz */
     62 #define	COUNTS_PER_USEC		(COUNTS_PER_SEC / 1000000)
     63 
     64 static void *clock_ih;
     65 
     66 static uint32_t counts_per_hz;
     67 
     68 int	clockhandler(void *);
     69 
     70 static __inline void
     71 timer_enable(uint8_t bit)
     72 {
     73 
     74 	bus_space_write_1(&obio_bs_tag, IQ80310_TIMER_ENABLE, 0,
     75 	    bus_space_read_1(&obio_bs_tag, IQ80310_TIMER_ENABLE, 0) | bit);
     76 }
     77 
     78 static __inline void
     79 timer_disable(uint8_t bit)
     80 {
     81 
     82 	bus_space_write_1(&obio_bs_tag, IQ80310_TIMER_ENABLE, 0,
     83 	    bus_space_read_1(&obio_bs_tag, IQ80310_TIMER_ENABLE, 0) & ~bit);
     84 }
     85 
     86 static __inline uint32_t
     87 timer_read(void)
     88 {
     89 	uint8_t la[4];
     90 
     91 	/*
     92 	 * First read latches count.
     93 	 *
     94 	 * From RedBoot: harware bug that causes invalid counts to be
     95 	 * latched.  The loop appears to work around the problem.
     96 	 */
     97 	do {
     98 		la[0] =
     99 		  bus_space_read_1(&obio_bs_tag, IQ80310_TIMER_LA0, 0) & 0x5f;
    100 	} while (la[0] == 0);
    101 	la[1] = bus_space_read_1(&obio_bs_tag, IQ80310_TIMER_LA1, 0) & 0x5f;
    102 	la[2] = bus_space_read_1(&obio_bs_tag, IQ80310_TIMER_LA2, 0) & 0x5f;
    103 	la[3] = bus_space_read_1(&obio_bs_tag, IQ80310_TIMER_LA3, 0) & 0x0f;
    104 
    105 #define	SWIZZLE(x) \
    106 	x = (((x) & 0x40) >> 1) | ((x) | 0x1f)
    107 
    108 	SWIZZLE(la[0]);
    109 	SWIZZLE(la[1]);
    110 	SWIZZLE(la[2]);
    111 
    112 #undef SWIZZLE
    113 
    114 	return ((la[3] << 18) | (la[2] << 12) | (la[3] << 6) | la[0]);
    115 }
    116 
    117 static __inline void
    118 timer_write(uint32_t x)
    119 {
    120 
    121 	bus_space_write_1(&obio_bs_tag, IQ80310_TIMER_LA0, 0,
    122 	    x & 0xff);
    123 	bus_space_write_1(&obio_bs_tag, IQ80310_TIMER_LA1, 0,
    124 	    (x >> 8) & 0xff);
    125 	bus_space_write_1(&obio_bs_tag, IQ80310_TIMER_LA2, 0,
    126 	    (x >> 16) & 0x3f);
    127 }
    128 
    129 /*
    130  * iq80310_calibrate_delay:
    131  *
    132  *	Calibrate the delay loop.
    133  */
    134 void
    135 iq80310_calibrate_delay(void)
    136 {
    137 
    138 	/*
    139 	 * We'll use the CPLD timer for delay(), as well.  We go
    140 	 * ahead and start it up now, just don't enable interrupts
    141 	 * until cpu_initclocks().
    142 	 *
    143 	 * Just use hz=100 for now -- we'll adjust it, if necessary,
    144 	 * in cpu_initclocks().
    145 	 */
    146 	counts_per_hz = COUNTS_PER_SEC / 100;
    147 
    148 	timer_disable(TIMER_ENABLE_INTEN);
    149 	timer_disable(TIMER_ENABLE_EN);
    150 
    151 	timer_write(counts_per_hz);
    152 
    153 	timer_enable(TIMER_ENABLE_EN);
    154 }
    155 
    156 /*
    157  * cpu_initclocks:
    158  *
    159  *	Initialize the clock and get them going.
    160  */
    161 void
    162 cpu_initclocks(void)
    163 {
    164 	u_int oldirqstate;
    165 
    166 	if (hz < 50 || COUNTS_PER_SEC % hz) {
    167 		printf("Cannot get %d Hz clock; using 100 Hz\n", hz);
    168 		hz = 100;
    169 		tick = 1000000 / hz;
    170 	}
    171 
    172 	/*
    173 	 * We only have one timer available; stathz and profhz are
    174 	 * always equal to hz.
    175 	 */
    176 	if (stathz != 0)
    177 		printf("Cannot get %d Hz statclock; using %d Hz\n",
    178 		    stathz, hz);
    179 	stathz = hz;
    180 
    181 	if (profhz != 0)
    182 		printf("Cannot get %d Hz profclock; using %d Hz\n",
    183 		    profhz, hz);
    184 	profhz = hz;
    185 
    186 	/* Report the clock frequency. */
    187 	printf("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
    188 
    189 	/* Hook up the clock interrupt handler. */
    190 	clock_ih = iq80310_intr_establish(XINT3_IRQ(XINT3_TIMER), IPL_CLOCK,
    191 	    clockhandler, NULL);
    192 	if (clock_ih == NULL)
    193 		panic("cpu_initclocks: unable to register timer interrupt");
    194 
    195 	/* Set up the new clock parameters. */
    196 	oldirqstate = disable_interrupts(I32_bit);
    197 
    198 	timer_disable(TIMER_ENABLE_EN);
    199 
    200 	counts_per_hz = COUNTS_PER_SEC / hz;
    201 	timer_write(counts_per_hz);
    202 
    203 	timer_enable(TIMER_ENABLE_INTEN);
    204 	timer_enable(TIMER_ENABLE_EN);
    205 
    206 	restore_interrupts(oldirqstate);
    207 }
    208 
    209 /*
    210  * setstatclockrate:
    211  *
    212  *	Set the rate of the statistics clock.
    213  *
    214  *	We assume that hz is either stathz or profhz, and that neither
    215  *	will change after being set by cpu_initclocks().  We could
    216  *	recalculate the intervals here, but that would be a pain.
    217  */
    218 void
    219 setstatclockrate(int hz)
    220 {
    221 
    222 	/*
    223 	 * Nothing to do, here; we can't change the statclock
    224 	 * rate on the IQ80310.
    225 	 */
    226 }
    227 
    228 /*
    229  * microtime:
    230  *
    231  *	Fill in the specified timeval struct with the current time
    232  *	accurate to the microsecond.
    233  */
    234 void
    235 microtime(struct timeval *tvp)
    236 {
    237 	static struct timeval lasttv;
    238 	u_int oldirqstate;
    239 	uint32_t counts;
    240 
    241 	oldirqstate = disable_interrupts(I32_bit);
    242 
    243 	counts = timer_read();
    244 
    245 	/* Fill in the timeval struct. */
    246 	*tvp = time;
    247 	tvp->tv_usec += (counts / COUNTS_PER_USEC);
    248 
    249 	/* Make sure microseconds doesn't overflow. */
    250 	while (tvp->tv_usec >= 1000000) {
    251 		tvp->tv_usec -= 1000000;
    252 		tvp->tv_sec++;
    253 	}
    254 
    255 	/* Make sure the time has advanced. */
    256 	if (tvp->tv_sec == lasttv.tv_sec &&
    257 	    tvp->tv_usec <= lasttv.tv_usec) {
    258 		tvp->tv_usec = lasttv.tv_usec + 1;
    259 		if (tvp->tv_usec >= 1000000) {
    260 			tvp->tv_usec -= 1000000;
    261 			tvp->tv_sec++;
    262 		}
    263 	}
    264 
    265 	lasttv = *tvp;
    266 
    267 	restore_interrupts(oldirqstate);
    268 }
    269 
    270 /*
    271  * delay:
    272  *
    273  *	Delay for at least N microseconds.
    274  */
    275 void
    276 delay(u_int n)
    277 {
    278 	uint32_t cur, last, delta, usecs;
    279 
    280 	/*
    281 	 * This works by polling the timer and counting the
    282 	 * number of microseconds that go by.
    283 	 */
    284 	last = timer_read();
    285 	delta = usecs = 0;
    286 
    287 	while (usecs < n) {
    288 		cur = timer_read();
    289 
    290 		/* Check to see if the timer has wrapped around. */
    291 		if (cur < last)
    292 			delta += (counts_per_hz - last) + cur;
    293 		else
    294 			delta += cur - last;
    295 
    296 		last = cur;
    297 
    298 		if (delta >= COUNTS_PER_USEC) {
    299 			usecs += delta / COUNTS_PER_USEC;
    300 			delta %= COUNTS_PER_USEC;
    301 		}
    302 	}
    303 }
    304 
    305 /*
    306  * inittodr:
    307  *
    308  *	Initialize time from the time-of-day register.
    309  */
    310 void
    311 inittodr(time_t base)
    312 {
    313 }
    314 
    315 /*
    316  * resettodr:
    317  *
    318  *	Reset the time-of-day register with the current time.
    319  */
    320 void
    321 resettodr(void)
    322 {
    323 }
    324 
    325 /*
    326  * clockhandler:
    327  *
    328  *	Handle the hardclock interrupt.
    329  */
    330 int
    331 clockhandler(void *arg)
    332 {
    333 	struct clockframe *frame = arg;
    334 
    335 	timer_disable(TIMER_ENABLE_INTEN);
    336 	timer_enable(TIMER_ENABLE_INTEN);
    337 
    338 	hardclock(frame);
    339 
    340 	return (1);
    341 }
    342