iq80310_timer.c revision 1.12 1 /* $NetBSD: iq80310_timer.c,v 1.12 2003/07/15 00:25:03 lukem Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Timer/clock support for the Intel IQ80310.
40 *
41 * The IQ80310 has a 22-bit reloadable timer implemented in the CPLD.
42 * We use it to provide a hardclock interrupt. There is no RTC on
43 * the IQ80310.
44 *
45 * The timer uses the SPCI clock. The timer uses the 33MHz clock by
46 * reading the SPCI_66EN signal and dividing the clock if necessary.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: iq80310_timer.c,v 1.12 2003/07/15 00:25:03 lukem Exp $");
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/time.h>
56
57 #include <machine/bus.h>
58 #include <arm/cpufunc.h>
59
60 #include <evbarm/iq80310/iq80310reg.h>
61 #include <evbarm/iq80310/iq80310var.h>
62 #include <evbarm/iq80310/obiovar.h>
63
64 /*
65 * Some IQ80310-based designs have fewer bits in the timer counter.
66 * Deal with them here.
67 */
68 #if defined(IOP310_TEAMASA_NPWR)
69 #define COUNTER_MASK 0x0007ffff
70 #else /* Default to stock IQ80310 */
71 #define COUNTER_MASK 0x003fffff
72 #endif /* list of IQ80310-based designs */
73
74 #define COUNTS_PER_SEC 33000000 /* 33MHz */
75 #define COUNTS_PER_USEC (COUNTS_PER_SEC / 1000000)
76
77 static void *clock_ih;
78
79 static uint32_t counts_per_hz;
80
81 int clockhandler(void *);
82
83 static __inline void
84 timer_enable(uint8_t bit)
85 {
86
87 CPLD_WRITE(IQ80310_TIMER_ENABLE,
88 CPLD_READ(IQ80310_TIMER_ENABLE) | bit);
89 }
90
91 static __inline void
92 timer_disable(uint8_t bit)
93 {
94
95 CPLD_WRITE(IQ80310_TIMER_ENABLE,
96 CPLD_READ(IQ80310_TIMER_ENABLE) & ~bit);
97 }
98
99 static __inline uint32_t
100 timer_read(void)
101 {
102 uint32_t rv;
103 uint8_t la0, la1, la2, la3;
104
105 /*
106 * First read latches count.
107 *
108 * From RedBoot: harware bug that causes invalid counts to be
109 * latched. The loop appears to work around the problem.
110 */
111 do {
112 la0 = CPLD_READ(IQ80310_TIMER_LA0);
113 } while (la0 == 0);
114 la1 = CPLD_READ(IQ80310_TIMER_LA1);
115 la2 = CPLD_READ(IQ80310_TIMER_LA2);
116 la3 = CPLD_READ(IQ80310_TIMER_LA3);
117
118 rv = ((la0 & 0x40) >> 1) | (la0 & 0x1f);
119 rv |= (((la1 & 0x40) >> 1) | (la1 & 0x1f)) << 6;
120 rv |= (((la2 & 0x40) >> 1) | (la2 & 0x1f)) << 12;
121 rv |= (la3 & 0x0f) << 18;
122
123 return (rv);
124 }
125
126 static __inline void
127 timer_write(uint32_t x)
128 {
129
130 KASSERT((x & COUNTER_MASK) == x);
131
132 CPLD_WRITE(IQ80310_TIMER_LA0, x & 0xff);
133 CPLD_WRITE(IQ80310_TIMER_LA1, (x >> 8) & 0xff);
134 CPLD_WRITE(IQ80310_TIMER_LA2, (x >> 16) & 0x3f);
135 }
136
137 /*
138 * iq80310_calibrate_delay:
139 *
140 * Calibrate the delay loop.
141 */
142 void
143 iq80310_calibrate_delay(void)
144 {
145
146 /*
147 * We'll use the CPLD timer for delay(), as well. We go
148 * ahead and start it up now, just don't enable interrupts
149 * until cpu_initclocks().
150 *
151 * Just use hz=100 for now -- we'll adjust it, if necessary,
152 * in cpu_initclocks().
153 */
154 counts_per_hz = COUNTS_PER_SEC / 100;
155
156 timer_disable(TIMER_ENABLE_INTEN);
157 timer_disable(TIMER_ENABLE_EN);
158
159 timer_write(counts_per_hz);
160
161 timer_enable(TIMER_ENABLE_EN);
162 }
163
164 /*
165 * cpu_initclocks:
166 *
167 * Initialize the clock and get them going.
168 */
169 void
170 cpu_initclocks(void)
171 {
172 u_int oldirqstate;
173
174 if (hz < 50 || COUNTS_PER_SEC % hz) {
175 printf("Cannot get %d Hz clock; using 100 Hz\n", hz);
176 hz = 100;
177 }
178 tick = 1000000 / hz; /* number of microseconds between interrupts */
179 tickfix = 1000000 - (hz * tick);
180 if (tickfix) {
181 int ftp;
182
183 ftp = min(ffs(tickfix), ffs(hz));
184 tickfix >>= (ftp - 1);
185 tickfixinterval = hz >> (ftp - 1);
186 }
187
188 /*
189 * We only have one timer available; stathz and profhz are
190 * always left as 0 (the upper-layer clock code deals with
191 * this situation).
192 */
193 if (stathz != 0)
194 printf("Cannot get %d Hz statclock\n", stathz);
195 stathz = 0;
196
197 if (profhz != 0)
198 printf("Cannot get %d Hz profclock\n", profhz);
199 profhz = 0;
200
201 /* Report the clock frequency. */
202 printf("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
203
204 /* Hook up the clock interrupt handler. */
205 clock_ih = iq80310_intr_establish(XINT3_IRQ(XINT3_TIMER), IPL_CLOCK,
206 clockhandler, NULL);
207 if (clock_ih == NULL)
208 panic("cpu_initclocks: unable to register timer interrupt");
209
210 /* Set up the new clock parameters. */
211 oldirqstate = disable_interrupts(I32_bit);
212
213 timer_disable(TIMER_ENABLE_EN);
214
215 counts_per_hz = COUNTS_PER_SEC / hz;
216 timer_write(counts_per_hz);
217
218 timer_enable(TIMER_ENABLE_INTEN);
219 timer_enable(TIMER_ENABLE_EN);
220
221 restore_interrupts(oldirqstate);
222 }
223
224 /*
225 * setstatclockrate:
226 *
227 * Set the rate of the statistics clock.
228 *
229 * We assume that hz is either stathz or profhz, and that neither
230 * will change after being set by cpu_initclocks(). We could
231 * recalculate the intervals here, but that would be a pain.
232 */
233 void
234 setstatclockrate(int hz)
235 {
236
237 /*
238 * Nothing to do, here; we can't change the statclock
239 * rate on the IQ80310.
240 */
241 }
242
243 /*
244 * microtime:
245 *
246 * Fill in the specified timeval struct with the current time
247 * accurate to the microsecond.
248 */
249 void
250 microtime(struct timeval *tvp)
251 {
252 static struct timeval lasttv;
253 u_int oldirqstate;
254 uint32_t counts;
255
256 oldirqstate = disable_interrupts(I32_bit);
257
258 counts = timer_read();
259
260 /* Fill in the timeval struct. */
261 *tvp = time;
262 tvp->tv_usec += (counts / COUNTS_PER_USEC);
263
264 /* Make sure microseconds doesn't overflow. */
265 while (tvp->tv_usec >= 1000000) {
266 tvp->tv_usec -= 1000000;
267 tvp->tv_sec++;
268 }
269
270 /* Make sure the time has advanced. */
271 if (tvp->tv_sec == lasttv.tv_sec &&
272 tvp->tv_usec <= lasttv.tv_usec) {
273 tvp->tv_usec = lasttv.tv_usec + 1;
274 if (tvp->tv_usec >= 1000000) {
275 tvp->tv_usec -= 1000000;
276 tvp->tv_sec++;
277 }
278 }
279
280 lasttv = *tvp;
281
282 restore_interrupts(oldirqstate);
283 }
284
285 /*
286 * delay:
287 *
288 * Delay for at least N microseconds.
289 */
290 void
291 delay(u_int n)
292 {
293 uint32_t cur, last, delta, usecs;
294
295 /*
296 * This works by polling the timer and counting the
297 * number of microseconds that go by.
298 */
299 last = timer_read();
300 delta = usecs = 0;
301
302 while (n > usecs) {
303 cur = timer_read();
304
305 /* Check to see if the timer has wrapped around. */
306 if (cur < last)
307 delta += ((counts_per_hz - last) + cur);
308 else
309 delta += (cur - last);
310
311 last = cur;
312
313 if (delta >= COUNTS_PER_USEC) {
314 usecs += delta / COUNTS_PER_USEC;
315 delta %= COUNTS_PER_USEC;
316 }
317 }
318 }
319
320 /*
321 * inittodr:
322 *
323 * Initialize time from the time-of-day register.
324 */
325 void
326 inittodr(time_t base)
327 {
328
329 time.tv_sec = base;
330 time.tv_usec = 0;
331 }
332
333 /*
334 * resettodr:
335 *
336 * Reset the time-of-day register with the current time.
337 */
338 void
339 resettodr(void)
340 {
341 }
342
343 /*
344 * clockhandler:
345 *
346 * Handle the hardclock interrupt.
347 */
348 int
349 clockhandler(void *arg)
350 {
351 struct clockframe *frame = arg;
352
353 timer_disable(TIMER_ENABLE_INTEN);
354 timer_enable(TIMER_ENABLE_INTEN);
355
356 hardclock(frame);
357
358 /*
359 * Don't run the snake on IOP310-based systems that
360 * don't have the 7-segment display.
361 */
362 #if !defined(IOP310_TEAMASA_NPWR)
363 {
364 static int snakefreq;
365
366 if ((snakefreq++ & 15) == 0)
367 iq80310_7seg_snake();
368 }
369 #endif
370
371 return (1);
372 }
373