iq80310_timer.c revision 1.13 1 /* $NetBSD: iq80310_timer.c,v 1.13 2003/07/26 05:55:03 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Timer/clock support for the Intel IQ80310.
40 *
41 * The IQ80310 has a 22-bit reloadable timer implemented in the CPLD.
42 * We use it to provide a hardclock interrupt. There is no RTC on
43 * the IQ80310.
44 *
45 * The timer uses the SPCI clock. The timer uses the 33MHz clock by
46 * reading the SPCI_66EN signal and dividing the clock if necessary.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: iq80310_timer.c,v 1.13 2003/07/26 05:55:03 thorpej Exp $");
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/time.h>
56
57 #include <dev/clock_subr.h>
58
59 #include <machine/bus.h>
60 #include <arm/cpufunc.h>
61
62 #include <evbarm/iq80310/iq80310reg.h>
63 #include <evbarm/iq80310/iq80310var.h>
64 #include <evbarm/iq80310/obiovar.h>
65
66 /*
67 * Some IQ80310-based designs have fewer bits in the timer counter.
68 * Deal with them here.
69 */
70 #if defined(IOP310_TEAMASA_NPWR)
71 #define COUNTER_MASK 0x0007ffff
72 #else /* Default to stock IQ80310 */
73 #define COUNTER_MASK 0x003fffff
74 #endif /* list of IQ80310-based designs */
75
76 #define COUNTS_PER_SEC 33000000 /* 33MHz */
77 #define COUNTS_PER_USEC (COUNTS_PER_SEC / 1000000)
78
79 static void *clock_ih;
80
81 static uint32_t counts_per_hz;
82
83 int clockhandler(void *);
84
85 static __inline void
86 timer_enable(uint8_t bit)
87 {
88
89 CPLD_WRITE(IQ80310_TIMER_ENABLE,
90 CPLD_READ(IQ80310_TIMER_ENABLE) | bit);
91 }
92
93 static __inline void
94 timer_disable(uint8_t bit)
95 {
96
97 CPLD_WRITE(IQ80310_TIMER_ENABLE,
98 CPLD_READ(IQ80310_TIMER_ENABLE) & ~bit);
99 }
100
101 static __inline uint32_t
102 timer_read(void)
103 {
104 uint32_t rv;
105 uint8_t la0, la1, la2, la3;
106
107 /*
108 * First read latches count.
109 *
110 * From RedBoot: harware bug that causes invalid counts to be
111 * latched. The loop appears to work around the problem.
112 */
113 do {
114 la0 = CPLD_READ(IQ80310_TIMER_LA0);
115 } while (la0 == 0);
116 la1 = CPLD_READ(IQ80310_TIMER_LA1);
117 la2 = CPLD_READ(IQ80310_TIMER_LA2);
118 la3 = CPLD_READ(IQ80310_TIMER_LA3);
119
120 rv = ((la0 & 0x40) >> 1) | (la0 & 0x1f);
121 rv |= (((la1 & 0x40) >> 1) | (la1 & 0x1f)) << 6;
122 rv |= (((la2 & 0x40) >> 1) | (la2 & 0x1f)) << 12;
123 rv |= (la3 & 0x0f) << 18;
124
125 return (rv);
126 }
127
128 static __inline void
129 timer_write(uint32_t x)
130 {
131
132 KASSERT((x & COUNTER_MASK) == x);
133
134 CPLD_WRITE(IQ80310_TIMER_LA0, x & 0xff);
135 CPLD_WRITE(IQ80310_TIMER_LA1, (x >> 8) & 0xff);
136 CPLD_WRITE(IQ80310_TIMER_LA2, (x >> 16) & 0x3f);
137 }
138
139 /*
140 * iq80310_calibrate_delay:
141 *
142 * Calibrate the delay loop.
143 */
144 void
145 iq80310_calibrate_delay(void)
146 {
147
148 /*
149 * We'll use the CPLD timer for delay(), as well. We go
150 * ahead and start it up now, just don't enable interrupts
151 * until cpu_initclocks().
152 *
153 * Just use hz=100 for now -- we'll adjust it, if necessary,
154 * in cpu_initclocks().
155 */
156 counts_per_hz = COUNTS_PER_SEC / 100;
157
158 timer_disable(TIMER_ENABLE_INTEN);
159 timer_disable(TIMER_ENABLE_EN);
160
161 timer_write(counts_per_hz);
162
163 timer_enable(TIMER_ENABLE_EN);
164 }
165
166 /*
167 * cpu_initclocks:
168 *
169 * Initialize the clock and get them going.
170 */
171 void
172 cpu_initclocks(void)
173 {
174 u_int oldirqstate;
175
176 if (hz < 50 || COUNTS_PER_SEC % hz) {
177 printf("Cannot get %d Hz clock; using 100 Hz\n", hz);
178 hz = 100;
179 }
180 tick = 1000000 / hz; /* number of microseconds between interrupts */
181 tickfix = 1000000 - (hz * tick);
182 if (tickfix) {
183 int ftp;
184
185 ftp = min(ffs(tickfix), ffs(hz));
186 tickfix >>= (ftp - 1);
187 tickfixinterval = hz >> (ftp - 1);
188 }
189
190 /*
191 * We only have one timer available; stathz and profhz are
192 * always left as 0 (the upper-layer clock code deals with
193 * this situation).
194 */
195 if (stathz != 0)
196 printf("Cannot get %d Hz statclock\n", stathz);
197 stathz = 0;
198
199 if (profhz != 0)
200 printf("Cannot get %d Hz profclock\n", profhz);
201 profhz = 0;
202
203 /* Report the clock frequency. */
204 printf("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
205
206 /* Hook up the clock interrupt handler. */
207 clock_ih = iq80310_intr_establish(XINT3_IRQ(XINT3_TIMER), IPL_CLOCK,
208 clockhandler, NULL);
209 if (clock_ih == NULL)
210 panic("cpu_initclocks: unable to register timer interrupt");
211
212 /* Set up the new clock parameters. */
213 oldirqstate = disable_interrupts(I32_bit);
214
215 timer_disable(TIMER_ENABLE_EN);
216
217 counts_per_hz = COUNTS_PER_SEC / hz;
218 timer_write(counts_per_hz);
219
220 timer_enable(TIMER_ENABLE_INTEN);
221 timer_enable(TIMER_ENABLE_EN);
222
223 restore_interrupts(oldirqstate);
224 }
225
226 /*
227 * setstatclockrate:
228 *
229 * Set the rate of the statistics clock.
230 *
231 * We assume that hz is either stathz or profhz, and that neither
232 * will change after being set by cpu_initclocks(). We could
233 * recalculate the intervals here, but that would be a pain.
234 */
235 void
236 setstatclockrate(int hz)
237 {
238
239 /*
240 * Nothing to do, here; we can't change the statclock
241 * rate on the IQ80310.
242 */
243 }
244
245 /*
246 * microtime:
247 *
248 * Fill in the specified timeval struct with the current time
249 * accurate to the microsecond.
250 */
251 void
252 microtime(struct timeval *tvp)
253 {
254 static struct timeval lasttv;
255 u_int oldirqstate;
256 uint32_t counts;
257
258 oldirqstate = disable_interrupts(I32_bit);
259
260 counts = timer_read();
261
262 /* Fill in the timeval struct. */
263 *tvp = time;
264 tvp->tv_usec += (counts / COUNTS_PER_USEC);
265
266 /* Make sure microseconds doesn't overflow. */
267 while (tvp->tv_usec >= 1000000) {
268 tvp->tv_usec -= 1000000;
269 tvp->tv_sec++;
270 }
271
272 /* Make sure the time has advanced. */
273 if (tvp->tv_sec == lasttv.tv_sec &&
274 tvp->tv_usec <= lasttv.tv_usec) {
275 tvp->tv_usec = lasttv.tv_usec + 1;
276 if (tvp->tv_usec >= 1000000) {
277 tvp->tv_usec -= 1000000;
278 tvp->tv_sec++;
279 }
280 }
281
282 lasttv = *tvp;
283
284 restore_interrupts(oldirqstate);
285 }
286
287 /*
288 * delay:
289 *
290 * Delay for at least N microseconds.
291 */
292 void
293 delay(u_int n)
294 {
295 uint32_t cur, last, delta, usecs;
296
297 /*
298 * This works by polling the timer and counting the
299 * number of microseconds that go by.
300 */
301 last = timer_read();
302 delta = usecs = 0;
303
304 while (n > usecs) {
305 cur = timer_read();
306
307 /* Check to see if the timer has wrapped around. */
308 if (cur < last)
309 delta += ((counts_per_hz - last) + cur);
310 else
311 delta += (cur - last);
312
313 last = cur;
314
315 if (delta >= COUNTS_PER_USEC) {
316 usecs += delta / COUNTS_PER_USEC;
317 delta %= COUNTS_PER_USEC;
318 }
319 }
320 }
321
322 todr_chip_handle_t todr_handle;
323
324 /*
325 * todr_attach:
326 *
327 * Set the specified time-of-day register as the system real-time clock.
328 */
329 void
330 todr_attach(todr_chip_handle_t todr)
331 {
332
333 if (todr_handle)
334 panic("todr_attach: rtc already configured");
335 }
336
337 /*
338 * inittodr:
339 *
340 * Initialize time from the time-of-day register.
341 */
342 #define MINYEAR 2003 /* minimum plausible year */
343 void
344 inittodr(time_t base)
345 {
346 time_t deltat;
347 int badbase;
348
349 if (base < (MINYEAR - 1970) * SECYR) {
350 printf("WARNING: preposterous time in file system");
351 /* read the system clock anyway */
352 base = (MINYEAR - 1970) * SECYR;
353 badbase = 1;
354 } else
355 badbase = 0;
356
357 if (todr_handle == NULL ||
358 todr_gettime(todr_handle, (struct timeval *)&time) != 0 ||
359 time.tv_sec == 0) {
360 /*
361 * Believe the time in the file system for lack of
362 * anything better, resetting the TODR.
363 */
364 time.tv_sec = base;
365 time.tv_usec = 0;
366 if (todr_handle != NULL && !badbase) {
367 printf("WARNING: preposterous clock chip time\n");
368 resettodr();
369 }
370 goto bad;
371 }
372
373 if (!badbase) {
374 /*
375 * See if we tained/lost two or more days; if
376 * so, assume something is amiss.
377 */
378 deltat = time.tv_sec - base;
379 if (deltat < 0)
380 deltat = -deltat;
381 if (deltat < 2 * SECDAY)
382 return; /* all is well */
383 printf("WARNING: clock %s %ld days\n",
384 time.tv_sec < base ? "lost" : "gained",
385 (long)deltat / SECDAY);
386 }
387 bad:
388 printf("WARNING: CHECK AND RESET THE DATE!\n");
389 }
390
391 /*
392 * resettodr:
393 *
394 * Reset the time-of-day register with the current time.
395 */
396 void
397 resettodr(void)
398 {
399
400 if (time.tv_sec == 0)
401 return;
402
403 if (todr_handle != NULL &&
404 todr_settime(todr_handle, (struct timeval *)&time) != 0)
405 printf("resettodr: failed to set time\n");
406 }
407
408 /*
409 * clockhandler:
410 *
411 * Handle the hardclock interrupt.
412 */
413 int
414 clockhandler(void *arg)
415 {
416 struct clockframe *frame = arg;
417
418 timer_disable(TIMER_ENABLE_INTEN);
419 timer_enable(TIMER_ENABLE_INTEN);
420
421 hardclock(frame);
422
423 /*
424 * Don't run the snake on IOP310-based systems that
425 * don't have the 7-segment display.
426 */
427 #if !defined(IOP310_TEAMASA_NPWR)
428 {
429 static int snakefreq;
430
431 if ((snakefreq++ & 15) == 0)
432 iq80310_7seg_snake();
433 }
434 #endif
435
436 return (1);
437 }
438