iq80310_timer.c revision 1.3 1 /* $NetBSD: iq80310_timer.c,v 1.3 2001/11/08 02:12:05 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Timer/clock support for the Intel IQ80310.
40 *
41 * The IQ80310 has a 22-bit reloadable timer implemented in the CPLD.
42 * We use it to provide a hardclock interrupt. There is no RTC on
43 * the IQ80310.
44 *
45 * The timer uses the SPCI clock. The timer uses the 33MHz clock by
46 * reading the SPCI_66EN signal and dividing the clock if necessary.
47 */
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/kernel.h>
52 #include <sys/time.h>
53
54 #include <machine/bus.h>
55 #include <machine/cpufunc.h>
56
57 #include <evbarm/iq80310/iq80310reg.h>
58 #include <evbarm/iq80310/iq80310var.h>
59 #include <evbarm/iq80310/obiovar.h>
60
61 #define COUNTS_PER_SEC 33000000 /* 33MHz */
62 #define COUNTS_PER_USEC (COUNTS_PER_SEC / 1000000)
63
64 static void *clock_ih;
65
66 static uint32_t counts_per_hz;
67
68 int clockhandler(void *);
69
70 static __inline void
71 timer_enable(uint8_t bit)
72 {
73
74 CPLD_WRITE(IQ80310_TIMER_ENABLE,
75 CPLD_READ(IQ80310_TIMER_ENABLE) | bit);
76 }
77
78 static __inline void
79 timer_disable(uint8_t bit)
80 {
81
82 CPLD_WRITE(IQ80310_TIMER_ENABLE,
83 CPLD_READ(IQ80310_TIMER_ENABLE) & ~bit);
84 }
85
86 static __inline uint32_t
87 timer_read(void)
88 {
89 uint32_t rv;
90 uint8_t la[4];
91
92 /*
93 * First read latches count.
94 *
95 * From RedBoot: harware bug that causes invalid counts to be
96 * latched. The loop appears to work around the problem.
97 */
98 do {
99 la[0] = CPLD_READ(IQ80310_TIMER_LA0) & 0x5f;
100 } while (la[0] == 0);
101 la[1] = CPLD_READ(IQ80310_TIMER_LA1) & 0x5f;
102 la[2] = CPLD_READ(IQ80310_TIMER_LA2) & 0x5f;
103 la[3] = CPLD_READ(IQ80310_TIMER_LA3) & 0x0f;
104
105 rv = ((la[0] & 0x40) >> 1) | (la[0] & 0x1f);
106 rv |= (((la[1] & 0x40) >> 1) | (la[1] & 0x1f)) << 6;
107 rv |= (((la[2] & 0x40) >> 1) | (la[2] & 0x1f)) << 12;
108 rv |= la[3] << 18;
109
110 return (rv);
111 }
112
113 static __inline void
114 timer_write(uint32_t x)
115 {
116
117 CPLD_WRITE(IQ80310_TIMER_LA0, x & 0xff);
118 CPLD_WRITE(IQ80310_TIMER_LA1, (x >> 8) & 0xff);
119 CPLD_WRITE(IQ80310_TIMER_LA2, (x >> 16) & 0x3f);
120 }
121
122 /*
123 * iq80310_calibrate_delay:
124 *
125 * Calibrate the delay loop.
126 */
127 void
128 iq80310_calibrate_delay(void)
129 {
130
131 /*
132 * We'll use the CPLD timer for delay(), as well. We go
133 * ahead and start it up now, just don't enable interrupts
134 * until cpu_initclocks().
135 *
136 * Just use hz=100 for now -- we'll adjust it, if necessary,
137 * in cpu_initclocks().
138 */
139 counts_per_hz = COUNTS_PER_SEC / 100;
140
141 timer_disable(TIMER_ENABLE_INTEN);
142 timer_disable(TIMER_ENABLE_EN);
143
144 timer_write(counts_per_hz);
145
146 timer_enable(TIMER_ENABLE_EN);
147 }
148
149 /*
150 * cpu_initclocks:
151 *
152 * Initialize the clock and get them going.
153 */
154 void
155 cpu_initclocks(void)
156 {
157 u_int oldirqstate;
158
159 if (hz < 50 || COUNTS_PER_SEC % hz) {
160 printf("Cannot get %d Hz clock; using 100 Hz\n", hz);
161 hz = 100;
162 tick = 1000000 / hz;
163 }
164
165 /*
166 * We only have one timer available; stathz and profhz are
167 * always equal to hz.
168 */
169 if (stathz != 0)
170 printf("Cannot get %d Hz statclock; using %d Hz\n",
171 stathz, hz);
172 stathz = hz;
173
174 if (profhz != 0)
175 printf("Cannot get %d Hz profclock; using %d Hz\n",
176 profhz, hz);
177 profhz = hz;
178
179 /* Report the clock frequency. */
180 printf("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
181
182 /* Hook up the clock interrupt handler. */
183 clock_ih = iq80310_intr_establish(XINT3_IRQ(XINT3_TIMER), IPL_CLOCK,
184 clockhandler, NULL);
185 if (clock_ih == NULL)
186 panic("cpu_initclocks: unable to register timer interrupt");
187
188 /* Set up the new clock parameters. */
189 oldirqstate = disable_interrupts(I32_bit);
190
191 timer_disable(TIMER_ENABLE_EN);
192
193 counts_per_hz = COUNTS_PER_SEC / hz;
194 timer_write(counts_per_hz);
195
196 timer_enable(TIMER_ENABLE_INTEN);
197 timer_enable(TIMER_ENABLE_EN);
198
199 restore_interrupts(oldirqstate);
200 }
201
202 /*
203 * setstatclockrate:
204 *
205 * Set the rate of the statistics clock.
206 *
207 * We assume that hz is either stathz or profhz, and that neither
208 * will change after being set by cpu_initclocks(). We could
209 * recalculate the intervals here, but that would be a pain.
210 */
211 void
212 setstatclockrate(int hz)
213 {
214
215 /*
216 * Nothing to do, here; we can't change the statclock
217 * rate on the IQ80310.
218 */
219 }
220
221 /*
222 * microtime:
223 *
224 * Fill in the specified timeval struct with the current time
225 * accurate to the microsecond.
226 */
227 void
228 microtime(struct timeval *tvp)
229 {
230 static struct timeval lasttv;
231 u_int oldirqstate;
232 uint32_t counts;
233
234 oldirqstate = disable_interrupts(I32_bit);
235
236 counts = timer_read();
237
238 /* Fill in the timeval struct. */
239 *tvp = time;
240 tvp->tv_usec += (counts / COUNTS_PER_USEC);
241
242 /* Make sure microseconds doesn't overflow. */
243 while (tvp->tv_usec >= 1000000) {
244 tvp->tv_usec -= 1000000;
245 tvp->tv_sec++;
246 }
247
248 /* Make sure the time has advanced. */
249 if (tvp->tv_sec == lasttv.tv_sec &&
250 tvp->tv_usec <= lasttv.tv_usec) {
251 tvp->tv_usec = lasttv.tv_usec + 1;
252 if (tvp->tv_usec >= 1000000) {
253 tvp->tv_usec -= 1000000;
254 tvp->tv_sec++;
255 }
256 }
257
258 lasttv = *tvp;
259
260 restore_interrupts(oldirqstate);
261 }
262
263 /*
264 * delay:
265 *
266 * Delay for at least N microseconds.
267 */
268 void
269 delay(u_int n)
270 {
271 uint32_t cur, last, delta, usecs;
272
273 /*
274 * This works by polling the timer and counting the
275 * number of microseconds that go by.
276 */
277 last = timer_read();
278 delta = usecs = 0;
279
280 while (n > usecs) {
281 cur = timer_read();
282
283 /* Check to see if the timer has wrapped around. */
284 if (cur < last)
285 delta += ((counts_per_hz - last) + cur);
286 else
287 delta += (cur - last);
288
289 last = cur;
290
291 if (delta >= COUNTS_PER_USEC) {
292 usecs += delta / COUNTS_PER_USEC;
293 delta %= COUNTS_PER_USEC;
294 }
295 }
296 }
297
298 /*
299 * inittodr:
300 *
301 * Initialize time from the time-of-day register.
302 */
303 void
304 inittodr(time_t base)
305 {
306 }
307
308 /*
309 * resettodr:
310 *
311 * Reset the time-of-day register with the current time.
312 */
313 void
314 resettodr(void)
315 {
316 }
317
318 /*
319 * clockhandler:
320 *
321 * Handle the hardclock interrupt.
322 */
323 int
324 clockhandler(void *arg)
325 {
326 struct clockframe *frame = arg;
327
328 timer_disable(TIMER_ENABLE_INTEN);
329 timer_enable(TIMER_ENABLE_INTEN);
330
331 hardclock(frame);
332
333 return (1);
334 }
335