iq80310_timer.c revision 1.7 1 /* $NetBSD: iq80310_timer.c,v 1.7 2002/02/08 23:50:53 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Timer/clock support for the Intel IQ80310.
40 *
41 * The IQ80310 has a 22-bit reloadable timer implemented in the CPLD.
42 * We use it to provide a hardclock interrupt. There is no RTC on
43 * the IQ80310.
44 *
45 * The timer uses the SPCI clock. The timer uses the 33MHz clock by
46 * reading the SPCI_66EN signal and dividing the clock if necessary.
47 */
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/kernel.h>
52 #include <sys/time.h>
53
54 #include <machine/bus.h>
55 #include <arm/cpufunc.h>
56
57 #include <evbarm/iq80310/iq80310reg.h>
58 #include <evbarm/iq80310/iq80310var.h>
59 #include <evbarm/iq80310/obiovar.h>
60
61 /*
62 * Some IQ80310-based designs have fewer bits in the timer counter.
63 * Deal with them here.
64 */
65 #if defined(IOP310_TEAMASA_NPWR)
66 #define COUNTER_MASK ((1U << 20) - 1)
67 #else /* Default to stock IQ80310 */
68 #define COUNTER_MASK ((1U << 23) - 1)
69 #endif /* list of IQ80310-based designs */
70
71 #define COUNTS_PER_SEC 33000000 /* 33MHz */
72 #define COUNTS_PER_USEC (COUNTS_PER_SEC / 1000000)
73
74 static void *clock_ih;
75
76 static uint32_t counts_per_hz;
77
78 int clockhandler(void *);
79
80 static __inline void
81 timer_enable(uint8_t bit)
82 {
83
84 CPLD_WRITE(IQ80310_TIMER_ENABLE,
85 CPLD_READ(IQ80310_TIMER_ENABLE) | bit);
86 }
87
88 static __inline void
89 timer_disable(uint8_t bit)
90 {
91
92 CPLD_WRITE(IQ80310_TIMER_ENABLE,
93 CPLD_READ(IQ80310_TIMER_ENABLE) & ~bit);
94 }
95
96 static __inline uint32_t
97 timer_read(void)
98 {
99 uint32_t rv;
100 uint8_t la[4];
101
102 /*
103 * First read latches count.
104 *
105 * From RedBoot: harware bug that causes invalid counts to be
106 * latched. The loop appears to work around the problem.
107 */
108 do {
109 la[0] = CPLD_READ(IQ80310_TIMER_LA0) & 0x5f;
110 } while (la[0] == 0);
111 la[1] = CPLD_READ(IQ80310_TIMER_LA1) & 0x5f;
112 la[2] = CPLD_READ(IQ80310_TIMER_LA2) & 0x5f;
113 la[3] = CPLD_READ(IQ80310_TIMER_LA3) & 0x0f;
114
115 rv = ((la[0] & 0x40) >> 1) | (la[0] & 0x1f);
116 rv |= (((la[1] & 0x40) >> 1) | (la[1] & 0x1f)) << 6;
117 rv |= (((la[2] & 0x40) >> 1) | (la[2] & 0x1f)) << 12;
118 rv |= la[3] << 18;
119
120 return (rv);
121 }
122
123 static __inline void
124 timer_write(uint32_t x)
125 {
126
127 KASSERT((x & COUNTER_MASK) == x);
128
129 CPLD_WRITE(IQ80310_TIMER_LA0, x & 0xff);
130 CPLD_WRITE(IQ80310_TIMER_LA1, (x >> 8) & 0xff);
131 CPLD_WRITE(IQ80310_TIMER_LA2, (x >> 16) & 0x3f);
132 }
133
134 /*
135 * iq80310_calibrate_delay:
136 *
137 * Calibrate the delay loop.
138 */
139 void
140 iq80310_calibrate_delay(void)
141 {
142
143 /*
144 * We'll use the CPLD timer for delay(), as well. We go
145 * ahead and start it up now, just don't enable interrupts
146 * until cpu_initclocks().
147 *
148 * Just use hz=100 for now -- we'll adjust it, if necessary,
149 * in cpu_initclocks().
150 */
151 counts_per_hz = COUNTS_PER_SEC / 100;
152
153 timer_disable(TIMER_ENABLE_INTEN);
154 timer_disable(TIMER_ENABLE_EN);
155
156 timer_write(counts_per_hz);
157
158 timer_enable(TIMER_ENABLE_EN);
159 }
160
161 /*
162 * cpu_initclocks:
163 *
164 * Initialize the clock and get them going.
165 */
166 void
167 cpu_initclocks(void)
168 {
169 u_int oldirqstate;
170
171 if (hz < 50 || COUNTS_PER_SEC % hz) {
172 printf("Cannot get %d Hz clock; using 100 Hz\n", hz);
173 hz = 100;
174 }
175 tick = 1000000 / hz; /* number of microseconds between interrupts */
176 tickfix = 1000000 - (hz * tick);
177 if (tickfix) {
178 int ftp;
179
180 ftp = min(ffs(tickfix), ffs(hz));
181 tickfix >>= (ftp - 1);
182 tickfixinterval = hz >> (ftp - 1);
183 }
184
185 /*
186 * We only have one timer available; stathz and profhz are
187 * always left as 0 (the upper-layer clock code deals with
188 * this situation).
189 */
190 if (stathz != 0)
191 printf("Cannot get %d Hz statclock\n", stathz);
192 stathz = 0;
193
194 if (profhz != 0)
195 printf("Cannot get %d Hz profclock\n", profhz);
196 profhz = 0;
197
198 /* Report the clock frequency. */
199 printf("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
200
201 /* Hook up the clock interrupt handler. */
202 clock_ih = iq80310_intr_establish(XINT3_IRQ(XINT3_TIMER), IPL_CLOCK,
203 clockhandler, NULL);
204 if (clock_ih == NULL)
205 panic("cpu_initclocks: unable to register timer interrupt");
206
207 /* Set up the new clock parameters. */
208 oldirqstate = disable_interrupts(I32_bit);
209
210 timer_disable(TIMER_ENABLE_EN);
211
212 counts_per_hz = COUNTS_PER_SEC / hz;
213 timer_write(counts_per_hz);
214
215 timer_enable(TIMER_ENABLE_INTEN);
216 timer_enable(TIMER_ENABLE_EN);
217
218 restore_interrupts(oldirqstate);
219 }
220
221 /*
222 * setstatclockrate:
223 *
224 * Set the rate of the statistics clock.
225 *
226 * We assume that hz is either stathz or profhz, and that neither
227 * will change after being set by cpu_initclocks(). We could
228 * recalculate the intervals here, but that would be a pain.
229 */
230 void
231 setstatclockrate(int hz)
232 {
233
234 /*
235 * Nothing to do, here; we can't change the statclock
236 * rate on the IQ80310.
237 */
238 }
239
240 /*
241 * microtime:
242 *
243 * Fill in the specified timeval struct with the current time
244 * accurate to the microsecond.
245 */
246 void
247 microtime(struct timeval *tvp)
248 {
249 static struct timeval lasttv;
250 u_int oldirqstate;
251 uint32_t counts;
252
253 oldirqstate = disable_interrupts(I32_bit);
254
255 counts = timer_read();
256
257 /* Fill in the timeval struct. */
258 *tvp = time;
259 tvp->tv_usec += (counts / COUNTS_PER_USEC);
260
261 /* Make sure microseconds doesn't overflow. */
262 while (tvp->tv_usec >= 1000000) {
263 tvp->tv_usec -= 1000000;
264 tvp->tv_sec++;
265 }
266
267 /* Make sure the time has advanced. */
268 if (tvp->tv_sec == lasttv.tv_sec &&
269 tvp->tv_usec <= lasttv.tv_usec) {
270 tvp->tv_usec = lasttv.tv_usec + 1;
271 if (tvp->tv_usec >= 1000000) {
272 tvp->tv_usec -= 1000000;
273 tvp->tv_sec++;
274 }
275 }
276
277 lasttv = *tvp;
278
279 restore_interrupts(oldirqstate);
280 }
281
282 /*
283 * delay:
284 *
285 * Delay for at least N microseconds.
286 */
287 void
288 delay(u_int n)
289 {
290 uint32_t cur, last, delta, usecs;
291
292 /*
293 * This works by polling the timer and counting the
294 * number of microseconds that go by.
295 */
296 last = timer_read();
297 delta = usecs = 0;
298
299 while (n > usecs) {
300 cur = timer_read();
301
302 /* Check to see if the timer has wrapped around. */
303 if (cur < last)
304 delta += ((counts_per_hz - last) + cur);
305 else
306 delta += (cur - last);
307
308 last = cur;
309
310 if (delta >= COUNTS_PER_USEC) {
311 usecs += delta / COUNTS_PER_USEC;
312 delta %= COUNTS_PER_USEC;
313 }
314 }
315 }
316
317 /*
318 * inittodr:
319 *
320 * Initialize time from the time-of-day register.
321 */
322 void
323 inittodr(time_t base)
324 {
325 }
326
327 /*
328 * resettodr:
329 *
330 * Reset the time-of-day register with the current time.
331 */
332 void
333 resettodr(void)
334 {
335 }
336
337 /*
338 * clockhandler:
339 *
340 * Handle the hardclock interrupt.
341 */
342 int
343 clockhandler(void *arg)
344 {
345 struct clockframe *frame = arg;
346 static int snakefreq;
347
348 timer_disable(TIMER_ENABLE_INTEN);
349 timer_enable(TIMER_ENABLE_INTEN);
350
351 hardclock(frame);
352
353 if ((snakefreq++ & 15) == 0)
354 iq80310_7seg_snake();
355
356 return (1);
357 }
358