Home | History | Annotate | Line # | Download | only in iq80310
iq80310_timer.c revision 1.9
      1 /*	$NetBSD: iq80310_timer.c,v 1.9 2002/04/13 22:41:46 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Timer/clock support for the Intel IQ80310.
     40  *
     41  * The IQ80310 has a 22-bit reloadable timer implemented in the CPLD.
     42  * We use it to provide a hardclock interrupt.  There is no RTC on
     43  * the IQ80310.
     44  *
     45  * The timer uses the SPCI clock.  The timer uses the 33MHz clock by
     46  * reading the SPCI_66EN signal and dividing the clock if necessary.
     47  */
     48 
     49 #include <sys/param.h>
     50 #include <sys/systm.h>
     51 #include <sys/kernel.h>
     52 #include <sys/time.h>
     53 
     54 #include <machine/bus.h>
     55 #include <arm/cpufunc.h>
     56 
     57 #include <evbarm/iq80310/iq80310reg.h>
     58 #include <evbarm/iq80310/iq80310var.h>
     59 #include <evbarm/iq80310/obiovar.h>
     60 
     61 /*
     62  * Some IQ80310-based designs have fewer bits in the timer counter.
     63  * Deal with them here.
     64  */
     65 #if defined(IOP310_TEAMASA_NPWR)
     66 #define	COUNTER_MASK		((1U << 20) - 1)
     67 #else /* Default to stock IQ80310 */
     68 #define COUNTER_MASK		((1U << 23) - 1)
     69 #endif /* list of IQ80310-based designs */
     70 
     71 #define	COUNTS_PER_SEC		33000000	/* 33MHz */
     72 #define	COUNTS_PER_USEC		(COUNTS_PER_SEC / 1000000)
     73 
     74 static void *clock_ih;
     75 
     76 static uint32_t counts_per_hz;
     77 
     78 int	clockhandler(void *);
     79 
     80 static __inline void
     81 timer_enable(uint8_t bit)
     82 {
     83 
     84 	CPLD_WRITE(IQ80310_TIMER_ENABLE,
     85 	    CPLD_READ(IQ80310_TIMER_ENABLE) | bit);
     86 }
     87 
     88 static __inline void
     89 timer_disable(uint8_t bit)
     90 {
     91 
     92 	CPLD_WRITE(IQ80310_TIMER_ENABLE,
     93 	    CPLD_READ(IQ80310_TIMER_ENABLE) & ~bit);
     94 }
     95 
     96 static __inline uint32_t
     97 timer_read(void)
     98 {
     99 	uint32_t rv;
    100 	uint8_t la[4];
    101 
    102 	/*
    103 	 * First read latches count.
    104 	 *
    105 	 * From RedBoot: harware bug that causes invalid counts to be
    106 	 * latched.  The loop appears to work around the problem.
    107 	 */
    108 	do {
    109 		la[0] = CPLD_READ(IQ80310_TIMER_LA0);
    110 	} while (la[0] == 0);
    111 	la[1] = CPLD_READ(IQ80310_TIMER_LA1);
    112 	la[2] = CPLD_READ(IQ80310_TIMER_LA2);
    113 	la[3] = CPLD_READ(IQ80310_TIMER_LA3);
    114 
    115 	rv  =  ((la[0] & 0x40) >> 1) | (la[0] & 0x1f);
    116 	rv |= (((la[1] & 0x40) >> 1) | (la[1] & 0x1f)) << 6;
    117 	rv |= (((la[2] & 0x40) >> 1) | (la[2] & 0x1f)) << 12;
    118 	rv |= (la[3] 0x0f) << 18;
    119 
    120 	return (rv);
    121 }
    122 
    123 static __inline void
    124 timer_write(uint32_t x)
    125 {
    126 
    127 	KASSERT((x & COUNTER_MASK) == x);
    128 
    129 	CPLD_WRITE(IQ80310_TIMER_LA0, x & 0xff);
    130 	CPLD_WRITE(IQ80310_TIMER_LA1, (x >> 8) & 0xff);
    131 	CPLD_WRITE(IQ80310_TIMER_LA2, (x >> 16) & 0x3f);
    132 }
    133 
    134 /*
    135  * iq80310_calibrate_delay:
    136  *
    137  *	Calibrate the delay loop.
    138  */
    139 void
    140 iq80310_calibrate_delay(void)
    141 {
    142 
    143 	/*
    144 	 * We'll use the CPLD timer for delay(), as well.  We go
    145 	 * ahead and start it up now, just don't enable interrupts
    146 	 * until cpu_initclocks().
    147 	 *
    148 	 * Just use hz=100 for now -- we'll adjust it, if necessary,
    149 	 * in cpu_initclocks().
    150 	 */
    151 	counts_per_hz = COUNTS_PER_SEC / 100;
    152 
    153 	timer_disable(TIMER_ENABLE_INTEN);
    154 	timer_disable(TIMER_ENABLE_EN);
    155 
    156 	timer_write(counts_per_hz);
    157 
    158 	timer_enable(TIMER_ENABLE_EN);
    159 }
    160 
    161 /*
    162  * cpu_initclocks:
    163  *
    164  *	Initialize the clock and get them going.
    165  */
    166 void
    167 cpu_initclocks(void)
    168 {
    169 	u_int oldirqstate;
    170 
    171 	if (hz < 50 || COUNTS_PER_SEC % hz) {
    172 		printf("Cannot get %d Hz clock; using 100 Hz\n", hz);
    173 		hz = 100;
    174 	}
    175 	tick = 1000000 / hz;	/* number of microseconds between interrupts */
    176 	tickfix = 1000000 - (hz * tick);
    177 	if (tickfix) {
    178 		int ftp;
    179 
    180 		ftp = min(ffs(tickfix), ffs(hz));
    181 		tickfix >>= (ftp - 1);
    182 		tickfixinterval = hz >> (ftp - 1);
    183 	}
    184 
    185 	/*
    186 	 * We only have one timer available; stathz and profhz are
    187 	 * always left as 0 (the upper-layer clock code deals with
    188 	 * this situation).
    189 	 */
    190 	if (stathz != 0)
    191 		printf("Cannot get %d Hz statclock\n", stathz);
    192 	stathz = 0;
    193 
    194 	if (profhz != 0)
    195 		printf("Cannot get %d Hz profclock\n", profhz);
    196 	profhz = 0;
    197 
    198 	/* Report the clock frequency. */
    199 	printf("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
    200 
    201 	/* Hook up the clock interrupt handler. */
    202 	clock_ih = iq80310_intr_establish(XINT3_IRQ(XINT3_TIMER), IPL_CLOCK,
    203 	    clockhandler, NULL);
    204 	if (clock_ih == NULL)
    205 		panic("cpu_initclocks: unable to register timer interrupt");
    206 
    207 	/* Set up the new clock parameters. */
    208 	oldirqstate = disable_interrupts(I32_bit);
    209 
    210 	timer_disable(TIMER_ENABLE_EN);
    211 
    212 	counts_per_hz = COUNTS_PER_SEC / hz;
    213 	timer_write(counts_per_hz);
    214 
    215 	timer_enable(TIMER_ENABLE_INTEN);
    216 	timer_enable(TIMER_ENABLE_EN);
    217 
    218 	restore_interrupts(oldirqstate);
    219 }
    220 
    221 /*
    222  * setstatclockrate:
    223  *
    224  *	Set the rate of the statistics clock.
    225  *
    226  *	We assume that hz is either stathz or profhz, and that neither
    227  *	will change after being set by cpu_initclocks().  We could
    228  *	recalculate the intervals here, but that would be a pain.
    229  */
    230 void
    231 setstatclockrate(int hz)
    232 {
    233 
    234 	/*
    235 	 * Nothing to do, here; we can't change the statclock
    236 	 * rate on the IQ80310.
    237 	 */
    238 }
    239 
    240 /*
    241  * microtime:
    242  *
    243  *	Fill in the specified timeval struct with the current time
    244  *	accurate to the microsecond.
    245  */
    246 void
    247 microtime(struct timeval *tvp)
    248 {
    249 	static struct timeval lasttv;
    250 	u_int oldirqstate;
    251 	uint32_t counts;
    252 
    253 	oldirqstate = disable_interrupts(I32_bit);
    254 
    255 	counts = timer_read();
    256 
    257 	/* Fill in the timeval struct. */
    258 	*tvp = time;
    259 	tvp->tv_usec += (counts / COUNTS_PER_USEC);
    260 
    261 	/* Make sure microseconds doesn't overflow. */
    262 	while (tvp->tv_usec >= 1000000) {
    263 		tvp->tv_usec -= 1000000;
    264 		tvp->tv_sec++;
    265 	}
    266 
    267 	/* Make sure the time has advanced. */
    268 	if (tvp->tv_sec == lasttv.tv_sec &&
    269 	    tvp->tv_usec <= lasttv.tv_usec) {
    270 		tvp->tv_usec = lasttv.tv_usec + 1;
    271 		if (tvp->tv_usec >= 1000000) {
    272 			tvp->tv_usec -= 1000000;
    273 			tvp->tv_sec++;
    274 		}
    275 	}
    276 
    277 	lasttv = *tvp;
    278 
    279 	restore_interrupts(oldirqstate);
    280 }
    281 
    282 /*
    283  * delay:
    284  *
    285  *	Delay for at least N microseconds.
    286  */
    287 void
    288 delay(u_int n)
    289 {
    290 	uint32_t cur, last, delta, usecs;
    291 
    292 	/*
    293 	 * This works by polling the timer and counting the
    294 	 * number of microseconds that go by.
    295 	 */
    296 	last = timer_read();
    297 	delta = usecs = 0;
    298 
    299 	while (n > usecs) {
    300 		cur = timer_read();
    301 
    302 		/* Check to see if the timer has wrapped around. */
    303 		if (cur < last)
    304 			delta += ((counts_per_hz - last) + cur);
    305 		else
    306 			delta += (cur - last);
    307 
    308 		last = cur;
    309 
    310 		if (delta >= COUNTS_PER_USEC) {
    311 			usecs += delta / COUNTS_PER_USEC;
    312 			delta %= COUNTS_PER_USEC;
    313 		}
    314 	}
    315 }
    316 
    317 /*
    318  * inittodr:
    319  *
    320  *	Initialize time from the time-of-day register.
    321  */
    322 void
    323 inittodr(time_t base)
    324 {
    325 
    326 	time.tv_sec = base;
    327 	time.tv_usec = 0;
    328 }
    329 
    330 /*
    331  * resettodr:
    332  *
    333  *	Reset the time-of-day register with the current time.
    334  */
    335 void
    336 resettodr(void)
    337 {
    338 }
    339 
    340 /*
    341  * clockhandler:
    342  *
    343  *	Handle the hardclock interrupt.
    344  */
    345 int
    346 clockhandler(void *arg)
    347 {
    348 	struct clockframe *frame = arg;
    349 
    350 	timer_disable(TIMER_ENABLE_INTEN);
    351 	timer_enable(TIMER_ENABLE_INTEN);
    352 
    353 	hardclock(frame);
    354 
    355 	/*
    356 	 * Don't run the snake on IOP310-based systems that
    357 	 * don't have the 7-segment display.
    358 	 */
    359 #if !defined(IOP310_TEAMASA_NPWR)
    360 	{
    361 		static int snakefreq;
    362 
    363 		if ((snakefreq++ & 15) == 0)
    364 			iq80310_7seg_snake();
    365 	}
    366 #endif
    367 
    368 	return (1);
    369 }
    370