Home | History | Annotate | Line # | Download | only in iyonix
iyonix_machdep.c revision 1.1.4.4
      1 /*	$NetBSD: iyonix_machdep.c,v 1.1.4.4 2020/04/21 18:42:06 martin Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Based on code written by Jason R. Thorpe and Steve C. Woodford for
      8  * Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed for the NetBSD Project by
     21  *	Wasabi Systems, Inc.
     22  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     23  *    or promote products derived from this software without specific prior
     24  *    written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1997,1998 Mark Brinicombe.
     41  * Copyright (c) 1997,1998 Causality Limited.
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Mark Brinicombe
     55  *	for the NetBSD Project.
     56  * 4. The name of the company nor the name of the author may be used to
     57  *    endorse or promote products derived from this software without specific
     58  *    prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     61  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     62  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     63  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     64  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     65  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     66  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     70  * SUCH DAMAGE.
     71  *
     72  * Machine dependent functions for kernel setup for Iyonix.
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: iyonix_machdep.c,v 1.1.4.4 2020/04/21 18:42:06 martin Exp $");
     77 
     78 #include "opt_ddb.h"
     79 #include "opt_kgdb.h"
     80 
     81 #include <sys/param.h>
     82 #include <sys/device.h>
     83 #include <sys/systm.h>
     84 #include <sys/kernel.h>
     85 #include <sys/exec.h>
     86 #include <sys/proc.h>
     87 #include <sys/msgbuf.h>
     88 #include <sys/reboot.h>
     89 #include <sys/termios.h>
     90 #include <sys/ksyms.h>
     91 #include <sys/bus.h>
     92 #include <sys/cpu.h>
     93 
     94 #include <uvm/uvm_extern.h>
     95 
     96 #include <dev/cons.h>
     97 
     98 #include <dev/pci/ppbreg.h>
     99 #include <dev/ic/i8259reg.h>
    100 
    101 #include <net/if.h>
    102 #include <net/if_ether.h>
    103 
    104 #include <machine/db_machdep.h>
    105 #include <ddb/db_sym.h>
    106 #include <ddb/db_extern.h>
    107 
    108 #include <acorn32/include/bootconfig.h>
    109 #include <arm/locore.h>
    110 #include <arm/undefined.h>
    111 
    112 #include <arm/arm32/machdep.h>
    113 
    114 #include <arm/xscale/i80321reg.h>
    115 #include <arm/xscale/i80321var.h>
    116 
    117 #include <evbarm/iyonix/iyonixreg.h>
    118 #include <evbarm/iyonix/obiovar.h>
    119 
    120 #include <dev/wscons/wsconsio.h>
    121 #include <dev/wscons/wsdisplayvar.h>
    122 #include <dev/rasops/rasops.h>
    123 #include <dev/wscons/wsdisplay_vconsvar.h>
    124 #include <dev/wsfont/wsfont.h>
    125 
    126 #include "ksyms.h"
    127 
    128 #define	KERNEL_TEXT_BASE	KERNEL_BASE
    129 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    130 
    131 struct vcons_screen rascons_console_screen;
    132 
    133 struct wsscreen_descr rascons_stdscreen = {
    134 	"std",
    135 	0, 0,	/* will be filled in -- XXX shouldn't, it's global */
    136 	0,
    137 	0, 0,
    138 	WSSCREEN_REVERSE
    139 };
    140 
    141 /*
    142  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
    143  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
    144  */
    145 #define KERNEL_VM_SIZE		0x0C000000
    146 
    147 struct bootconfig bootconfig;		/* Boot config storage */
    148 
    149 char *boot_args;
    150 
    151 vaddr_t physical_start;
    152 vaddr_t physical_freestart;
    153 vaddr_t physical_freeend;
    154 vaddr_t physical_end;
    155 u_int free_pages;
    156 vaddr_t pagetables_start;
    157 
    158 /*int debug_flags;*/
    159 #ifndef PMAP_STATIC_L1S
    160 int max_processes = 64;			/* Default number */
    161 #endif	/* !PMAP_STATIC_L1S */
    162 
    163 /* Physical and virtual addresses for some global pages */
    164 pv_addr_t minidataclean;
    165 
    166 paddr_t msgbufphys;
    167 
    168 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
    169 
    170 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
    171 #define	KERNEL_PT_KERNEL_NUM	4
    172 
    173 					/* L2 table for mapping i80321 */
    174 #define	KERNEL_PT_IOPXS		(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
    175 
    176 					/* L2 tables for mapping kernel VM */
    177 #define KERNEL_PT_VMDATA	(KERNEL_PT_IOPXS + 1)
    178 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    179 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    180 
    181 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    182 
    183 char iyonix_macaddr[ETHER_ADDR_LEN];
    184 
    185 char boot_consdev[16];
    186 
    187 /* Prototypes */
    188 
    189 void	iyonix_pic_init(void);
    190 void	iyonix_read_machineid(void);
    191 
    192 void	consinit(void);
    193 
    194 static void consinit_com(const char *consdev);
    195 static void consinit_genfb(const char *consdev);
    196 static void process_kernel_args(void);
    197 static void parse_iyonix_bootargs(char *args);
    198 
    199 #include "com.h"
    200 #if NCOM > 0
    201 #include <dev/ic/comreg.h>
    202 #include <dev/ic/comvar.h>
    203 #endif
    204 
    205 #include "genfb.h"
    206 
    207 #if (NGENFB == 0) && (NCOM == 0)
    208 # error "No valid console device (com or genfb)"
    209 #elif defined(COMCONSOLE) || (NGENFB == 0)
    210 # define DEFAULT_CONSDEV "com"
    211 #else
    212 # define DEFAULT_CONSDEV "genfb"
    213 #endif
    214 
    215 /*
    216  * Define the default console speed for the machine.
    217  */
    218 #ifndef CONSPEED
    219 #define CONSPEED B9600
    220 #endif /* ! CONSPEED */
    221 
    222 #ifndef CONUNIT
    223 #define	CONUNIT	0
    224 #endif
    225 
    226 #ifndef CONMODE
    227 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    228 #endif
    229 
    230 int comcnspeed = CONSPEED;
    231 int comcnmode = CONMODE;
    232 int comcnunit = CONUNIT;
    233 
    234 #if KGDB
    235 #ifndef KGDB_DEVNAME
    236 #error Must define KGDB_DEVNAME
    237 #endif
    238 const char kgdb_devname[] = KGDB_DEVNAME;
    239 
    240 #ifndef KGDB_DEVADDR
    241 #error Must define KGDB_DEVADDR
    242 #endif
    243 unsigned long kgdb_devaddr = KGDB_DEVADDR;
    244 
    245 #ifndef KGDB_DEVRATE
    246 #define KGDB_DEVRATE	CONSPEED
    247 #endif
    248 int kgdb_devrate = KGDB_DEVRATE;
    249 
    250 #ifndef KGDB_DEVMODE
    251 #define KGDB_DEVMODE	CONMODE
    252 #endif
    253 int kgdb_devmode = KGDB_DEVMODE;
    254 #endif /* KGDB */
    255 
    256 /*
    257  * void cpu_reboot(int howto, char *bootstr)
    258  *
    259  * Reboots the system
    260  *
    261  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    262  * then reset the CPU.
    263  */
    264 void
    265 cpu_reboot(int howto, char *bootstr)
    266 {
    267 
    268 	/*
    269 	 * If we are still cold then hit the air brakes
    270 	 * and crash to earth fast
    271 	 */
    272 	if (cold) {
    273 		doshutdownhooks();
    274 		pmf_system_shutdown(boothowto);
    275 		printf("The operating system has halted.\n");
    276 		printf("Please press any key to reboot.\n\n");
    277 		cngetc();
    278 		printf("rebooting...\n");
    279 		goto reset;
    280 	}
    281 
    282 	/* Disable console buffering */
    283 
    284 	/*
    285 	 * If RB_NOSYNC was not specified sync the discs.
    286 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    287 	 * unmount.  It looks like syslogd is getting woken up only to find
    288 	 * that it cannot page part of the binary in as the filesystem has
    289 	 * been unmounted.
    290 	 */
    291 	if (!(howto & RB_NOSYNC))
    292 		bootsync();
    293 
    294 	/* Say NO to interrupts */
    295 	splhigh();
    296 
    297 	/* Do a dump if requested. */
    298 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    299 		dumpsys();
    300 
    301 	/* Run any shutdown hooks */
    302 	doshutdownhooks();
    303 
    304 	pmf_system_shutdown(boothowto);
    305 
    306 	/* Make sure IRQ's are disabled */
    307 	IRQdisable;
    308 
    309 	if (howto & RB_HALT) {
    310 		printf("The operating system has halted.\n");
    311 		printf("Please press any key to reboot.\n\n");
    312 		cngetc();
    313 	}
    314 
    315 	printf("rebooting...\n\r");
    316  reset:
    317 	/*
    318 	 * Make really really sure that all interrupts are disabled,
    319 	 * and poke the Internal Bus and Peripheral Bus reset lines.
    320 	 */
    321 	(void) disable_interrupts(I32_bit|F32_bit);
    322 	*(volatile uint32_t *)(IYONIX_80321_VBASE + VERDE_ATU_BASE +
    323 	    ATU_PCSR) = PCSR_RIB | PCSR_RPB;
    324 
    325 	/* ...and if that didn't work, just croak. */
    326 	printf("RESET FAILED!\n");
    327 	for (;;);
    328 }
    329 
    330 /* Static device mappings. */
    331 static const struct pmap_devmap iyonix_devmap[] = {
    332     /*
    333      * Map the on-board devices VA == PA so that we can access them
    334      * with the MMU on or off.
    335      */
    336     {
    337 	IYONIX_OBIO_BASE,
    338 	IYONIX_OBIO_BASE,
    339 	IYONIX_OBIO_SIZE,
    340 	VM_PROT_READ|VM_PROT_WRITE,
    341 	PTE_NOCACHE,
    342     },
    343 
    344     {
    345 	IYONIX_IOW_VBASE,
    346 	VERDE_OUT_XLATE_IO_WIN0_BASE,
    347 	VERDE_OUT_XLATE_IO_WIN_SIZE,
    348 	VM_PROT_READ|VM_PROT_WRITE,
    349 	PTE_NOCACHE,
    350    },
    351 
    352    {
    353 	IYONIX_80321_VBASE,
    354 	VERDE_PMMR_BASE,
    355 	VERDE_PMMR_SIZE,
    356 	VM_PROT_READ|VM_PROT_WRITE,
    357 	PTE_NOCACHE,
    358    },
    359 
    360    {
    361 	IYONIX_FLASH_BASE,
    362 	IYONIX_FLASH_BASE,
    363 	IYONIX_FLASH_SIZE,
    364 	VM_PROT_READ|VM_PROT_WRITE,
    365 	PTE_NOCACHE,
    366    },
    367 
    368    {
    369 	0,
    370 	0,
    371 	0,
    372 	0,
    373 	0,
    374     }
    375 };
    376 
    377 /* Read out the Machine ID from the flash, and stash it away for later use. */
    378 
    379 void
    380 iyonix_read_machineid(void)
    381 {
    382 	volatile uint32_t *flashbase = (uint32_t *)IYONIX_FLASH_BASE;
    383 	volatile uint16_t *flashword = (uint16_t *)IYONIX_FLASH_BASE;
    384 	union {
    385 		uint32_t w[2];
    386 		uint8_t  b[8];
    387 	} machid;
    388 
    389 	/* Enter SecSi Sector Region */
    390 	flashword[0x555] = 0xAA;
    391 	flashword[0x2AA] = 0x55;
    392 	flashword[0x555] = 0x88;
    393 
    394 	machid.w[0] = flashbase[0];
    395 	machid.w[1] = flashbase[1];
    396 
    397 	iyonix_macaddr[0] = machid.b[6];
    398 	iyonix_macaddr[1] = machid.b[5];
    399 	iyonix_macaddr[2] = machid.b[4];
    400 	iyonix_macaddr[3] = machid.b[3];
    401 	iyonix_macaddr[4] = machid.b[2];
    402 	iyonix_macaddr[5] = machid.b[1];
    403 
    404 	/* Exit SecSi Sector Region */
    405 	flashword[0x555] = 0xAA;
    406 	flashword[0x2AA] = 0x55;
    407 	flashword[0x555] = 0x90;
    408 	flashword[0x555] = 0x00;
    409 }
    410 
    411 #define IYONIX_PIC_WRITE(a,v) (*((char *)IYONIX_OBIO_BASE + (a)) = (v))
    412 
    413 void
    414 iyonix_pic_init(void)
    415 {
    416 	IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW1, ICW1_IC4|ICW1_SELECT);
    417 	IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW2, ICW2_IRL(0));
    418 	IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW3, ICW3_CASCADE(2));
    419 	IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW4, ICW4_8086);
    420 	IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_OCW1, 0x0); /* Unmask */
    421 
    422 	IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW1, ICW1_IC4|ICW1_SELECT);
    423 	IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW2, ICW2_IRL(0));
    424 	IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW3, ICW3_CASCADE(1));
    425 	IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW4, ICW4_8086);
    426 	IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_OCW1, 0x0); /* Unmask */
    427 
    428 }
    429 
    430 /*
    431  * vaddr_t initarm(...)
    432  *
    433  * Initial entry point on startup. This gets called before main() is
    434  * entered.
    435  * It should be responsible for setting up everything that must be
    436  * in place when main is called.
    437  * This includes
    438  *   Taking a copy of the boot configuration structure.
    439  *   Initialising the physical console so characters can be printed.
    440  *   Setting up page tables for the kernel
    441  *   Initialising interrupt controllers to a sane default state
    442  */
    443 vaddr_t
    444 initarm(void *arg)
    445 {
    446 	struct bootconfig *passed_bootconfig = arg;
    447 	extern vaddr_t xscale_cache_clean_addr;
    448 #ifdef DIAGNOSTIC
    449 	extern vsize_t xscale_minidata_clean_size;
    450 #endif
    451 	extern char _end[];
    452 	int loop;
    453 	int loop1;
    454 	u_int l1pagetable;
    455 	paddr_t memstart = 0;
    456 	psize_t memsize = 0;
    457 
    458 	/* Calibrate the delay loop. */
    459 	i80321_calibrate_delay();
    460 
    461 	/* Ensure bootconfig has valid magic */
    462 	if (passed_bootconfig->magic != BOOTCONFIG_MAGIC)
    463 		printf("Bad bootconfig magic: %x\n", bootconfig.magic);
    464 
    465 	bootconfig = *passed_bootconfig;
    466 
    467 	/* Fake bootconfig structure for anything that still needs it */
    468 	/* XXX must make the memory description h/w independent */
    469 	bootconfig.dram[0].address = memstart;
    470 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    471 	bootconfig.dramblocks = 1;
    472 
    473 	/* process arguments - can update boothowto */
    474 	process_kernel_args();
    475 
    476 	/*
    477 	 * Since we map the on-board devices VA==PA, and the kernel
    478 	 * is running VA==PA, it's possible for us to initialize
    479 	 * the console now.
    480 	 */
    481 	consinit();
    482 
    483 #ifdef VERBOSE_INIT_ARM
    484 	/* Talk to the user */
    485 	printf("\nNetBSD/iyonix booting ...\n");
    486 #endif
    487 
    488 	/*
    489 	 * Heads up ... Setup the CPU / MMU / TLB functions
    490 	 */
    491 	if (set_cpufuncs())
    492 		panic("cpu not recognized!");
    493 
    494 	/*
    495 	 * We are currently running with the MMU enabled and the
    496 	 * entire address space mapped VA==PA.
    497 	 */
    498 
    499 	/*
    500 	 * Fetch the SDRAM start/size from the i80321 SDRAM configuration
    501 	 * registers.
    502 	 */
    503 	i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE,
    504 	    &memstart, &memsize);
    505 
    506 #ifdef VERBOSE_INIT_ARM
    507 	printf("initarm: Configuring system ...\n");
    508 #endif
    509 
    510 	/*
    511 	 * Set up the variables that define the availability of
    512 	 * physical memory.
    513 	 */
    514 	physical_start = memstart;
    515 	physical_end = physical_start + memsize;
    516 
    517 	physical_freestart = physical_start +
    518 	    (((uintptr_t) _end - KERNEL_TEXT_BASE + PGOFSET) & ~PGOFSET);
    519 	physical_freeend = physical_end;
    520 
    521 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    522 
    523 #ifdef VERBOSE_INIT_ARM
    524 	/* Tell the user about the memory */
    525 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    526 	    physical_start, physical_end - 1);
    527 #endif
    528 
    529 	/*
    530 	 * The kernel is loaded at the base of physical memory. We allocate
    531 	 * pages upwards from the top of the kernel.
    532 	 *
    533 	 * We need to allocate some fixed page tables to get the kernel
    534 	 * going.  We allocate one page directory and a number of page
    535 	 * tables and store the physical addresses in the kernel_pt_table
    536 	 * array.
    537 	 *
    538 	 * The kernel page directory must be on a 16K boundary.  The page
    539 	 * tables must be on 4K boundaries.  What we do is allocate the
    540 	 * page directory on the first 16K boundary that we encounter, and
    541 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    542 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    543 	 * least one 16K aligned region.
    544 	 */
    545 
    546 #ifdef VERBOSE_INIT_ARM
    547 	printf("Allocating page tables\n");
    548 #endif
    549 
    550 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    551 
    552 #ifdef VERBOSE_INIT_ARM
    553 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    554 	       physical_freestart, free_pages, free_pages);
    555 #endif
    556 
    557 	/* Define a macro to simplify memory allocation */
    558 #define	valloc_pages(var, np)				\
    559 	alloc_pages((var).pv_pa, (np));			\
    560 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    561 
    562 #define alloc_pages(var, np)				\
    563 	(var) = physical_freestart;			\
    564 	physical_freestart += ((np) * PAGE_SIZE);	\
    565 	if (physical_freeend < physical_freestart)	\
    566 		panic("initarm: out of memory");	\
    567 	free_pages -= (np);				\
    568 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    569 
    570 	loop1 = 0;
    571 	kernel_l1pt.pv_pa = kernel_l1pt.pv_va = 0;
    572 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    573 		/* Are we 16KB aligned for an L1 ? */
    574 		if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
    575 		    && kernel_l1pt.pv_pa == 0) {
    576 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    577 		} else {
    578 			valloc_pages(kernel_pt_table[loop1],
    579 			    L2_TABLE_SIZE / PAGE_SIZE);
    580 			++loop1;
    581 		}
    582 	}
    583 
    584 	/* This should never be able to happen but better confirm that. */
    585 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
    586 		panic("initarm: Failed to align the kernel page directory");
    587 
    588 	/*
    589 	 * Allocate a page for the system page mapped to V0x00000000
    590 	 * This page will just contain the system vectors and can be
    591 	 * shared by all processes.
    592 	 */
    593 	alloc_pages(systempage.pv_pa, 1);
    594 
    595 	/* Allocate stacks for all modes */
    596 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    597 	valloc_pages(abtstack, ABT_STACK_SIZE);
    598 	valloc_pages(undstack, UND_STACK_SIZE);
    599 	valloc_pages(kernelstack, UPAGES);
    600 
    601 	/* Allocate enough pages for cleaning the Mini-Data cache. */
    602 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
    603 	valloc_pages(minidataclean, 1);
    604 
    605 #ifdef VERBOSE_INIT_ARM
    606 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    607 	    irqstack.pv_va);
    608 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    609 	    abtstack.pv_va);
    610 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    611 	    undstack.pv_va);
    612 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    613 	    kernelstack.pv_va);
    614 #endif
    615 
    616 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    617 
    618 	/*
    619 	 * Ok we have allocated physical pages for the primary kernel
    620 	 * page tables
    621 	 */
    622 
    623 #ifdef VERBOSE_INIT_ARM
    624 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    625 #endif
    626 
    627 	/*
    628 	 * Now we start construction of the L1 page table
    629 	 * We start by mapping the L2 page tables into the L1.
    630 	 * This means that we can replace L1 mappings later on if necessary
    631 	 */
    632 	l1pagetable = kernel_l1pt.pv_pa;
    633 
    634 	/* Map the L2 pages tables in the L1 page table */
    635 	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
    636 	    &kernel_pt_table[KERNEL_PT_SYS]);
    637 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    638 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    639 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    640 	pmap_link_l2pt(l1pagetable, IYONIX_IOPXS_VBASE,
    641 	    &kernel_pt_table[KERNEL_PT_IOPXS]);
    642 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    643 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    644 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    645 
    646 	/* update the top of the kernel VM */
    647 	pmap_curmaxkvaddr =
    648 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    649 
    650 #ifdef VERBOSE_INIT_ARM
    651 	printf("Mapping kernel\n");
    652 #endif
    653 
    654 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    655 	{
    656 		extern char etext[], _end[];
    657 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    658 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    659 		u_int logical;
    660 
    661 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    662 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    663 
    664 		logical = 0;	/* offset of kernel in RAM */
    665 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    666 		    physical_start + logical, textsize,
    667 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    668 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    669 		    physical_start + logical, totalsize - textsize,
    670 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    671 	}
    672 
    673 #ifdef VERBOSE_INIT_ARM
    674 	printf("Constructing L2 page tables\n");
    675 #endif
    676 
    677 	/* Map the stack pages */
    678 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    679 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    680 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    681 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    682 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    683 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    684 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    685 	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    686 
    687 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    688 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    689 
    690 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    691 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    692 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    693 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    694 	}
    695 
    696 	/* Map the Mini-Data cache clean area. */
    697 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
    698 	    minidataclean.pv_pa);
    699 
    700 	/* Map the vector page. */
    701 	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
    702 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    703 
    704 	/* Map the statically mapped devices. */
    705 	pmap_devmap_bootstrap(l1pagetable, iyonix_devmap);
    706 
    707 	/*
    708 	 * Give the XScale global cache clean code an appropriately
    709 	 * sized chunk of unmapped VA space starting at 0xff000000
    710 	 * (our device mappings end before this address).
    711 	 */
    712 	xscale_cache_clean_addr = 0xff000000U;
    713 
    714 	/*
    715 	 * Now we have the real page tables in place so we can switch to them.
    716 	 * Once this is done we will be running with the REAL kernel page
    717 	 * tables.
    718 	 */
    719 
    720 	/* Switch tables */
    721 #ifdef VERBOSE_INIT_ARM
    722 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    723 	       physical_freestart, free_pages, free_pages);
    724 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    725 #endif
    726 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    727 	cpu_setttb(kernel_l1pt.pv_pa, true);
    728 	cpu_tlb_flushID();
    729 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    730 
    731 	iyonix_read_machineid();
    732 
    733 	/*
    734 	 * Moved from cpu_startup() as data_abort_handler() references
    735 	 * this during uvm init
    736 	 */
    737 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
    738 
    739 #ifdef VERBOSE_INIT_ARM
    740 	printf("done!\n");
    741 #endif
    742 
    743 #ifdef VERBOSE_INIT_ARM
    744 	printf("bootstrap done.\n");
    745 #endif
    746 
    747 	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
    748 
    749 	/*
    750 	 * Pages were allocated during the secondary bootstrap for the
    751 	 * stacks for different CPU modes.
    752 	 * We must now set the r13 registers in the different CPU modes to
    753 	 * point to these stacks.
    754 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    755 	 * of the stack memory.
    756 	 */
    757 #ifdef VERBOSE_INIT_ARM
    758 	printf("init subsystems: stacks ");
    759 #endif
    760 
    761 	set_stackptr(PSR_IRQ32_MODE,
    762 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    763 	set_stackptr(PSR_ABT32_MODE,
    764 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    765 	set_stackptr(PSR_UND32_MODE,
    766 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    767 
    768 	/*
    769 	 * Well we should set a data abort handler.
    770 	 * Once things get going this will change as we will need a proper
    771 	 * handler.
    772 	 * Until then we will use a handler that just panics but tells us
    773 	 * why.
    774 	 * Initialisation of the vectors will just panic on a data abort.
    775 	 * This just fills in a slightly better one.
    776 	 */
    777 #ifdef VERBOSE_INIT_ARM
    778 	printf("vectors ");
    779 #endif
    780 	data_abort_handler_address = (u_int)data_abort_handler;
    781 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    782 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    783 
    784 	/* Initialise the undefined instruction handlers */
    785 #ifdef VERBOSE_INIT_ARM
    786 	printf("undefined ");
    787 #endif
    788 	undefined_init();
    789 
    790 	/* Load memory into UVM. */
    791 #ifdef VERBOSE_INIT_ARM
    792 	printf("page ");
    793 #endif
    794 	uvm_md_init();
    795 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    796 	    atop(physical_freestart), atop(physical_freeend),
    797 	    VM_FREELIST_DEFAULT);
    798 
    799 	/* Boot strap pmap telling it where managed kernel virtual memory is */
    800 #ifdef VERBOSE_INIT_ARM
    801 	printf("pmap ");
    802 #endif
    803 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
    804 
    805 	/* Setup the IRQ system */
    806 #ifdef VERBOSE_INIT_ARM
    807 	printf("irq ");
    808 #endif
    809 	i80321_intr_init();
    810 
    811 #ifdef VERBOSE_INIT_ARM
    812 	printf("done.\n");
    813 #endif
    814 
    815 #ifdef DDB
    816 	db_machine_init();
    817 	if (boothowto & RB_KDB)
    818 		Debugger();
    819 #endif
    820 
    821 	iyonix_pic_init();
    822 
    823 	printf("args: %s\n", bootconfig.args);
    824 	printf("howto: %x\n", boothowto);
    825 
    826 	/* We return the new stack pointer address */
    827 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    828 }
    829 
    830 void
    831 consinit(void)
    832 {
    833 	static int consinit_called;
    834 
    835 	if (consinit_called != 0)
    836 		return;
    837 
    838 	consinit_called = 1;
    839 
    840 	/* We let consinit_<foo> worry about device numbers */
    841 	if (strncmp(boot_consdev, "genfb", 5) &&
    842 	    strncmp(boot_consdev, "com", 3))
    843 	        strcpy(boot_consdev, DEFAULT_CONSDEV);
    844 
    845 	if (!strncmp(boot_consdev, "com", 3))
    846 		consinit_com(boot_consdev);
    847 	else
    848 		consinit_genfb(boot_consdev);
    849 }
    850 
    851 static void
    852 consinit_com(const char *consdev)
    853 {
    854 	static const bus_addr_t comcnaddrs[] = {
    855 		IYONIX_UART1,		/* com0 */
    856 	};
    857 	/*
    858 	 * Console devices are mapped VA==PA.  Our devmap reflects
    859 	 * this, so register it now so drivers can map the console
    860 	 * device.
    861 	 */
    862 	pmap_devmap_register(iyonix_devmap);
    863 
    864 	/* When we support more than the first serial port as console,
    865 	 * we should check consdev for a number.
    866 	 */
    867 #if NCOM > 0
    868 	if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
    869 	    COM_FREQ, COM_TYPE_NORMAL, comcnmode))
    870 	{
    871 		panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
    872 	}
    873 #else
    874 	panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
    875 #endif
    876 
    877 #if KGDB
    878 #if NCOM > 0
    879 	if (strcmp(kgdb_devname, "com") == 0) {
    880 		com_kgdb_attach(&obio_bs_tag, kgdb_devaddr, kgdb_devrate,
    881 		    COM_FREQ, COM_TYPE_NORMAL, kgdb_devmode);
    882 	}
    883 #endif	/* NCOM > 0 */
    884 #endif	/* KGDB */
    885 }
    886 
    887 static void
    888 consinit_genfb(const char *consdev)
    889 {
    890 	/* NOTYET */
    891 }
    892 
    893 static void
    894 process_kernel_args(void)
    895 {
    896 	char *args;
    897 
    898 	/* Ok now we will check the arguments for interesting parameters. */
    899 	args = bootconfig.args;
    900 
    901 #ifdef BOOTHOWTO
    902 	boothowto = BOOTHOWTO;
    903 #else
    904 	boothowto = 0;
    905 #endif
    906 
    907 	/* Only arguments itself are passed from the bootloader */
    908 	while (*args == ' ')
    909 		++args;
    910 
    911 	boot_args = args;
    912 	parse_mi_bootargs(boot_args);
    913 	parse_iyonix_bootargs(boot_args);
    914 }
    915 
    916 static void
    917 parse_iyonix_bootargs(char *args)
    918 {
    919 	char *ptr;
    920 
    921 	if (get_bootconf_option(args, "consdev", BOOTOPT_TYPE_STRING, &ptr))
    922 	{
    923 		/* ptr may have trailing clutter */
    924 		strlcpy(boot_consdev, ptr, sizeof(boot_consdev));
    925 		if ( (ptr = strchr(boot_consdev, ' ')) )
    926 			*ptr = 0;
    927 	}
    928 }
    929