Home | History | Annotate | Line # | Download | only in iyonix
iyonix_machdep.c revision 1.3
      1 /*	$NetBSD: iyonix_machdep.c,v 1.3 2020/04/18 10:55:45 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Based on code written by Jason R. Thorpe and Steve C. Woodford for
      8  * Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed for the NetBSD Project by
     21  *	Wasabi Systems, Inc.
     22  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     23  *    or promote products derived from this software without specific prior
     24  *    written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1997,1998 Mark Brinicombe.
     41  * Copyright (c) 1997,1998 Causality Limited.
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Mark Brinicombe
     55  *	for the NetBSD Project.
     56  * 4. The name of the company nor the name of the author may be used to
     57  *    endorse or promote products derived from this software without specific
     58  *    prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     61  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     62  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     63  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     64  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     65  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     66  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     70  * SUCH DAMAGE.
     71  *
     72  * Machine dependent functions for kernel setup for Iyonix.
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: iyonix_machdep.c,v 1.3 2020/04/18 10:55:45 skrll Exp $");
     77 
     78 #include "opt_ddb.h"
     79 #include "opt_kgdb.h"
     80 #include "opt_pmap_debug.h"
     81 
     82 #include <sys/param.h>
     83 #include <sys/device.h>
     84 #include <sys/systm.h>
     85 #include <sys/kernel.h>
     86 #include <sys/exec.h>
     87 #include <sys/proc.h>
     88 #include <sys/msgbuf.h>
     89 #include <sys/reboot.h>
     90 #include <sys/termios.h>
     91 #include <sys/ksyms.h>
     92 #include <sys/bus.h>
     93 #include <sys/cpu.h>
     94 
     95 #include <uvm/uvm_extern.h>
     96 
     97 #include <dev/cons.h>
     98 
     99 #include <dev/pci/ppbreg.h>
    100 #include <dev/ic/i8259reg.h>
    101 
    102 #include <net/if.h>
    103 #include <net/if_ether.h>
    104 
    105 #include <machine/db_machdep.h>
    106 #include <ddb/db_sym.h>
    107 #include <ddb/db_extern.h>
    108 
    109 #include <acorn32/include/bootconfig.h>
    110 #include <arm/locore.h>
    111 #include <arm/undefined.h>
    112 
    113 #include <arm/arm32/machdep.h>
    114 
    115 #include <arm/xscale/i80321reg.h>
    116 #include <arm/xscale/i80321var.h>
    117 
    118 #include <evbarm/iyonix/iyonixreg.h>
    119 #include <evbarm/iyonix/obiovar.h>
    120 
    121 #include <dev/wscons/wsconsio.h>
    122 #include <dev/wscons/wsdisplayvar.h>
    123 #include <dev/rasops/rasops.h>
    124 #include <dev/wscons/wsdisplay_vconsvar.h>
    125 #include <dev/wsfont/wsfont.h>
    126 
    127 #include "ksyms.h"
    128 
    129 #define	KERNEL_TEXT_BASE	KERNEL_BASE
    130 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    131 
    132 struct vcons_screen rascons_console_screen;
    133 
    134 struct wsscreen_descr rascons_stdscreen = {
    135 	"std",
    136 	0, 0,	/* will be filled in -- XXX shouldn't, it's global */
    137 	0,
    138 	0, 0,
    139 	WSSCREEN_REVERSE
    140 };
    141 
    142 /*
    143  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
    144  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
    145  */
    146 #define KERNEL_VM_SIZE		0x0C000000
    147 
    148 struct bootconfig bootconfig;		/* Boot config storage */
    149 
    150 char *boot_args;
    151 
    152 vaddr_t physical_start;
    153 vaddr_t physical_freestart;
    154 vaddr_t physical_freeend;
    155 vaddr_t physical_end;
    156 u_int free_pages;
    157 vaddr_t pagetables_start;
    158 
    159 /*int debug_flags;*/
    160 #ifndef PMAP_STATIC_L1S
    161 int max_processes = 64;			/* Default number */
    162 #endif	/* !PMAP_STATIC_L1S */
    163 
    164 /* Physical and virtual addresses for some global pages */
    165 pv_addr_t minidataclean;
    166 
    167 paddr_t msgbufphys;
    168 
    169 #ifdef PMAP_DEBUG
    170 extern int pmap_debug_level;
    171 #endif
    172 
    173 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
    174 
    175 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
    176 #define	KERNEL_PT_KERNEL_NUM	4
    177 
    178 					/* L2 table for mapping i80321 */
    179 #define	KERNEL_PT_IOPXS		(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
    180 
    181 					/* L2 tables for mapping kernel VM */
    182 #define KERNEL_PT_VMDATA	(KERNEL_PT_IOPXS + 1)
    183 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    184 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    185 
    186 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    187 
    188 char iyonix_macaddr[ETHER_ADDR_LEN];
    189 
    190 char boot_consdev[16];
    191 
    192 /* Prototypes */
    193 
    194 void	iyonix_pic_init(void);
    195 void	iyonix_read_machineid(void);
    196 
    197 void	consinit(void);
    198 
    199 static void consinit_com(const char *consdev);
    200 static void consinit_genfb(const char *consdev);
    201 static void process_kernel_args(void);
    202 static void parse_iyonix_bootargs(char *args);
    203 
    204 #include "com.h"
    205 #if NCOM > 0
    206 #include <dev/ic/comreg.h>
    207 #include <dev/ic/comvar.h>
    208 #endif
    209 
    210 #include "genfb.h"
    211 
    212 #if (NGENFB == 0) && (NCOM == 0)
    213 # error "No valid console device (com or genfb)"
    214 #elif defined(COMCONSOLE) || (NGENFB == 0)
    215 # define DEFAULT_CONSDEV "com"
    216 #else
    217 # define DEFAULT_CONSDEV "genfb"
    218 #endif
    219 
    220 /*
    221  * Define the default console speed for the machine.
    222  */
    223 #ifndef CONSPEED
    224 #define CONSPEED B9600
    225 #endif /* ! CONSPEED */
    226 
    227 #ifndef CONUNIT
    228 #define	CONUNIT	0
    229 #endif
    230 
    231 #ifndef CONMODE
    232 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    233 #endif
    234 
    235 int comcnspeed = CONSPEED;
    236 int comcnmode = CONMODE;
    237 int comcnunit = CONUNIT;
    238 
    239 #if KGDB
    240 #ifndef KGDB_DEVNAME
    241 #error Must define KGDB_DEVNAME
    242 #endif
    243 const char kgdb_devname[] = KGDB_DEVNAME;
    244 
    245 #ifndef KGDB_DEVADDR
    246 #error Must define KGDB_DEVADDR
    247 #endif
    248 unsigned long kgdb_devaddr = KGDB_DEVADDR;
    249 
    250 #ifndef KGDB_DEVRATE
    251 #define KGDB_DEVRATE	CONSPEED
    252 #endif
    253 int kgdb_devrate = KGDB_DEVRATE;
    254 
    255 #ifndef KGDB_DEVMODE
    256 #define KGDB_DEVMODE	CONMODE
    257 #endif
    258 int kgdb_devmode = KGDB_DEVMODE;
    259 #endif /* KGDB */
    260 
    261 /*
    262  * void cpu_reboot(int howto, char *bootstr)
    263  *
    264  * Reboots the system
    265  *
    266  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    267  * then reset the CPU.
    268  */
    269 void
    270 cpu_reboot(int howto, char *bootstr)
    271 {
    272 
    273 	/*
    274 	 * If we are still cold then hit the air brakes
    275 	 * and crash to earth fast
    276 	 */
    277 	if (cold) {
    278 		doshutdownhooks();
    279 		pmf_system_shutdown(boothowto);
    280 		printf("The operating system has halted.\n");
    281 		printf("Please press any key to reboot.\n\n");
    282 		cngetc();
    283 		printf("rebooting...\n");
    284 		goto reset;
    285 	}
    286 
    287 	/* Disable console buffering */
    288 
    289 	/*
    290 	 * If RB_NOSYNC was not specified sync the discs.
    291 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    292 	 * unmount.  It looks like syslogd is getting woken up only to find
    293 	 * that it cannot page part of the binary in as the filesystem has
    294 	 * been unmounted.
    295 	 */
    296 	if (!(howto & RB_NOSYNC))
    297 		bootsync();
    298 
    299 	/* Say NO to interrupts */
    300 	splhigh();
    301 
    302 	/* Do a dump if requested. */
    303 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    304 		dumpsys();
    305 
    306 	/* Run any shutdown hooks */
    307 	doshutdownhooks();
    308 
    309 	pmf_system_shutdown(boothowto);
    310 
    311 	/* Make sure IRQ's are disabled */
    312 	IRQdisable;
    313 
    314 	if (howto & RB_HALT) {
    315 		printf("The operating system has halted.\n");
    316 		printf("Please press any key to reboot.\n\n");
    317 		cngetc();
    318 	}
    319 
    320 	printf("rebooting...\n\r");
    321  reset:
    322 	/*
    323 	 * Make really really sure that all interrupts are disabled,
    324 	 * and poke the Internal Bus and Peripheral Bus reset lines.
    325 	 */
    326 	(void) disable_interrupts(I32_bit|F32_bit);
    327 	*(volatile uint32_t *)(IYONIX_80321_VBASE + VERDE_ATU_BASE +
    328 	    ATU_PCSR) = PCSR_RIB | PCSR_RPB;
    329 
    330 	/* ...and if that didn't work, just croak. */
    331 	printf("RESET FAILED!\n");
    332 	for (;;);
    333 }
    334 
    335 /* Static device mappings. */
    336 static const struct pmap_devmap iyonix_devmap[] = {
    337     /*
    338      * Map the on-board devices VA == PA so that we can access them
    339      * with the MMU on or off.
    340      */
    341     {
    342 	IYONIX_OBIO_BASE,
    343 	IYONIX_OBIO_BASE,
    344 	IYONIX_OBIO_SIZE,
    345 	VM_PROT_READ|VM_PROT_WRITE,
    346 	PTE_NOCACHE,
    347     },
    348 
    349     {
    350 	IYONIX_IOW_VBASE,
    351 	VERDE_OUT_XLATE_IO_WIN0_BASE,
    352 	VERDE_OUT_XLATE_IO_WIN_SIZE,
    353 	VM_PROT_READ|VM_PROT_WRITE,
    354 	PTE_NOCACHE,
    355    },
    356 
    357    {
    358 	IYONIX_80321_VBASE,
    359 	VERDE_PMMR_BASE,
    360 	VERDE_PMMR_SIZE,
    361 	VM_PROT_READ|VM_PROT_WRITE,
    362 	PTE_NOCACHE,
    363    },
    364 
    365    {
    366 	IYONIX_FLASH_BASE,
    367 	IYONIX_FLASH_BASE,
    368 	IYONIX_FLASH_SIZE,
    369 	VM_PROT_READ|VM_PROT_WRITE,
    370 	PTE_NOCACHE,
    371    },
    372 
    373    {
    374 	0,
    375 	0,
    376 	0,
    377 	0,
    378 	0,
    379     }
    380 };
    381 
    382 /* Read out the Machine ID from the flash, and stash it away for later use. */
    383 
    384 void
    385 iyonix_read_machineid(void)
    386 {
    387 	volatile uint32_t *flashbase = (uint32_t *)IYONIX_FLASH_BASE;
    388 	volatile uint16_t *flashword = (uint16_t *)IYONIX_FLASH_BASE;
    389 	union {
    390 		uint32_t w[2];
    391 		uint8_t  b[8];
    392 	} machid;
    393 
    394 	/* Enter SecSi Sector Region */
    395 	flashword[0x555] = 0xAA;
    396 	flashword[0x2AA] = 0x55;
    397 	flashword[0x555] = 0x88;
    398 
    399 	machid.w[0] = flashbase[0];
    400 	machid.w[1] = flashbase[1];
    401 
    402 	iyonix_macaddr[0] = machid.b[6];
    403 	iyonix_macaddr[1] = machid.b[5];
    404 	iyonix_macaddr[2] = machid.b[4];
    405 	iyonix_macaddr[3] = machid.b[3];
    406 	iyonix_macaddr[4] = machid.b[2];
    407 	iyonix_macaddr[5] = machid.b[1];
    408 
    409 	/* Exit SecSi Sector Region */
    410 	flashword[0x555] = 0xAA;
    411 	flashword[0x2AA] = 0x55;
    412 	flashword[0x555] = 0x90;
    413 	flashword[0x555] = 0x00;
    414 }
    415 
    416 #define IYONIX_PIC_WRITE(a,v) (*((char *)IYONIX_OBIO_BASE + (a)) = (v))
    417 
    418 void
    419 iyonix_pic_init(void)
    420 {
    421 	IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW1, ICW1_IC4|ICW1_SELECT);
    422 	IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW2, ICW2_IRL(0));
    423 	IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW3, ICW3_CASCADE(2));
    424 	IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW4, ICW4_8086);
    425 	IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_OCW1, 0x0); /* Unmask */
    426 
    427 	IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW1, ICW1_IC4|ICW1_SELECT);
    428 	IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW2, ICW2_IRL(0));
    429 	IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW3, ICW3_CASCADE(1));
    430 	IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW4, ICW4_8086);
    431 	IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_OCW1, 0x0); /* Unmask */
    432 
    433 }
    434 
    435 /*
    436  * vaddr_t initarm(...)
    437  *
    438  * Initial entry point on startup. This gets called before main() is
    439  * entered.
    440  * It should be responsible for setting up everything that must be
    441  * in place when main is called.
    442  * This includes
    443  *   Taking a copy of the boot configuration structure.
    444  *   Initialising the physical console so characters can be printed.
    445  *   Setting up page tables for the kernel
    446  *   Initialising interrupt controllers to a sane default state
    447  */
    448 vaddr_t
    449 initarm(void *arg)
    450 {
    451 	struct bootconfig *passed_bootconfig = arg;
    452 	extern vaddr_t xscale_cache_clean_addr;
    453 #ifdef DIAGNOSTIC
    454 	extern vsize_t xscale_minidata_clean_size;
    455 #endif
    456 	extern char _end[];
    457 	int loop;
    458 	int loop1;
    459 	u_int l1pagetable;
    460 	paddr_t memstart = 0;
    461 	psize_t memsize = 0;
    462 
    463 	/* Calibrate the delay loop. */
    464 	i80321_calibrate_delay();
    465 
    466 	/* Ensure bootconfig has valid magic */
    467 	if (passed_bootconfig->magic != BOOTCONFIG_MAGIC)
    468 		printf("Bad bootconfig magic: %x\n", bootconfig.magic);
    469 
    470 	bootconfig = *passed_bootconfig;
    471 
    472 	/* Fake bootconfig structure for anything that still needs it */
    473 	/* XXX must make the memory description h/w independent */
    474 	bootconfig.dram[0].address = memstart;
    475 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    476 	bootconfig.dramblocks = 1;
    477 
    478 	/* process arguments - can update boothowto */
    479 	process_kernel_args();
    480 
    481 	/*
    482 	 * Since we map the on-board devices VA==PA, and the kernel
    483 	 * is running VA==PA, it's possible for us to initialize
    484 	 * the console now.
    485 	 */
    486 	consinit();
    487 
    488 #ifdef VERBOSE_INIT_ARM
    489 	/* Talk to the user */
    490 	printf("\nNetBSD/iyonix booting ...\n");
    491 #endif
    492 
    493 	/*
    494 	 * Heads up ... Setup the CPU / MMU / TLB functions
    495 	 */
    496 	if (set_cpufuncs())
    497 		panic("cpu not recognized!");
    498 
    499 	/*
    500 	 * We are currently running with the MMU enabled and the
    501 	 * entire address space mapped VA==PA.
    502 	 */
    503 
    504 	/*
    505 	 * Fetch the SDRAM start/size from the i80321 SDRAM configuration
    506 	 * registers.
    507 	 */
    508 	i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE,
    509 	    &memstart, &memsize);
    510 
    511 #ifdef VERBOSE_INIT_ARM
    512 	printf("initarm: Configuring system ...\n");
    513 #endif
    514 
    515 	/*
    516 	 * Set up the variables that define the availability of
    517 	 * physical memory.
    518 	 */
    519 	physical_start = memstart;
    520 	physical_end = physical_start + memsize;
    521 
    522 	physical_freestart = physical_start +
    523 	    (((uintptr_t) _end - KERNEL_TEXT_BASE + PGOFSET) & ~PGOFSET);
    524 	physical_freeend = physical_end;
    525 
    526 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    527 
    528 #ifdef VERBOSE_INIT_ARM
    529 	/* Tell the user about the memory */
    530 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    531 	    physical_start, physical_end - 1);
    532 #endif
    533 
    534 	/*
    535 	 * The kernel is loaded at the base of physical memory. We allocate
    536 	 * pages upwards from the top of the kernel.
    537 	 *
    538 	 * We need to allocate some fixed page tables to get the kernel
    539 	 * going.  We allocate one page directory and a number of page
    540 	 * tables and store the physical addresses in the kernel_pt_table
    541 	 * array.
    542 	 *
    543 	 * The kernel page directory must be on a 16K boundary.  The page
    544 	 * tables must be on 4K boundaries.  What we do is allocate the
    545 	 * page directory on the first 16K boundary that we encounter, and
    546 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    547 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    548 	 * least one 16K aligned region.
    549 	 */
    550 
    551 #ifdef VERBOSE_INIT_ARM
    552 	printf("Allocating page tables\n");
    553 #endif
    554 
    555 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    556 
    557 #ifdef VERBOSE_INIT_ARM
    558 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    559 	       physical_freestart, free_pages, free_pages);
    560 #endif
    561 
    562 	/* Define a macro to simplify memory allocation */
    563 #define	valloc_pages(var, np)				\
    564 	alloc_pages((var).pv_pa, (np));			\
    565 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    566 
    567 #define alloc_pages(var, np)				\
    568 	(var) = physical_freestart;			\
    569 	physical_freestart += ((np) * PAGE_SIZE);	\
    570 	if (physical_freeend < physical_freestart)	\
    571 		panic("initarm: out of memory");	\
    572 	free_pages -= (np);				\
    573 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    574 
    575 	loop1 = 0;
    576 	kernel_l1pt.pv_pa = kernel_l1pt.pv_va = 0;
    577 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    578 		/* Are we 16KB aligned for an L1 ? */
    579 		if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
    580 		    && kernel_l1pt.pv_pa == 0) {
    581 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    582 		} else {
    583 			valloc_pages(kernel_pt_table[loop1],
    584 			    L2_TABLE_SIZE / PAGE_SIZE);
    585 			++loop1;
    586 		}
    587 	}
    588 
    589 	/* This should never be able to happen but better confirm that. */
    590 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
    591 		panic("initarm: Failed to align the kernel page directory");
    592 
    593 	/*
    594 	 * Allocate a page for the system page mapped to V0x00000000
    595 	 * This page will just contain the system vectors and can be
    596 	 * shared by all processes.
    597 	 */
    598 	alloc_pages(systempage.pv_pa, 1);
    599 
    600 	/* Allocate stacks for all modes */
    601 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    602 	valloc_pages(abtstack, ABT_STACK_SIZE);
    603 	valloc_pages(undstack, UND_STACK_SIZE);
    604 	valloc_pages(kernelstack, UPAGES);
    605 
    606 	/* Allocate enough pages for cleaning the Mini-Data cache. */
    607 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
    608 	valloc_pages(minidataclean, 1);
    609 
    610 #ifdef VERBOSE_INIT_ARM
    611 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    612 	    irqstack.pv_va);
    613 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    614 	    abtstack.pv_va);
    615 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    616 	    undstack.pv_va);
    617 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    618 	    kernelstack.pv_va);
    619 #endif
    620 
    621 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    622 
    623 	/*
    624 	 * Ok we have allocated physical pages for the primary kernel
    625 	 * page tables
    626 	 */
    627 
    628 #ifdef VERBOSE_INIT_ARM
    629 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    630 #endif
    631 
    632 	/*
    633 	 * Now we start construction of the L1 page table
    634 	 * We start by mapping the L2 page tables into the L1.
    635 	 * This means that we can replace L1 mappings later on if necessary
    636 	 */
    637 	l1pagetable = kernel_l1pt.pv_pa;
    638 
    639 	/* Map the L2 pages tables in the L1 page table */
    640 	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
    641 	    &kernel_pt_table[KERNEL_PT_SYS]);
    642 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    643 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    644 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    645 	pmap_link_l2pt(l1pagetable, IYONIX_IOPXS_VBASE,
    646 	    &kernel_pt_table[KERNEL_PT_IOPXS]);
    647 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    648 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    649 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    650 
    651 	/* update the top of the kernel VM */
    652 	pmap_curmaxkvaddr =
    653 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    654 
    655 #ifdef VERBOSE_INIT_ARM
    656 	printf("Mapping kernel\n");
    657 #endif
    658 
    659 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    660 	{
    661 		extern char etext[], _end[];
    662 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    663 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    664 		u_int logical;
    665 
    666 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    667 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    668 
    669 		logical = 0;	/* offset of kernel in RAM */
    670 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    671 		    physical_start + logical, textsize,
    672 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    673 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    674 		    physical_start + logical, totalsize - textsize,
    675 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    676 	}
    677 
    678 #ifdef VERBOSE_INIT_ARM
    679 	printf("Constructing L2 page tables\n");
    680 #endif
    681 
    682 	/* Map the stack pages */
    683 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    684 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    685 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    686 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    687 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    688 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    689 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    690 	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    691 
    692 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    693 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    694 
    695 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    696 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    697 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    698 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    699 	}
    700 
    701 	/* Map the Mini-Data cache clean area. */
    702 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
    703 	    minidataclean.pv_pa);
    704 
    705 	/* Map the vector page. */
    706 	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
    707 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    708 
    709 	/* Map the statically mapped devices. */
    710 	pmap_devmap_bootstrap(l1pagetable, iyonix_devmap);
    711 
    712 	/*
    713 	 * Give the XScale global cache clean code an appropriately
    714 	 * sized chunk of unmapped VA space starting at 0xff000000
    715 	 * (our device mappings end before this address).
    716 	 */
    717 	xscale_cache_clean_addr = 0xff000000U;
    718 
    719 	/*
    720 	 * Now we have the real page tables in place so we can switch to them.
    721 	 * Once this is done we will be running with the REAL kernel page
    722 	 * tables.
    723 	 */
    724 
    725 	/* Switch tables */
    726 #ifdef VERBOSE_INIT_ARM
    727 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    728 	       physical_freestart, free_pages, free_pages);
    729 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    730 #endif
    731 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    732 	cpu_setttb(kernel_l1pt.pv_pa, true);
    733 	cpu_tlb_flushID();
    734 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    735 
    736 	iyonix_read_machineid();
    737 
    738 	/*
    739 	 * Moved from cpu_startup() as data_abort_handler() references
    740 	 * this during uvm init
    741 	 */
    742 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
    743 
    744 #ifdef VERBOSE_INIT_ARM
    745 	printf("done!\n");
    746 #endif
    747 
    748 #ifdef VERBOSE_INIT_ARM
    749 	printf("bootstrap done.\n");
    750 #endif
    751 
    752 	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
    753 
    754 	/*
    755 	 * Pages were allocated during the secondary bootstrap for the
    756 	 * stacks for different CPU modes.
    757 	 * We must now set the r13 registers in the different CPU modes to
    758 	 * point to these stacks.
    759 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    760 	 * of the stack memory.
    761 	 */
    762 #ifdef VERBOSE_INIT_ARM
    763 	printf("init subsystems: stacks ");
    764 #endif
    765 
    766 	set_stackptr(PSR_IRQ32_MODE,
    767 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    768 	set_stackptr(PSR_ABT32_MODE,
    769 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    770 	set_stackptr(PSR_UND32_MODE,
    771 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    772 
    773 	/*
    774 	 * Well we should set a data abort handler.
    775 	 * Once things get going this will change as we will need a proper
    776 	 * handler.
    777 	 * Until then we will use a handler that just panics but tells us
    778 	 * why.
    779 	 * Initialisation of the vectors will just panic on a data abort.
    780 	 * This just fills in a slightly better one.
    781 	 */
    782 #ifdef VERBOSE_INIT_ARM
    783 	printf("vectors ");
    784 #endif
    785 	data_abort_handler_address = (u_int)data_abort_handler;
    786 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    787 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    788 
    789 	/* Initialise the undefined instruction handlers */
    790 #ifdef VERBOSE_INIT_ARM
    791 	printf("undefined ");
    792 #endif
    793 	undefined_init();
    794 
    795 	/* Load memory into UVM. */
    796 #ifdef VERBOSE_INIT_ARM
    797 	printf("page ");
    798 #endif
    799 	uvm_md_init();
    800 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    801 	    atop(physical_freestart), atop(physical_freeend),
    802 	    VM_FREELIST_DEFAULT);
    803 
    804 	/* Boot strap pmap telling it where managed kernel virtual memory is */
    805 #ifdef VERBOSE_INIT_ARM
    806 	printf("pmap ");
    807 #endif
    808 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
    809 
    810 	/* Setup the IRQ system */
    811 #ifdef VERBOSE_INIT_ARM
    812 	printf("irq ");
    813 #endif
    814 	i80321_intr_init();
    815 
    816 #ifdef VERBOSE_INIT_ARM
    817 	printf("done.\n");
    818 #endif
    819 
    820 #ifdef DDB
    821 	db_machine_init();
    822 	if (boothowto & RB_KDB)
    823 		Debugger();
    824 #endif
    825 
    826 	iyonix_pic_init();
    827 
    828 	printf("args: %s\n", bootconfig.args);
    829 	printf("howto: %x\n", boothowto);
    830 
    831 	/* We return the new stack pointer address */
    832 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    833 }
    834 
    835 void
    836 consinit(void)
    837 {
    838 	static int consinit_called;
    839 
    840 	if (consinit_called != 0)
    841 		return;
    842 
    843 	consinit_called = 1;
    844 
    845 	/* We let consinit_<foo> worry about device numbers */
    846 	if (strncmp(boot_consdev, "genfb", 5) &&
    847 	    strncmp(boot_consdev, "com", 3))
    848 	        strcpy(boot_consdev, DEFAULT_CONSDEV);
    849 
    850 	if (!strncmp(boot_consdev, "com", 3))
    851 		consinit_com(boot_consdev);
    852 	else
    853 		consinit_genfb(boot_consdev);
    854 }
    855 
    856 static void
    857 consinit_com(const char *consdev)
    858 {
    859 	static const bus_addr_t comcnaddrs[] = {
    860 		IYONIX_UART1,		/* com0 */
    861 	};
    862 	/*
    863 	 * Console devices are mapped VA==PA.  Our devmap reflects
    864 	 * this, so register it now so drivers can map the console
    865 	 * device.
    866 	 */
    867 	pmap_devmap_register(iyonix_devmap);
    868 
    869 	/* When we support more than the first serial port as console,
    870 	 * we should check consdev for a number.
    871 	 */
    872 #if NCOM > 0
    873 	if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
    874 	    COM_FREQ, COM_TYPE_NORMAL, comcnmode))
    875 	{
    876 		panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
    877 	}
    878 #else
    879 	panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
    880 #endif
    881 
    882 #if KGDB
    883 #if NCOM > 0
    884 	if (strcmp(kgdb_devname, "com") == 0) {
    885 		com_kgdb_attach(&obio_bs_tag, kgdb_devaddr, kgdb_devrate,
    886 		    COM_FREQ, COM_TYPE_NORMAL, kgdb_devmode);
    887 	}
    888 #endif	/* NCOM > 0 */
    889 #endif	/* KGDB */
    890 }
    891 
    892 static void
    893 consinit_genfb(const char *consdev)
    894 {
    895 	/* NOTYET */
    896 }
    897 
    898 static void
    899 process_kernel_args(void)
    900 {
    901 	char *args;
    902 
    903 	/* Ok now we will check the arguments for interesting parameters. */
    904 	args = bootconfig.args;
    905 
    906 #ifdef BOOTHOWTO
    907 	boothowto = BOOTHOWTO;
    908 #else
    909 	boothowto = 0;
    910 #endif
    911 
    912 	/* Only arguments itself are passed from the bootloader */
    913 	while (*args == ' ')
    914 		++args;
    915 
    916 	boot_args = args;
    917 	parse_mi_bootargs(boot_args);
    918 	parse_iyonix_bootargs(boot_args);
    919 }
    920 
    921 static void
    922 parse_iyonix_bootargs(char *args)
    923 {
    924 	char *ptr;
    925 
    926 	if (get_bootconf_option(args, "consdev", BOOTOPT_TYPE_STRING, &ptr))
    927 	{
    928 		/* ptr may have trailing clutter */
    929 		strlcpy(boot_consdev, ptr, sizeof(boot_consdev));
    930 		if ( (ptr = strchr(boot_consdev, ' ')) )
    931 			*ptr = 0;
    932 	}
    933 }
    934