lubbock_machdep.c revision 1.15.2.2 1 1.15.2.2 matt /* lubbock_machdep.c,v 1.15.2.1 2007/11/06 23:16:02 matt Exp */
2 1.1 bsh
3 1.1 bsh /*
4 1.6 bsh * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 1.1 bsh * Written by Hiroyuki Bessho for Genetec Corporation.
6 1.1 bsh *
7 1.1 bsh * Redistribution and use in source and binary forms, with or without
8 1.1 bsh * modification, are permitted provided that the following conditions
9 1.1 bsh * are met:
10 1.1 bsh * 1. Redistributions of source code must retain the above copyright
11 1.1 bsh * notice, this list of conditions and the following disclaimer.
12 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 bsh * notice, this list of conditions and the following disclaimer in the
14 1.1 bsh * documentation and/or other materials provided with the distribution.
15 1.1 bsh * 3. The name of Genetec Corporation may not be used to endorse or
16 1.1 bsh * promote products derived from this software without specific prior
17 1.1 bsh * written permission.
18 1.1 bsh *
19 1.1 bsh * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 1.1 bsh * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 bsh * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 bsh * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 1.1 bsh * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 bsh * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 bsh * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 bsh * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 bsh * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 bsh * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 bsh * POSSIBILITY OF SUCH DAMAGE.
30 1.1 bsh *
31 1.1 bsh * Machine dependant functions for kernel setup for
32 1.1 bsh * Intel DBPXA250 evaluation board (a.k.a. Lubbock).
33 1.1 bsh * Based on iq80310_machhdep.c
34 1.1 bsh */
35 1.1 bsh /*
36 1.1 bsh * Copyright (c) 2001 Wasabi Systems, Inc.
37 1.1 bsh * All rights reserved.
38 1.1 bsh *
39 1.1 bsh * Written by Jason R. Thorpe for Wasabi Systems, Inc.
40 1.1 bsh *
41 1.1 bsh * Redistribution and use in source and binary forms, with or without
42 1.1 bsh * modification, are permitted provided that the following conditions
43 1.1 bsh * are met:
44 1.1 bsh * 1. Redistributions of source code must retain the above copyright
45 1.1 bsh * notice, this list of conditions and the following disclaimer.
46 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 bsh * notice, this list of conditions and the following disclaimer in the
48 1.1 bsh * documentation and/or other materials provided with the distribution.
49 1.1 bsh * 3. All advertising materials mentioning features or use of this software
50 1.1 bsh * must display the following acknowledgement:
51 1.1 bsh * This product includes software developed for the NetBSD Project by
52 1.1 bsh * Wasabi Systems, Inc.
53 1.1 bsh * 4. The name of Wasabi Systems, Inc. may not be used to endorse
54 1.1 bsh * or promote products derived from this software without specific prior
55 1.1 bsh * written permission.
56 1.1 bsh *
57 1.1 bsh * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
58 1.1 bsh * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59 1.1 bsh * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
60 1.1 bsh * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
61 1.1 bsh * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 1.1 bsh * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 1.1 bsh * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 1.1 bsh * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 1.1 bsh * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 1.1 bsh * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 1.1 bsh * POSSIBILITY OF SUCH DAMAGE.
68 1.1 bsh */
69 1.1 bsh
70 1.1 bsh /*
71 1.1 bsh * Copyright (c) 1997,1998 Mark Brinicombe.
72 1.1 bsh * Copyright (c) 1997,1998 Causality Limited.
73 1.1 bsh * All rights reserved.
74 1.1 bsh *
75 1.1 bsh * Redistribution and use in source and binary forms, with or without
76 1.1 bsh * modification, are permitted provided that the following conditions
77 1.1 bsh * are met:
78 1.1 bsh * 1. Redistributions of source code must retain the above copyright
79 1.1 bsh * notice, this list of conditions and the following disclaimer.
80 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright
81 1.1 bsh * notice, this list of conditions and the following disclaimer in the
82 1.1 bsh * documentation and/or other materials provided with the distribution.
83 1.1 bsh * 3. All advertising materials mentioning features or use of this software
84 1.1 bsh * must display the following acknowledgement:
85 1.1 bsh * This product includes software developed by Mark Brinicombe
86 1.1 bsh * for the NetBSD Project.
87 1.1 bsh * 4. The name of the company nor the name of the author may be used to
88 1.1 bsh * endorse or promote products derived from this software without specific
89 1.1 bsh * prior written permission.
90 1.1 bsh *
91 1.1 bsh * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
92 1.1 bsh * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
93 1.1 bsh * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
94 1.1 bsh * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
95 1.1 bsh * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
96 1.1 bsh * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
97 1.1 bsh * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98 1.1 bsh * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99 1.1 bsh * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100 1.1 bsh * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101 1.1 bsh * SUCH DAMAGE.
102 1.1 bsh *
103 1.1 bsh * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
104 1.1 bsh * boards using RedBoot firmware.
105 1.1 bsh */
106 1.1 bsh
107 1.1 bsh /*
108 1.1 bsh * DIP switches:
109 1.1 bsh *
110 1.1 bsh * S19: no-dot: set RB_KDB. enter kgdb session.
111 1.1 bsh * S20: no-dot: set RB_SINGLE. don't go multi user mode.
112 1.1 bsh */
113 1.2 lukem
114 1.2 lukem #include <sys/cdefs.h>
115 1.15.2.2 matt __KERNEL_RCSID(0, "lubbock_machdep.c,v 1.15.2.1 2007/11/06 23:16:02 matt Exp");
116 1.2 lukem
117 1.1 bsh #include "opt_ddb.h"
118 1.1 bsh #include "opt_kgdb.h"
119 1.1 bsh #include "opt_ipkdb.h"
120 1.1 bsh #include "opt_pmap_debug.h"
121 1.1 bsh #include "opt_md.h"
122 1.1 bsh #include "opt_com.h"
123 1.1 bsh #include "md.h"
124 1.1 bsh #include "lcd.h"
125 1.1 bsh
126 1.1 bsh #include <sys/param.h>
127 1.1 bsh #include <sys/device.h>
128 1.1 bsh #include <sys/systm.h>
129 1.1 bsh #include <sys/kernel.h>
130 1.1 bsh #include <sys/exec.h>
131 1.1 bsh #include <sys/proc.h>
132 1.1 bsh #include <sys/msgbuf.h>
133 1.1 bsh #include <sys/reboot.h>
134 1.1 bsh #include <sys/termios.h>
135 1.1 bsh #include <sys/ksyms.h>
136 1.1 bsh
137 1.1 bsh #include <uvm/uvm_extern.h>
138 1.1 bsh
139 1.1 bsh #include <sys/conf.h>
140 1.1 bsh #include <dev/cons.h>
141 1.1 bsh #include <dev/md.h>
142 1.1 bsh #include <dev/ic/smc91cxxreg.h>
143 1.1 bsh
144 1.1 bsh #include <machine/db_machdep.h>
145 1.1 bsh #include <ddb/db_sym.h>
146 1.1 bsh #include <ddb/db_extern.h>
147 1.1 bsh #ifdef KGDB
148 1.1 bsh #include <sys/kgdb.h>
149 1.1 bsh #endif
150 1.1 bsh
151 1.1 bsh #include <machine/bootconfig.h>
152 1.1 bsh #include <machine/bus.h>
153 1.1 bsh #include <machine/cpu.h>
154 1.1 bsh #include <machine/frame.h>
155 1.1 bsh #include <arm/undefined.h>
156 1.1 bsh
157 1.1 bsh #include <arm/arm32/machdep.h>
158 1.1 bsh
159 1.1 bsh #include <arm/xscale/pxa2x0reg.h>
160 1.1 bsh #include <arm/xscale/pxa2x0var.h>
161 1.1 bsh #include <arm/xscale/pxa2x0_gpio.h>
162 1.1 bsh #include <arm/sa11x0/sa1111_reg.h>
163 1.1 bsh #include <evbarm/lubbock/lubbock_reg.h>
164 1.1 bsh #include <evbarm/lubbock/lubbock_var.h>
165 1.1 bsh
166 1.1 bsh /* Kernel text starts 2MB in from the bottom of the kernel address space. */
167 1.1 bsh #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
168 1.1 bsh #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
169 1.1 bsh
170 1.1 bsh /*
171 1.1 bsh * The range 0xc1000000 - 0xccffffff is available for kernel VM space
172 1.1 bsh * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
173 1.1 bsh */
174 1.1 bsh #define KERNEL_VM_SIZE 0x0C000000
175 1.1 bsh
176 1.1 bsh
177 1.1 bsh /*
178 1.1 bsh * Address to call from cpu_reset() to reset the machine.
179 1.1 bsh * This is machine architecture dependant as it varies depending
180 1.1 bsh * on where the ROM appears when you turn the MMU off.
181 1.1 bsh */
182 1.1 bsh
183 1.1 bsh u_int cpu_reset_address = 0;
184 1.1 bsh
185 1.1 bsh /* Define various stack sizes in pages */
186 1.1 bsh #define IRQ_STACK_SIZE 1
187 1.1 bsh #define ABT_STACK_SIZE 1
188 1.1 bsh #ifdef IPKDB
189 1.1 bsh #define UND_STACK_SIZE 2
190 1.1 bsh #else
191 1.1 bsh #define UND_STACK_SIZE 1
192 1.1 bsh #endif
193 1.1 bsh
194 1.1 bsh BootConfig bootconfig; /* Boot config storage */
195 1.1 bsh char *boot_args = NULL;
196 1.1 bsh char *boot_file = NULL;
197 1.1 bsh
198 1.1 bsh vm_offset_t physical_start;
199 1.1 bsh vm_offset_t physical_freestart;
200 1.1 bsh vm_offset_t physical_freeend;
201 1.1 bsh vm_offset_t physical_end;
202 1.1 bsh u_int free_pages;
203 1.1 bsh vm_offset_t pagetables_start;
204 1.1 bsh int physmem = 0;
205 1.1 bsh
206 1.1 bsh /*int debug_flags;*/
207 1.1 bsh #ifndef PMAP_STATIC_L1S
208 1.1 bsh int max_processes = 64; /* Default number */
209 1.1 bsh #endif /* !PMAP_STATIC_L1S */
210 1.1 bsh
211 1.1 bsh /* Physical and virtual addresses for some global pages */
212 1.1 bsh pv_addr_t systempage;
213 1.1 bsh pv_addr_t irqstack;
214 1.1 bsh pv_addr_t undstack;
215 1.1 bsh pv_addr_t abtstack;
216 1.1 bsh pv_addr_t kernelstack;
217 1.1 bsh pv_addr_t minidataclean;
218 1.1 bsh
219 1.1 bsh vm_offset_t msgbufphys;
220 1.1 bsh
221 1.1 bsh extern u_int data_abort_handler_address;
222 1.1 bsh extern u_int prefetch_abort_handler_address;
223 1.1 bsh extern u_int undefined_handler_address;
224 1.1 bsh
225 1.1 bsh #ifdef PMAP_DEBUG
226 1.1 bsh extern int pmap_debug_level;
227 1.1 bsh #endif
228 1.1 bsh
229 1.1 bsh #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
230 1.1 bsh #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
231 1.1 bsh #define KERNEL_PT_KERNEL_NUM 4
232 1.1 bsh #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
233 1.1 bsh /* Page tables for mapping kernel VM */
234 1.1 bsh #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
235 1.1 bsh #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
236 1.1 bsh
237 1.1 bsh pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
238 1.1 bsh
239 1.1 bsh struct user *proc0paddr;
240 1.1 bsh
241 1.1 bsh /* Prototypes */
242 1.1 bsh
243 1.1 bsh #if 0
244 1.1 bsh void process_kernel_args(char *);
245 1.1 bsh #endif
246 1.1 bsh
247 1.1 bsh void consinit(void);
248 1.1 bsh void kgdb_port_init(void);
249 1.1 bsh void change_clock(uint32_t v);
250 1.1 bsh
251 1.1 bsh bs_protos(bs_notimpl);
252 1.1 bsh
253 1.1 bsh #include "com.h"
254 1.1 bsh #if NCOM > 0
255 1.1 bsh #include <dev/ic/comreg.h>
256 1.1 bsh #include <dev/ic/comvar.h>
257 1.1 bsh #endif
258 1.1 bsh
259 1.1 bsh #ifndef CONSPEED
260 1.1 bsh #define CONSPEED B115200 /* What RedBoot uses */
261 1.1 bsh #endif
262 1.1 bsh #ifndef CONMODE
263 1.1 bsh #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
264 1.1 bsh #endif
265 1.1 bsh
266 1.1 bsh int comcnspeed = CONSPEED;
267 1.1 bsh int comcnmode = CONMODE;
268 1.1 bsh
269 1.15 kiyohara static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
270 1.15 kiyohara { 44, GPIO_ALT_FN_1_IN }, /* BTCST */
271 1.15 kiyohara { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */
272 1.15 kiyohara
273 1.15 kiyohara { 29, GPIO_ALT_FN_1_IN }, /* SDATA_IN0 */
274 1.15 kiyohara
275 1.15 kiyohara { -1 }
276 1.15 kiyohara };
277 1.15 kiyohara static struct pxa2x0_gpioconf *lubbock_gpioconf[] = {
278 1.15 kiyohara pxa25x_com_btuart_gpioconf,
279 1.15 kiyohara pxa25x_com_ffuart_gpioconf,
280 1.15 kiyohara #if 0
281 1.15 kiyohara pxa25x_com_stuart_gpioconf,
282 1.15 kiyohara #endif
283 1.15 kiyohara pxa25x_pcic_gpioconf,
284 1.15 kiyohara pxa25x_pxaacu_gpioconf,
285 1.15 kiyohara boarddep_gpioconf,
286 1.15 kiyohara NULL
287 1.15 kiyohara };
288 1.15 kiyohara
289 1.1 bsh /*
290 1.1 bsh * void cpu_reboot(int howto, char *bootstr)
291 1.1 bsh *
292 1.1 bsh * Reboots the system
293 1.1 bsh *
294 1.1 bsh * Deal with any syncing, unmounting, dumping and shutdown hooks,
295 1.1 bsh * then reset the CPU.
296 1.1 bsh */
297 1.1 bsh void
298 1.1 bsh cpu_reboot(int howto, char *bootstr)
299 1.1 bsh {
300 1.1 bsh #ifdef DIAGNOSTIC
301 1.1 bsh /* info */
302 1.1 bsh printf("boot: howto=%08x curproc=%p\n", howto, curproc);
303 1.1 bsh #endif
304 1.1 bsh
305 1.1 bsh /*
306 1.1 bsh * If we are still cold then hit the air brakes
307 1.1 bsh * and crash to earth fast
308 1.1 bsh */
309 1.1 bsh if (cold) {
310 1.1 bsh doshutdownhooks();
311 1.1 bsh printf("The operating system has halted.\n");
312 1.1 bsh printf("Please press any key to reboot.\n\n");
313 1.1 bsh cngetc();
314 1.1 bsh printf("rebooting...\n");
315 1.1 bsh cpu_reset();
316 1.1 bsh /*NOTREACHED*/
317 1.1 bsh }
318 1.1 bsh
319 1.1 bsh /* Disable console buffering */
320 1.1 bsh /* cnpollc(1);*/
321 1.1 bsh
322 1.1 bsh /*
323 1.1 bsh * If RB_NOSYNC was not specified sync the discs.
324 1.1 bsh * Note: Unless cold is set to 1 here, syslogd will die during the
325 1.1 bsh * unmount. It looks like syslogd is getting woken up only to find
326 1.1 bsh * that it cannot page part of the binary in as the filesystem has
327 1.1 bsh * been unmounted.
328 1.1 bsh */
329 1.1 bsh if (!(howto & RB_NOSYNC))
330 1.1 bsh bootsync();
331 1.1 bsh
332 1.1 bsh /* Say NO to interrupts */
333 1.1 bsh splhigh();
334 1.1 bsh
335 1.1 bsh /* Do a dump if requested. */
336 1.1 bsh if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
337 1.1 bsh dumpsys();
338 1.1 bsh
339 1.1 bsh /* Run any shutdown hooks */
340 1.1 bsh doshutdownhooks();
341 1.1 bsh
342 1.1 bsh /* Make sure IRQ's are disabled */
343 1.1 bsh IRQdisable;
344 1.1 bsh
345 1.1 bsh if (howto & RB_HALT) {
346 1.1 bsh printf("The operating system has halted.\n");
347 1.1 bsh printf("Please press any key to reboot.\n\n");
348 1.1 bsh cngetc();
349 1.1 bsh }
350 1.1 bsh
351 1.1 bsh printf("rebooting...\n");
352 1.1 bsh cpu_reset();
353 1.1 bsh /*NOTREACHED*/
354 1.1 bsh }
355 1.1 bsh
356 1.10 perry static inline
357 1.1 bsh pd_entry_t *
358 1.1 bsh read_ttb(void)
359 1.1 bsh {
360 1.1 bsh long ttb;
361 1.1 bsh
362 1.10 perry __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
363 1.1 bsh
364 1.1 bsh
365 1.1 bsh return (pd_entry_t *)(ttb & ~((1<<14)-1));
366 1.1 bsh }
367 1.1 bsh
368 1.1 bsh /*
369 1.6 bsh * Static device mappings. These peripheral registers are mapped at
370 1.6 bsh * fixed virtual addresses very early in initarm() so that we can use
371 1.6 bsh * them while booting the kernel, and stay at the same address
372 1.6 bsh * throughout whole kernel's life time.
373 1.6 bsh *
374 1.6 bsh * We use this table twice; once with bootstrap page table, and once
375 1.6 bsh * with kernel's page table which we build up in initarm().
376 1.6 bsh *
377 1.6 bsh * Since we map these registers into the bootstrap page table using
378 1.6 bsh * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
379 1.6 bsh * registers segment-aligned and segment-rounded in order to avoid
380 1.6 bsh * using the 2nd page tables.
381 1.1 bsh */
382 1.6 bsh
383 1.6 bsh #define _A(a) ((a) & ~L1_S_OFFSET)
384 1.6 bsh #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
385 1.6 bsh
386 1.6 bsh static const struct pmap_devmap lubbock_devmap[] = {
387 1.1 bsh {
388 1.1 bsh LUBBOCK_OBIO_VBASE,
389 1.6 bsh _A(LUBBOCK_OBIO_PBASE),
390 1.6 bsh _S(LUBBOCK_OBIO_SIZE),
391 1.6 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
392 1.1 bsh },
393 1.1 bsh {
394 1.1 bsh LUBBOCK_GPIO_VBASE,
395 1.6 bsh _A(PXA2X0_GPIO_BASE),
396 1.8 bsh _S(PXA250_GPIO_SIZE),
397 1.6 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
398 1.1 bsh },
399 1.1 bsh {
400 1.1 bsh LUBBOCK_CLKMAN_VBASE,
401 1.6 bsh _A(PXA2X0_CLKMAN_BASE),
402 1.6 bsh _S(PXA2X0_CLKMAN_SIZE),
403 1.6 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
404 1.1 bsh },
405 1.1 bsh {
406 1.1 bsh LUBBOCK_INTCTL_VBASE,
407 1.6 bsh _A(PXA2X0_INTCTL_BASE),
408 1.6 bsh _S(PXA2X0_INTCTL_SIZE),
409 1.6 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
410 1.6 bsh },
411 1.6 bsh {
412 1.6 bsh LUBBOCK_FFUART_VBASE,
413 1.6 bsh _A(PXA2X0_FFUART_BASE),
414 1.6 bsh _S(4 * COM_NPORTS),
415 1.6 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
416 1.6 bsh },
417 1.6 bsh {
418 1.6 bsh LUBBOCK_BTUART_VBASE,
419 1.6 bsh _A(PXA2X0_BTUART_BASE),
420 1.6 bsh _S(4 * COM_NPORTS),
421 1.6 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
422 1.1 bsh },
423 1.6 bsh
424 1.1 bsh {0, 0, 0, 0,}
425 1.1 bsh };
426 1.1 bsh
427 1.6 bsh #undef _A
428 1.6 bsh #undef _S
429 1.1 bsh
430 1.1 bsh /*
431 1.1 bsh * u_int initarm(...)
432 1.1 bsh *
433 1.1 bsh * Initial entry point on startup. This gets called before main() is
434 1.1 bsh * entered.
435 1.1 bsh * It should be responsible for setting up everything that must be
436 1.1 bsh * in place when main is called.
437 1.1 bsh * This includes
438 1.1 bsh * Taking a copy of the boot configuration structure.
439 1.1 bsh * Initialising the physical console so characters can be printed.
440 1.1 bsh * Setting up page tables for the kernel
441 1.1 bsh * Relocating the kernel to the bottom of physical memory
442 1.1 bsh */
443 1.1 bsh u_int
444 1.1 bsh initarm(void *arg)
445 1.1 bsh {
446 1.1 bsh extern vaddr_t xscale_cache_clean_addr;
447 1.1 bsh int loop;
448 1.1 bsh int loop1;
449 1.1 bsh u_int l1pagetable;
450 1.1 bsh paddr_t memstart;
451 1.1 bsh psize_t memsize;
452 1.1 bsh int led_data = 0;
453 1.1 bsh #ifdef DIAGNOSTIC
454 1.1 bsh extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
455 1.1 bsh #endif
456 1.1 bsh #define LEDSTEP_P() ioreg_write(LUBBOCK_OBIO_PBASE+LUBBOCK_HEXLED, led_data++)
457 1.1 bsh #define LEDSTEP() hex_led(led_data++)
458 1.1 bsh
459 1.1 bsh /* use physical address until pagetable is set */
460 1.1 bsh LEDSTEP_P();
461 1.1 bsh
462 1.6 bsh /* map some peripheral registers at static I/O area */
463 1.6 bsh pmap_devmap_bootstrap((vaddr_t)read_ttb(), lubbock_devmap);
464 1.6 bsh
465 1.6 bsh LEDSTEP_P();
466 1.6 bsh
467 1.11 lukem /* start 32.768 kHz OSC */
468 1.6 bsh ioreg_write(LUBBOCK_CLKMAN_VBASE + 0x08, 2);
469 1.6 bsh /* Get ready for splfoo() */
470 1.6 bsh pxa2x0_intr_bootstrap(LUBBOCK_INTCTL_VBASE);
471 1.6 bsh
472 1.6 bsh LEDSTEP();
473 1.1 bsh
474 1.1 bsh /*
475 1.1 bsh * Heads up ... Setup the CPU / MMU / TLB functions
476 1.1 bsh */
477 1.1 bsh if (set_cpufuncs())
478 1.1 bsh panic("cpu not recognized!");
479 1.1 bsh
480 1.6 bsh LEDSTEP();
481 1.6 bsh
482 1.1 bsh
483 1.1 bsh #if 0
484 1.1 bsh /* Calibrate the delay loop. */
485 1.1 bsh #endif
486 1.1 bsh
487 1.1 bsh /*
488 1.1 bsh * Okay, RedBoot has provided us with the following memory map:
489 1.1 bsh *
490 1.1 bsh * Physical Address Range Description
491 1.1 bsh * ----------------------- ----------------------------------
492 1.1 bsh * 0x00000000 - 0x01ffffff flash Memory (32MB)
493 1.1 bsh * 0x04000000 - 0x05ffffff Application flash Memory (32MB)
494 1.1 bsh * 0x08000000 - 0x080000ff I/O baseboard registers
495 1.1 bsh * 0x0a000000 - 0x0a0fffff SRAM (1MB)
496 1.1 bsh * 0x0c000000 - 0x0c0fffff Ethernet Controller
497 1.1 bsh * 0x0e000000 - 0x0e0fffff Ethernet Controller (Attribute)
498 1.1 bsh * 0x10000000 - 0x103fffff SA-1111 Companion Chip
499 1.1 bsh * 0x14000000 - 0x17ffffff Expansion Card (64MB)
500 1.1 bsh * 0x40000000 - 0x480fffff Processor Registers
501 1.1 bsh * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB)
502 1.1 bsh *
503 1.1 bsh *
504 1.1 bsh * Virtual Address Range X C B Description
505 1.1 bsh * ----------------------- - - - ----------------------------------
506 1.1 bsh * 0x00000000 - 0x00003fff N Y Y SDRAM
507 1.1 bsh * 0x00004000 - 0x000fffff N Y N Boot ROM
508 1.1 bsh * 0x00100000 - 0x01ffffff N N N Application Flash
509 1.1 bsh * 0x04000000 - 0x05ffffff N N N Exp Application Flash
510 1.1 bsh * 0x08000000 - 0x080fffff N N N I/O baseboard registers
511 1.1 bsh * 0x0a000000 - 0x0a0fffff N N N SRAM
512 1.1 bsh * 0x40000000 - 0x480fffff N N N Processor Registers
513 1.1 bsh * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM
514 1.1 bsh * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM
515 1.1 bsh * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region
516 1.1 bsh * (done by this routine)
517 1.1 bsh * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers
518 1.6 bsh * 0xfd100000 - 0xfd3fffff N N N Processor Registers.
519 1.6 bsh * 0xfd400000 - 0xfd4fffff N N N FF-UART
520 1.6 bsh * 0xfd500000 - 0xfd5fffff N N N BT-UART
521 1.1 bsh *
522 1.7 bsh * RedBoot's first level page table is at 0xa0004000. There
523 1.7 bsh * are also 2 second-level tables at 0xa0008000 and
524 1.7 bsh * 0xa0008400. We will continue to use them until we switch to
525 1.7 bsh * our pagetable by setttb().
526 1.1 bsh *
527 1.1 bsh */
528 1.1 bsh
529 1.1 bsh /* setup GPIO for BTUART, in case bootloader doesn't take care of it */
530 1.1 bsh pxa2x0_gpio_bootstrap(LUBBOCK_GPIO_VBASE);
531 1.15 kiyohara pxa2x0_gpio_config(lubbock_gpioconf);
532 1.1 bsh
533 1.1 bsh /* turn on clock to UART block.
534 1.1 bsh XXX: this should not be done here. */
535 1.1 bsh ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, CKEN_FFUART|CKEN_BTUART |
536 1.1 bsh ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN));
537 1.1 bsh
538 1.1 bsh LEDSTEP();
539 1.1 bsh
540 1.1 bsh consinit();
541 1.1 bsh LEDSTEP();
542 1.1 bsh #ifdef KGDB
543 1.1 bsh kgdb_port_init();
544 1.1 bsh LEDSTEP();
545 1.1 bsh #endif
546 1.1 bsh
547 1.1 bsh
548 1.1 bsh /* Talk to the user */
549 1.1 bsh printf("\nNetBSD/evbarm (lubbock) booting ...\n");
550 1.1 bsh
551 1.1 bsh /* Tweak memory controller */
552 1.1 bsh {
553 1.1 bsh /* Modify access timing for CS3 (91c96) */
554 1.1 bsh
555 1.1 bsh uint32_t tmp =
556 1.1 bsh ioreg_read(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1);
557 1.1 bsh ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1,
558 1.1 bsh (tmp & 0xffff) | (0x3881<<16));
559 1.1 bsh /* RRR=3, RDN=8, RDF=8
560 1.1 bsh * XXX: can be faster?
561 1.1 bsh */
562 1.1 bsh }
563 1.1 bsh
564 1.1 bsh
565 1.1 bsh /* Initialize for PCMCIA/CF sockets */
566 1.1 bsh {
567 1.1 bsh uint32_t tmp;
568 1.1 bsh
569 1.1 bsh /* Activate two sockets.
570 1.1 bsh XXX: This code segment should be moved to
571 1.1 bsh pcmcia MD attach routine.
572 1.1 bsh XXX: These bits should be toggled based on
573 1.1 bsh existene of PCMCIA/CF cards
574 1.1 bsh */
575 1.1 bsh ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MECR,
576 1.1 bsh MECR_NOS|MECR_CIT);
577 1.1 bsh
578 1.1 bsh tmp = ioreg_read(LUBBOCK_SACC_PBASE+SACCSBI_SKCR);
579 1.1 bsh ioreg_write(LUBBOCK_SACC_PBASE+SACCSBI_SKCR,
580 1.1 bsh (tmp & ~(1<<4)) | (1<<0));
581 1.1 bsh }
582 1.1 bsh
583 1.1 bsh #if 0
584 1.1 bsh /*
585 1.1 bsh * Examine the boot args string for options we need to know about
586 1.1 bsh * now.
587 1.1 bsh */
588 1.1 bsh process_kernel_args((char *)nwbootinfo.bt_args);
589 1.1 bsh #endif
590 1.1 bsh
591 1.1 bsh {
592 1.1 bsh int processor_card_id;
593 1.1 bsh
594 1.1 bsh processor_card_id = 0x000f &
595 1.1 bsh ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_MISCRD);
596 1.1 bsh switch(processor_card_id){
597 1.1 bsh case 0:
598 1.1 bsh /* Cotulla */
599 1.1 bsh memstart = 0xa0000000;
600 1.1 bsh memsize = 0x04000000; /* 64MB */
601 1.1 bsh break;
602 1.1 bsh case 1:
603 1.1 bsh /* XXX: Sabiani */
604 1.1 bsh memstart = 0xa0000000;
605 1.1 bsh memsize = 0x04000000; /* 64MB */
606 1.1 bsh break;
607 1.1 bsh default:
608 1.1 bsh /* XXX: Unknown */
609 1.1 bsh memstart = 0xa0000000;
610 1.1 bsh memsize = 0x04000000; /* 64MB */
611 1.1 bsh }
612 1.1 bsh }
613 1.1 bsh
614 1.1 bsh printf("initarm: Configuring system ...\n");
615 1.1 bsh
616 1.1 bsh /* Fake bootconfig structure for the benefit of pmap.c */
617 1.14 wiz /* XXX must make the memory description h/w independent */
618 1.1 bsh bootconfig.dramblocks = 1;
619 1.1 bsh bootconfig.dram[0].address = memstart;
620 1.1 bsh bootconfig.dram[0].pages = memsize / PAGE_SIZE;
621 1.1 bsh
622 1.1 bsh /*
623 1.1 bsh * Set up the variables that define the availablilty of
624 1.1 bsh * physical memory. For now, we're going to set
625 1.1 bsh * physical_freestart to 0xa0200000 (where the kernel
626 1.1 bsh * was loaded), and allocate the memory we need downwards.
627 1.1 bsh * If we get too close to the page tables that RedBoot
628 1.1 bsh * set up, we will panic. We will update physical_freestart
629 1.1 bsh * and physical_freeend later to reflect what pmap_bootstrap()
630 1.1 bsh * wants to see.
631 1.1 bsh *
632 1.1 bsh * XXX pmap_bootstrap() needs an enema.
633 1.1 bsh */
634 1.1 bsh physical_start = bootconfig.dram[0].address;
635 1.1 bsh physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
636 1.1 bsh
637 1.1 bsh physical_freestart = 0xa0009000UL;
638 1.1 bsh physical_freeend = 0xa0200000UL;
639 1.1 bsh
640 1.1 bsh physmem = (physical_end - physical_start) / PAGE_SIZE;
641 1.1 bsh
642 1.1 bsh #ifdef VERBOSE_INIT_ARM
643 1.1 bsh /* Tell the user about the memory */
644 1.1 bsh printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
645 1.1 bsh physical_start, physical_end - 1);
646 1.1 bsh #endif
647 1.1 bsh
648 1.1 bsh /*
649 1.1 bsh * Okay, the kernel starts 2MB in from the bottom of physical
650 1.1 bsh * memory. We are going to allocate our bootstrap pages downwards
651 1.1 bsh * from there.
652 1.1 bsh *
653 1.1 bsh * We need to allocate some fixed page tables to get the kernel
654 1.1 bsh * going. We allocate one page directory and a number of page
655 1.1 bsh * tables and store the physical addresses in the kernel_pt_table
656 1.1 bsh * array.
657 1.1 bsh *
658 1.1 bsh * The kernel page directory must be on a 16K boundary. The page
659 1.4 abs * tables must be on 4K boundaries. What we do is allocate the
660 1.1 bsh * page directory on the first 16K boundary that we encounter, and
661 1.1 bsh * the page tables on 4K boundaries otherwise. Since we allocate
662 1.1 bsh * at least 3 L2 page tables, we are guaranteed to encounter at
663 1.1 bsh * least one 16K aligned region.
664 1.1 bsh */
665 1.1 bsh
666 1.1 bsh #ifdef VERBOSE_INIT_ARM
667 1.1 bsh printf("Allocating page tables\n");
668 1.1 bsh #endif
669 1.1 bsh
670 1.1 bsh free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
671 1.1 bsh
672 1.1 bsh #ifdef VERBOSE_INIT_ARM
673 1.1 bsh printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
674 1.1 bsh physical_freestart, free_pages, free_pages);
675 1.1 bsh #endif
676 1.1 bsh
677 1.1 bsh /* Define a macro to simplify memory allocation */
678 1.1 bsh #define valloc_pages(var, np) \
679 1.1 bsh alloc_pages((var).pv_pa, (np)); \
680 1.1 bsh (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
681 1.1 bsh
682 1.1 bsh #define alloc_pages(var, np) \
683 1.1 bsh physical_freeend -= ((np) * PAGE_SIZE); \
684 1.1 bsh if (physical_freeend < physical_freestart) \
685 1.1 bsh panic("initarm: out of memory"); \
686 1.1 bsh (var) = physical_freeend; \
687 1.1 bsh free_pages -= (np); \
688 1.1 bsh memset((char *)(var), 0, ((np) * PAGE_SIZE));
689 1.1 bsh
690 1.1 bsh loop1 = 0;
691 1.1 bsh kernel_l1pt.pv_pa = 0;
692 1.12 mrg kernel_l1pt.pv_va = 0;
693 1.1 bsh for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
694 1.1 bsh /* Are we 16KB aligned for an L1 ? */
695 1.1 bsh if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
696 1.1 bsh && kernel_l1pt.pv_pa == 0) {
697 1.1 bsh valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
698 1.1 bsh } else {
699 1.1 bsh valloc_pages(kernel_pt_table[loop1],
700 1.1 bsh L2_TABLE_SIZE / PAGE_SIZE);
701 1.1 bsh ++loop1;
702 1.1 bsh }
703 1.1 bsh }
704 1.1 bsh
705 1.1 bsh /* This should never be able to happen but better confirm that. */
706 1.1 bsh if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
707 1.1 bsh panic("initarm: Failed to align the kernel page directory");
708 1.1 bsh
709 1.1 bsh LEDSTEP();
710 1.1 bsh
711 1.1 bsh /*
712 1.1 bsh * Allocate a page for the system page mapped to V0x00000000
713 1.1 bsh * This page will just contain the system vectors and can be
714 1.1 bsh * shared by all processes.
715 1.1 bsh */
716 1.1 bsh alloc_pages(systempage.pv_pa, 1);
717 1.1 bsh
718 1.1 bsh /* Allocate stacks for all modes */
719 1.1 bsh valloc_pages(irqstack, IRQ_STACK_SIZE);
720 1.1 bsh valloc_pages(abtstack, ABT_STACK_SIZE);
721 1.1 bsh valloc_pages(undstack, UND_STACK_SIZE);
722 1.1 bsh valloc_pages(kernelstack, UPAGES);
723 1.1 bsh
724 1.1 bsh /* Allocate enough pages for cleaning the Mini-Data cache. */
725 1.1 bsh KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
726 1.1 bsh valloc_pages(minidataclean, 1);
727 1.1 bsh
728 1.1 bsh #ifdef VERBOSE_INIT_ARM
729 1.1 bsh printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
730 1.1 bsh irqstack.pv_va);
731 1.1 bsh printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
732 1.1 bsh abtstack.pv_va);
733 1.1 bsh printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
734 1.1 bsh undstack.pv_va);
735 1.1 bsh printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
736 1.1 bsh kernelstack.pv_va);
737 1.1 bsh #endif
738 1.1 bsh
739 1.1 bsh /*
740 1.1 bsh * XXX Defer this to later so that we can reclaim the memory
741 1.1 bsh * XXX used by the RedBoot page tables.
742 1.1 bsh */
743 1.1 bsh alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
744 1.1 bsh
745 1.1 bsh /*
746 1.1 bsh * Ok we have allocated physical pages for the primary kernel
747 1.1 bsh * page tables
748 1.1 bsh */
749 1.1 bsh
750 1.1 bsh #ifdef VERBOSE_INIT_ARM
751 1.1 bsh printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
752 1.1 bsh #endif
753 1.1 bsh
754 1.1 bsh /*
755 1.1 bsh * Now we start construction of the L1 page table
756 1.1 bsh * We start by mapping the L2 page tables into the L1.
757 1.1 bsh * This means that we can replace L1 mappings later on if necessary
758 1.1 bsh */
759 1.1 bsh l1pagetable = kernel_l1pt.pv_pa;
760 1.1 bsh
761 1.1 bsh /* Map the L2 pages tables in the L1 page table */
762 1.1 bsh pmap_link_l2pt(l1pagetable, 0x00000000,
763 1.1 bsh &kernel_pt_table[KERNEL_PT_SYS]);
764 1.1 bsh for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
765 1.1 bsh pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
766 1.1 bsh &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
767 1.1 bsh for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
768 1.1 bsh pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
769 1.1 bsh &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
770 1.1 bsh
771 1.1 bsh /* update the top of the kernel VM */
772 1.1 bsh pmap_curmaxkvaddr =
773 1.1 bsh KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
774 1.1 bsh
775 1.1 bsh #ifdef VERBOSE_INIT_ARM
776 1.1 bsh printf("Mapping kernel\n");
777 1.1 bsh #endif
778 1.1 bsh
779 1.1 bsh /* Now we fill in the L2 pagetable for the kernel static code/data */
780 1.1 bsh {
781 1.1 bsh extern char etext[], _end[];
782 1.1 bsh size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
783 1.1 bsh size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
784 1.1 bsh u_int logical;
785 1.1 bsh
786 1.1 bsh textsize = (textsize + PGOFSET) & ~PGOFSET;
787 1.1 bsh totalsize = (totalsize + PGOFSET) & ~PGOFSET;
788 1.1 bsh
789 1.1 bsh logical = 0x00200000; /* offset of kernel in RAM */
790 1.1 bsh
791 1.1 bsh logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
792 1.1 bsh physical_start + logical, textsize,
793 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
794 1.1 bsh logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
795 1.1 bsh physical_start + logical, totalsize - textsize,
796 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
797 1.1 bsh }
798 1.1 bsh
799 1.1 bsh #ifdef VERBOSE_INIT_ARM
800 1.1 bsh printf("Constructing L2 page tables\n");
801 1.1 bsh #endif
802 1.1 bsh
803 1.1 bsh /* Map the stack pages */
804 1.1 bsh pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
805 1.1 bsh IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
806 1.1 bsh pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
807 1.1 bsh ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
808 1.1 bsh pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
809 1.1 bsh UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
810 1.1 bsh pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
811 1.1 bsh UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
812 1.1 bsh
813 1.1 bsh pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
814 1.1 bsh L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
815 1.1 bsh
816 1.1 bsh for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
817 1.1 bsh pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
818 1.1 bsh kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
819 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
820 1.1 bsh }
821 1.1 bsh
822 1.1 bsh /* Map the Mini-Data cache clean area. */
823 1.1 bsh xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
824 1.1 bsh minidataclean.pv_pa);
825 1.1 bsh
826 1.1 bsh /* Map the vector page. */
827 1.1 bsh #if 1
828 1.1 bsh /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
829 1.1 bsh * cache-clean code there. */
830 1.1 bsh pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
831 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
832 1.1 bsh #else
833 1.1 bsh pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
834 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
835 1.1 bsh #endif
836 1.1 bsh
837 1.1 bsh /*
838 1.1 bsh * map integrated peripherals at same address in l1pagetable
839 1.1 bsh * so that we can continue to use console.
840 1.1 bsh */
841 1.6 bsh pmap_devmap_bootstrap(l1pagetable, lubbock_devmap);
842 1.1 bsh
843 1.1 bsh /*
844 1.1 bsh * Give the XScale global cache clean code an appropriately
845 1.1 bsh * sized chunk of unmapped VA space starting at 0xff000000
846 1.1 bsh * (our device mappings end before this address).
847 1.1 bsh */
848 1.1 bsh xscale_cache_clean_addr = 0xff000000U;
849 1.1 bsh
850 1.1 bsh /*
851 1.1 bsh * Now we have the real page tables in place so we can switch to them.
852 1.1 bsh * Once this is done we will be running with the REAL kernel page
853 1.1 bsh * tables.
854 1.1 bsh */
855 1.1 bsh
856 1.1 bsh /*
857 1.1 bsh * Update the physical_freestart/physical_freeend/free_pages
858 1.1 bsh * variables.
859 1.1 bsh */
860 1.1 bsh {
861 1.1 bsh extern char _end[];
862 1.1 bsh
863 1.1 bsh physical_freestart = physical_start +
864 1.1 bsh (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
865 1.1 bsh KERNEL_BASE);
866 1.1 bsh physical_freeend = physical_end;
867 1.1 bsh free_pages =
868 1.1 bsh (physical_freeend - physical_freestart) / PAGE_SIZE;
869 1.1 bsh }
870 1.1 bsh
871 1.1 bsh /* Switch tables */
872 1.1 bsh #ifdef VERBOSE_INIT_ARM
873 1.1 bsh printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
874 1.1 bsh physical_freestart, free_pages, free_pages);
875 1.1 bsh printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
876 1.1 bsh #endif
877 1.1 bsh
878 1.1 bsh LEDSTEP();
879 1.1 bsh
880 1.1 bsh cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
881 1.1 bsh setttb(kernel_l1pt.pv_pa);
882 1.1 bsh cpu_tlb_flushID();
883 1.1 bsh cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
884 1.1 bsh LEDSTEP();
885 1.1 bsh
886 1.1 bsh /*
887 1.1 bsh * Moved from cpu_startup() as data_abort_handler() references
888 1.1 bsh * this during uvm init
889 1.1 bsh */
890 1.1 bsh proc0paddr = (struct user *)kernelstack.pv_va;
891 1.1 bsh lwp0.l_addr = proc0paddr;
892 1.1 bsh
893 1.1 bsh #ifdef VERBOSE_INIT_ARM
894 1.1 bsh printf("bootstrap done.\n");
895 1.1 bsh #endif
896 1.1 bsh
897 1.1 bsh arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
898 1.1 bsh
899 1.1 bsh /*
900 1.1 bsh * Pages were allocated during the secondary bootstrap for the
901 1.1 bsh * stacks for different CPU modes.
902 1.1 bsh * We must now set the r13 registers in the different CPU modes to
903 1.1 bsh * point to these stacks.
904 1.1 bsh * Since the ARM stacks use STMFD etc. we must set r13 to the top end
905 1.1 bsh * of the stack memory.
906 1.1 bsh */
907 1.1 bsh printf("init subsystems: stacks ");
908 1.1 bsh
909 1.1 bsh set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
910 1.1 bsh set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
911 1.1 bsh set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
912 1.1 bsh
913 1.1 bsh /*
914 1.1 bsh * Well we should set a data abort handler.
915 1.1 bsh * Once things get going this will change as we will need a proper
916 1.1 bsh * handler.
917 1.1 bsh * Until then we will use a handler that just panics but tells us
918 1.1 bsh * why.
919 1.1 bsh * Initialisation of the vectors will just panic on a data abort.
920 1.3 abs * This just fills in a slightly better one.
921 1.1 bsh */
922 1.1 bsh printf("vectors ");
923 1.1 bsh data_abort_handler_address = (u_int)data_abort_handler;
924 1.1 bsh prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
925 1.1 bsh undefined_handler_address = (u_int)undefinedinstruction_bounce;
926 1.1 bsh
927 1.1 bsh /* Initialise the undefined instruction handlers */
928 1.1 bsh printf("undefined ");
929 1.1 bsh undefined_init();
930 1.1 bsh
931 1.1 bsh /* Load memory into UVM. */
932 1.1 bsh printf("page ");
933 1.1 bsh uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
934 1.1 bsh uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
935 1.1 bsh atop(physical_freestart), atop(physical_freeend),
936 1.1 bsh VM_FREELIST_DEFAULT);
937 1.1 bsh
938 1.1 bsh /* Boot strap pmap telling it where the kernel page table is */
939 1.1 bsh printf("pmap ");
940 1.1 bsh LEDSTEP();
941 1.15.2.2 matt pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
942 1.1 bsh LEDSTEP();
943 1.1 bsh
944 1.1 bsh #ifdef __HAVE_MEMORY_DISK__
945 1.1 bsh md_root_setconf(memory_disk, sizeof memory_disk);
946 1.1 bsh #endif
947 1.1 bsh
948 1.1 bsh {
949 1.1 bsh uint16_t sw = ioreg16_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW);
950 1.1 bsh
951 1.1 bsh if (0 == (sw & (1<<13))) /* check S19 */
952 1.1 bsh boothowto |= RB_KDB;
953 1.1 bsh if (0 == (sw & (1<<12))) /* S20 */
954 1.1 bsh boothowto |= RB_SINGLE;
955 1.1 bsh }
956 1.1 bsh
957 1.1 bsh LEDSTEP();
958 1.1 bsh
959 1.1 bsh #ifdef IPKDB
960 1.1 bsh /* Initialise ipkdb */
961 1.1 bsh ipkdb_init();
962 1.1 bsh if (boothowto & RB_KDB)
963 1.1 bsh ipkdb_connect(0);
964 1.1 bsh #endif
965 1.1 bsh
966 1.1 bsh #ifdef KGDB
967 1.1 bsh if (boothowto & RB_KDB) {
968 1.1 bsh kgdb_debug_init = 1;
969 1.1 bsh kgdb_connect(1);
970 1.1 bsh }
971 1.1 bsh #endif
972 1.1 bsh
973 1.1 bsh #ifdef DDB
974 1.1 bsh db_machine_init();
975 1.1 bsh
976 1.1 bsh /* Firmware doesn't load symbols. */
977 1.1 bsh ddb_init(0, NULL, NULL);
978 1.1 bsh
979 1.1 bsh if (boothowto & RB_KDB)
980 1.1 bsh Debugger();
981 1.1 bsh #endif
982 1.1 bsh
983 1.1 bsh /* We return the new stack pointer address */
984 1.1 bsh return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
985 1.1 bsh }
986 1.1 bsh
987 1.1 bsh #if 0
988 1.1 bsh void
989 1.1 bsh process_kernel_args(char *args)
990 1.1 bsh {
991 1.1 bsh
992 1.1 bsh boothowto = 0;
993 1.1 bsh
994 1.1 bsh /* Make a local copy of the bootargs */
995 1.1 bsh strncpy(bootargs, args, MAX_BOOT_STRING);
996 1.1 bsh
997 1.1 bsh args = bootargs;
998 1.1 bsh boot_file = bootargs;
999 1.1 bsh
1000 1.1 bsh /* Skip the kernel image filename */
1001 1.1 bsh while (*args != ' ' && *args != 0)
1002 1.1 bsh ++args;
1003 1.1 bsh
1004 1.1 bsh if (*args != 0)
1005 1.1 bsh *args++ = 0;
1006 1.1 bsh
1007 1.1 bsh while (*args == ' ')
1008 1.1 bsh ++args;
1009 1.1 bsh
1010 1.1 bsh boot_args = args;
1011 1.1 bsh
1012 1.1 bsh printf("bootfile: %s\n", boot_file);
1013 1.1 bsh printf("bootargs: %s\n", boot_args);
1014 1.1 bsh
1015 1.1 bsh parse_mi_bootargs(boot_args);
1016 1.1 bsh }
1017 1.1 bsh #endif
1018 1.1 bsh
1019 1.1 bsh #ifdef KGDB
1020 1.1 bsh #ifndef KGDB_DEVNAME
1021 1.1 bsh #define KGDB_DEVNAME "ffuart"
1022 1.1 bsh #endif
1023 1.1 bsh const char kgdb_devname[] = KGDB_DEVNAME;
1024 1.1 bsh
1025 1.1 bsh #if (NCOM > 0)
1026 1.1 bsh #ifndef KGDB_DEVMODE
1027 1.1 bsh #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
1028 1.1 bsh #endif
1029 1.1 bsh int comkgdbmode = KGDB_DEVMODE;
1030 1.1 bsh #endif /* NCOM */
1031 1.1 bsh
1032 1.1 bsh #endif /* KGDB */
1033 1.1 bsh
1034 1.1 bsh
1035 1.1 bsh void
1036 1.1 bsh consinit(void)
1037 1.1 bsh {
1038 1.1 bsh static int consinit_called = 0;
1039 1.1 bsh uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN);
1040 1.1 bsh #if 0
1041 1.1 bsh char *console = CONSDEVNAME;
1042 1.1 bsh #endif
1043 1.1 bsh
1044 1.1 bsh if (consinit_called != 0)
1045 1.1 bsh return;
1046 1.1 bsh
1047 1.1 bsh consinit_called = 1;
1048 1.1 bsh
1049 1.1 bsh #if NCOM > 0
1050 1.1 bsh
1051 1.1 bsh #ifdef FFUARTCONSOLE
1052 1.1 bsh /* Check switch. */
1053 1.1 bsh if (0 == (ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW) & (1<<15))) {
1054 1.1 bsh /* We don't use FF serial when S17=no-dot position */
1055 1.1 bsh }
1056 1.1 bsh #ifdef KGDB
1057 1.1 bsh else if (0 == strcmp(kgdb_devname, "ffuart")) {
1058 1.1 bsh /* port is reserved for kgdb */
1059 1.1 bsh }
1060 1.1 bsh #endif
1061 1.1 bsh else if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
1062 1.1 bsh comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
1063 1.1 bsh #if 0
1064 1.1 bsh /* XXX: can't call pxa2x0_clkman_config yet */
1065 1.1 bsh pxa2x0_clkman_config(CKEN_FFUART, 1);
1066 1.1 bsh #else
1067 1.1 bsh ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN,
1068 1.1 bsh ckenreg|CKEN_FFUART);
1069 1.1 bsh #endif
1070 1.1 bsh
1071 1.1 bsh return;
1072 1.1 bsh }
1073 1.1 bsh #endif /* FFUARTCONSOLE */
1074 1.1 bsh
1075 1.1 bsh #ifdef BTUARTCONSOLE
1076 1.1 bsh #ifdef KGDB
1077 1.1 bsh if (0 == strcmp(kgdb_devname, "btuart")) {
1078 1.1 bsh /* port is reserved for kgdb */
1079 1.1 bsh } else
1080 1.1 bsh #endif
1081 1.1 bsh if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
1082 1.1 bsh comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
1083 1.1 bsh ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN,
1084 1.1 bsh ckenreg|CKEN_BTUART);
1085 1.1 bsh return;
1086 1.1 bsh }
1087 1.1 bsh #endif /* BTUARTCONSOLE */
1088 1.1 bsh
1089 1.1 bsh
1090 1.1 bsh #endif /* NCOM */
1091 1.1 bsh
1092 1.1 bsh }
1093 1.1 bsh
1094 1.1 bsh #ifdef KGDB
1095 1.1 bsh void
1096 1.1 bsh kgdb_port_init(void)
1097 1.1 bsh {
1098 1.1 bsh #if (NCOM > 0) && defined(COM_PXA2X0)
1099 1.1 bsh paddr_t paddr = 0;
1100 1.1 bsh uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN);
1101 1.1 bsh
1102 1.1 bsh if (0 == strcmp(kgdb_devname, "ffuart")) {
1103 1.1 bsh paddr = PXA2X0_FFUART_BASE;
1104 1.5 bsh ckenreg |= CKEN_FFUART;
1105 1.1 bsh }
1106 1.1 bsh else if (0 == strcmp(kgdb_devname, "btuart")) {
1107 1.1 bsh paddr = PXA2X0_BTUART_BASE;
1108 1.5 bsh ckenreg |= CKEN_BTUART;
1109 1.1 bsh }
1110 1.1 bsh
1111 1.1 bsh if (paddr &&
1112 1.5 bsh 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
1113 1.1 bsh kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
1114 1.1 bsh
1115 1.1 bsh ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
1116 1.1 bsh }
1117 1.1 bsh #endif
1118 1.1 bsh }
1119 1.1 bsh #endif
1120 1.1 bsh
1121 1.1 bsh #if 0
1122 1.1 bsh /*
1123 1.1 bsh * display a number in hex LED.
1124 1.1 bsh * a digit is blank when the corresponding bit in arg blank is 1
1125 1.1 bsh */
1126 1.1 bsh unsigned short led_control_value = 0;
1127 1.1 bsh
1128 1.1 bsh void
1129 1.1 bsh hex_led_blank(uint32_t value, int blank)
1130 1.1 bsh {
1131 1.1 bsh int save = disable_interrupts(I32_bit);
1132 1.1 bsh
1133 1.1 bsh ioreg_write(LUBBOCK_OBIO_VBASE+0x10, value);
1134 1.1 bsh led_control_value = (led_control_value & 0xff)
1135 1.1 bsh | ((blank & 0xff)<<8);
1136 1.1 bsh ioreg_write(LUBBOCK_OBIO_VBASE+0x40, led_control_value);
1137 1.1 bsh restore_interrupts(save);
1138 1.1 bsh }
1139 1.1 bsh #endif
1140