Home | History | Annotate | Line # | Download | only in lubbock
lubbock_machdep.c revision 1.14.24.1
      1 /*	$NetBSD: lubbock_machdep.c,v 1.14.24.1 2007/11/01 16:06:54 rjs Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
      5  * Written by Hiroyuki Bessho for Genetec Corporation.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of Genetec Corporation may not be used to endorse or
     16  *    promote products derived from this software without specific prior
     17  *    written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  *
     31  * Machine dependant functions for kernel setup for
     32  * Intel DBPXA250 evaluation board (a.k.a. Lubbock).
     33  * Based on iq80310_machhdep.c
     34  */
     35 /*
     36  * Copyright (c) 2001 Wasabi Systems, Inc.
     37  * All rights reserved.
     38  *
     39  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. All advertising materials mentioning features or use of this software
     50  *    must display the following acknowledgement:
     51  *	This product includes software developed for the NetBSD Project by
     52  *	Wasabi Systems, Inc.
     53  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     54  *    or promote products derived from this software without specific prior
     55  *    written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     59  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     60  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     67  * POSSIBILITY OF SUCH DAMAGE.
     68  */
     69 
     70 /*
     71  * Copyright (c) 1997,1998 Mark Brinicombe.
     72  * Copyright (c) 1997,1998 Causality Limited.
     73  * All rights reserved.
     74  *
     75  * Redistribution and use in source and binary forms, with or without
     76  * modification, are permitted provided that the following conditions
     77  * are met:
     78  * 1. Redistributions of source code must retain the above copyright
     79  *    notice, this list of conditions and the following disclaimer.
     80  * 2. Redistributions in binary form must reproduce the above copyright
     81  *    notice, this list of conditions and the following disclaimer in the
     82  *    documentation and/or other materials provided with the distribution.
     83  * 3. All advertising materials mentioning features or use of this software
     84  *    must display the following acknowledgement:
     85  *	This product includes software developed by Mark Brinicombe
     86  *	for the NetBSD Project.
     87  * 4. The name of the company nor the name of the author may be used to
     88  *    endorse or promote products derived from this software without specific
     89  *    prior written permission.
     90  *
     91  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     92  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     93  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     94  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     95  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     96  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     97  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     98  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     99  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    100  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    101  * SUCH DAMAGE.
    102  *
    103  * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
    104  * boards using RedBoot firmware.
    105  */
    106 
    107 /*
    108  * DIP switches:
    109  *
    110  * S19: no-dot: set RB_KDB.  enter kgdb session.
    111  * S20: no-dot: set RB_SINGLE. don't go multi user mode.
    112  */
    113 
    114 #include <sys/cdefs.h>
    115 __KERNEL_RCSID(0, "$NetBSD: lubbock_machdep.c,v 1.14.24.1 2007/11/01 16:06:54 rjs Exp $");
    116 
    117 #include "opt_ddb.h"
    118 #include "opt_kgdb.h"
    119 #include "opt_ipkdb.h"
    120 #include "opt_pmap_debug.h"
    121 #include "opt_md.h"
    122 #include "opt_com.h"
    123 #include "md.h"
    124 #include "lcd.h"
    125 
    126 #include <sys/param.h>
    127 #include <sys/device.h>
    128 #include <sys/systm.h>
    129 #include <sys/kernel.h>
    130 #include <sys/exec.h>
    131 #include <sys/proc.h>
    132 #include <sys/msgbuf.h>
    133 #include <sys/reboot.h>
    134 #include <sys/termios.h>
    135 #include <sys/ksyms.h>
    136 
    137 #include <uvm/uvm_extern.h>
    138 
    139 #include <sys/conf.h>
    140 #include <dev/cons.h>
    141 #include <dev/md.h>
    142 #include <dev/ic/smc91cxxreg.h>
    143 
    144 #include <machine/db_machdep.h>
    145 #include <ddb/db_sym.h>
    146 #include <ddb/db_extern.h>
    147 #ifdef KGDB
    148 #include <sys/kgdb.h>
    149 #endif
    150 
    151 #include <machine/bootconfig.h>
    152 #include <machine/bus.h>
    153 #include <machine/cpu.h>
    154 #include <machine/frame.h>
    155 #include <arm/undefined.h>
    156 
    157 #include <arm/arm32/machdep.h>
    158 
    159 #include <arm/xscale/pxa2x0reg.h>
    160 #include <arm/xscale/pxa2x0var.h>
    161 #include <arm/xscale/pxa2x0_gpio.h>
    162 #include <arm/sa11x0/sa1111_reg.h>
    163 #include <evbarm/lubbock/lubbock_reg.h>
    164 #include <evbarm/lubbock/lubbock_var.h>
    165 
    166 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
    167 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
    168 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    169 
    170 /*
    171  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
    172  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
    173  */
    174 #define KERNEL_VM_SIZE		0x0C000000
    175 
    176 
    177 /*
    178  * Address to call from cpu_reset() to reset the machine.
    179  * This is machine architecture dependant as it varies depending
    180  * on where the ROM appears when you turn the MMU off.
    181  */
    182 
    183 u_int cpu_reset_address = 0;
    184 
    185 /* Define various stack sizes in pages */
    186 #define IRQ_STACK_SIZE	1
    187 #define ABT_STACK_SIZE	1
    188 #ifdef IPKDB
    189 #define UND_STACK_SIZE	2
    190 #else
    191 #define UND_STACK_SIZE	1
    192 #endif
    193 
    194 BootConfig bootconfig;		/* Boot config storage */
    195 char *boot_args = NULL;
    196 char *boot_file = NULL;
    197 
    198 vm_offset_t physical_start;
    199 vm_offset_t physical_freestart;
    200 vm_offset_t physical_freeend;
    201 vm_offset_t physical_end;
    202 u_int free_pages;
    203 vm_offset_t pagetables_start;
    204 int physmem = 0;
    205 
    206 /*int debug_flags;*/
    207 #ifndef PMAP_STATIC_L1S
    208 int max_processes = 64;			/* Default number */
    209 #endif	/* !PMAP_STATIC_L1S */
    210 
    211 /* Physical and virtual addresses for some global pages */
    212 pv_addr_t systempage;
    213 pv_addr_t irqstack;
    214 pv_addr_t undstack;
    215 pv_addr_t abtstack;
    216 pv_addr_t kernelstack;
    217 pv_addr_t minidataclean;
    218 
    219 vm_offset_t msgbufphys;
    220 
    221 extern u_int data_abort_handler_address;
    222 extern u_int prefetch_abort_handler_address;
    223 extern u_int undefined_handler_address;
    224 
    225 #ifdef PMAP_DEBUG
    226 extern int pmap_debug_level;
    227 #endif
    228 
    229 #define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
    230 #define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
    231 #define	KERNEL_PT_KERNEL_NUM	4
    232 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
    233 				        /* Page tables for mapping kernel VM */
    234 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    235 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    236 
    237 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    238 
    239 struct user *proc0paddr;
    240 
    241 /* Prototypes */
    242 
    243 #if 0
    244 void	process_kernel_args(char *);
    245 #endif
    246 
    247 void	consinit(void);
    248 void	kgdb_port_init(void);
    249 void	change_clock(uint32_t v);
    250 
    251 bs_protos(bs_notimpl);
    252 
    253 #include "com.h"
    254 #if NCOM > 0
    255 #include <dev/ic/comreg.h>
    256 #include <dev/ic/comvar.h>
    257 #endif
    258 
    259 #ifndef CONSPEED
    260 #define CONSPEED B115200	/* What RedBoot uses */
    261 #endif
    262 #ifndef CONMODE
    263 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    264 #endif
    265 
    266 int comcnspeed = CONSPEED;
    267 int comcnmode = CONMODE;
    268 
    269 static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
    270 	{ 44, GPIO_ALT_FN_1_IN },	/* BTCST */
    271 	{ 45, GPIO_ALT_FN_2_OUT },	/* BTRST */
    272 
    273 	{ 29, GPIO_ALT_FN_1_IN },	/* SDATA_IN0 */
    274 
    275 	{ -1 }
    276 };
    277 static struct pxa2x0_gpioconf *lubbock_gpioconf[] = {
    278 	pxa25x_com_btuart_gpioconf,
    279 	pxa25x_com_ffuart_gpioconf,
    280 #if 0
    281 	pxa25x_com_stuart_gpioconf,
    282 #endif
    283 	pxa25x_pcic_gpioconf,
    284 	pxa25x_pxaacu_gpioconf,
    285 	boarddep_gpioconf,
    286 	NULL
    287 };
    288 
    289 /*
    290  * void cpu_reboot(int howto, char *bootstr)
    291  *
    292  * Reboots the system
    293  *
    294  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    295  * then reset the CPU.
    296  */
    297 void
    298 cpu_reboot(int howto, char *bootstr)
    299 {
    300 #ifdef DIAGNOSTIC
    301 	/* info */
    302 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
    303 #endif
    304 
    305 	/*
    306 	 * If we are still cold then hit the air brakes
    307 	 * and crash to earth fast
    308 	 */
    309 	if (cold) {
    310 		doshutdownhooks();
    311 		printf("The operating system has halted.\n");
    312 		printf("Please press any key to reboot.\n\n");
    313 		cngetc();
    314 		printf("rebooting...\n");
    315 		cpu_reset();
    316 		/*NOTREACHED*/
    317 	}
    318 
    319 	/* Disable console buffering */
    320 /*	cnpollc(1);*/
    321 
    322 	/*
    323 	 * If RB_NOSYNC was not specified sync the discs.
    324 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    325 	 * unmount.  It looks like syslogd is getting woken up only to find
    326 	 * that it cannot page part of the binary in as the filesystem has
    327 	 * been unmounted.
    328 	 */
    329 	if (!(howto & RB_NOSYNC))
    330 		bootsync();
    331 
    332 	/* Say NO to interrupts */
    333 	splhigh();
    334 
    335 	/* Do a dump if requested. */
    336 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    337 		dumpsys();
    338 
    339 	/* Run any shutdown hooks */
    340 	doshutdownhooks();
    341 
    342 	/* Make sure IRQ's are disabled */
    343 	IRQdisable;
    344 
    345 	if (howto & RB_HALT) {
    346 		printf("The operating system has halted.\n");
    347 		printf("Please press any key to reboot.\n\n");
    348 		cngetc();
    349 	}
    350 
    351 	printf("rebooting...\n");
    352 	cpu_reset();
    353 	/*NOTREACHED*/
    354 }
    355 
    356 static inline
    357 pd_entry_t *
    358 read_ttb(void)
    359 {
    360   long ttb;
    361 
    362   __asm volatile("mrc	p15, 0, %0, c2, c0, 0" : "=r" (ttb));
    363 
    364 
    365   return (pd_entry_t *)(ttb & ~((1<<14)-1));
    366 }
    367 
    368 /*
    369  * Static device mappings. These peripheral registers are mapped at
    370  * fixed virtual addresses very early in initarm() so that we can use
    371  * them while booting the kernel, and stay at the same address
    372  * throughout whole kernel's life time.
    373  *
    374  * We use this table twice; once with bootstrap page table, and once
    375  * with kernel's page table which we build up in initarm().
    376  *
    377  * Since we map these registers into the bootstrap page table using
    378  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
    379  * registers segment-aligned and segment-rounded in order to avoid
    380  * using the 2nd page tables.
    381  */
    382 
    383 #define	_A(a)	((a) & ~L1_S_OFFSET)
    384 #define	_S(s)	(((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
    385 
    386 static const struct pmap_devmap lubbock_devmap[] = {
    387     {
    388 	    LUBBOCK_OBIO_VBASE,
    389 	    _A(LUBBOCK_OBIO_PBASE),
    390 	    _S(LUBBOCK_OBIO_SIZE),
    391 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    392     },
    393     {
    394 	    LUBBOCK_GPIO_VBASE,
    395 	    _A(PXA2X0_GPIO_BASE),
    396 	    _S(PXA250_GPIO_SIZE),
    397 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    398     },
    399     {
    400 	    LUBBOCK_CLKMAN_VBASE,
    401 	    _A(PXA2X0_CLKMAN_BASE),
    402 	    _S(PXA2X0_CLKMAN_SIZE),
    403 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    404     },
    405     {
    406 	    LUBBOCK_INTCTL_VBASE,
    407 	    _A(PXA2X0_INTCTL_BASE),
    408 	    _S(PXA2X0_INTCTL_SIZE),
    409 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    410     },
    411     {
    412 	    LUBBOCK_FFUART_VBASE,
    413 	    _A(PXA2X0_FFUART_BASE),
    414 	    _S(4 * COM_NPORTS),
    415 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    416     },
    417     {
    418 	    LUBBOCK_BTUART_VBASE,
    419 	    _A(PXA2X0_BTUART_BASE),
    420 	    _S(4 * COM_NPORTS),
    421 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    422     },
    423 
    424     {0, 0, 0, 0,}
    425 };
    426 
    427 #undef	_A
    428 #undef	_S
    429 
    430 /*
    431  * u_int initarm(...)
    432  *
    433  * Initial entry point on startup. This gets called before main() is
    434  * entered.
    435  * It should be responsible for setting up everything that must be
    436  * in place when main is called.
    437  * This includes
    438  *   Taking a copy of the boot configuration structure.
    439  *   Initialising the physical console so characters can be printed.
    440  *   Setting up page tables for the kernel
    441  *   Relocating the kernel to the bottom of physical memory
    442  */
    443 u_int
    444 initarm(void *arg)
    445 {
    446 	extern vaddr_t xscale_cache_clean_addr;
    447 	int loop;
    448 	int loop1;
    449 	u_int l1pagetable;
    450 	pv_addr_t kernel_l1pt;
    451 	paddr_t memstart;
    452 	psize_t memsize;
    453 	int led_data = 0;
    454 #ifdef DIAGNOSTIC
    455 	extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
    456 #endif
    457 #define LEDSTEP_P() 	ioreg_write(LUBBOCK_OBIO_PBASE+LUBBOCK_HEXLED, led_data++)
    458 #define LEDSTEP() hex_led(led_data++)
    459 
    460 	/* use physical address until pagetable is set */
    461 	LEDSTEP_P();
    462 
    463 	/* map some peripheral registers at static I/O area */
    464 	pmap_devmap_bootstrap((vaddr_t)read_ttb(), lubbock_devmap);
    465 
    466 	LEDSTEP_P();
    467 
    468 	/* start 32.768 kHz OSC */
    469 	ioreg_write(LUBBOCK_CLKMAN_VBASE + 0x08, 2);
    470 	/* Get ready for splfoo() */
    471 	pxa2x0_intr_bootstrap(LUBBOCK_INTCTL_VBASE);
    472 
    473 	LEDSTEP();
    474 
    475 	/*
    476 	 * Heads up ... Setup the CPU / MMU / TLB functions
    477 	 */
    478 	if (set_cpufuncs())
    479 		panic("cpu not recognized!");
    480 
    481 	LEDSTEP();
    482 
    483 
    484 #if 0
    485 	/* Calibrate the delay loop. */
    486 #endif
    487 
    488 	/*
    489 	 * Okay, RedBoot has provided us with the following memory map:
    490 	 *
    491 	 * Physical Address Range     Description
    492 	 * -----------------------    ----------------------------------
    493 	 * 0x00000000 - 0x01ffffff    flash Memory   (32MB)
    494 	 * 0x04000000 - 0x05ffffff    Application flash Memory  (32MB)
    495 	 * 0x08000000 - 0x080000ff    I/O baseboard registers
    496 	 * 0x0a000000 - 0x0a0fffff    SRAM (1MB)
    497 	 * 0x0c000000 - 0x0c0fffff    Ethernet Controller
    498 	 * 0x0e000000 - 0x0e0fffff    Ethernet Controller (Attribute)
    499 	 * 0x10000000 - 0x103fffff    SA-1111 Companion Chip
    500 	 * 0x14000000 - 0x17ffffff    Expansion Card (64MB)
    501 	 * 0x40000000 - 0x480fffff    Processor Registers
    502 	 * 0xa0000000 - 0xa3ffffff    SDRAM Bank 0 (64MB)
    503 	 *
    504 	 *
    505 	 * Virtual Address Range    X C B  Description
    506 	 * -----------------------  - - -  ----------------------------------
    507 	 * 0x00000000 - 0x00003fff  N Y Y  SDRAM
    508 	 * 0x00004000 - 0x000fffff  N Y N  Boot ROM
    509 	 * 0x00100000 - 0x01ffffff  N N N  Application Flash
    510 	 * 0x04000000 - 0x05ffffff  N N N  Exp Application Flash
    511 	 * 0x08000000 - 0x080fffff  N N N  I/O baseboard registers
    512 	 * 0x0a000000 - 0x0a0fffff  N N N  SRAM
    513 	 * 0x40000000 - 0x480fffff  N N N  Processor Registers
    514 	 * 0xa0000000 - 0xa000ffff  N Y N  RedBoot SDRAM
    515 	 * 0xa0017000 - 0xa3ffffff  Y Y Y  SDRAM
    516 	 * 0xc0000000 - 0xcfffffff  Y Y Y  Cache Flush Region
    517 	 * (done by this routine)
    518 	 * 0xfd000000 - 0xfd0000ff  N N N  I/O baseboard registers
    519 	 * 0xfd100000 - 0xfd3fffff  N N N  Processor Registers.
    520 	 * 0xfd400000 - 0xfd4fffff  N N N  FF-UART
    521 	 * 0xfd500000 - 0xfd5fffff  N N N  BT-UART
    522 	 *
    523 	 * RedBoot's first level page table is at 0xa0004000.  There
    524 	 * are also 2 second-level tables at 0xa0008000 and
    525 	 * 0xa0008400.  We will continue to use them until we switch to
    526 	 * our pagetable by setttb().
    527 	 *
    528 	 */
    529 
    530 	/* setup GPIO for BTUART, in case bootloader doesn't take care of it */
    531 	pxa2x0_gpio_bootstrap(LUBBOCK_GPIO_VBASE);
    532 	pxa2x0_gpio_config(lubbock_gpioconf);
    533 
    534 	/* turn on clock to UART block.
    535 	   XXX: this should not be done here. */
    536 	ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, CKEN_FFUART|CKEN_BTUART |
    537 	    ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN));
    538 
    539 	LEDSTEP();
    540 
    541 	consinit();
    542 	LEDSTEP();
    543 #ifdef KGDB
    544 	kgdb_port_init();
    545 	LEDSTEP();
    546 #endif
    547 
    548 
    549 	/* Talk to the user */
    550 	printf("\nNetBSD/evbarm (lubbock) booting ...\n");
    551 
    552 	/* Tweak memory controller */
    553 	{
    554 		/* Modify access timing for CS3 (91c96) */
    555 
    556 		uint32_t tmp =
    557 			ioreg_read(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1);
    558 		ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1,
    559 			     (tmp & 0xffff) | (0x3881<<16));
    560 		/* RRR=3, RDN=8, RDF=8
    561 		 * XXX: can be faster?
    562 		 */
    563 	}
    564 
    565 
    566 	/* Initialize for PCMCIA/CF sockets */
    567 	{
    568 		uint32_t tmp;
    569 
    570 		/* Activate two sockets.
    571 		   XXX: This code segment should be moved to
    572 		        pcmcia MD attach routine.
    573 		   XXX: These bits should be toggled based on
    574 		        existene of PCMCIA/CF cards
    575 		*/
    576 		ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MECR,
    577 			     MECR_NOS|MECR_CIT);
    578 
    579 		tmp = ioreg_read(LUBBOCK_SACC_PBASE+SACCSBI_SKCR);
    580 		ioreg_write(LUBBOCK_SACC_PBASE+SACCSBI_SKCR,
    581 			     (tmp & ~(1<<4)) | (1<<0));
    582 	}
    583 
    584 #if 0
    585 	/*
    586 	 * Examine the boot args string for options we need to know about
    587 	 * now.
    588 	 */
    589 	process_kernel_args((char *)nwbootinfo.bt_args);
    590 #endif
    591 
    592 	{
    593 		int processor_card_id;
    594 
    595 		processor_card_id = 0x000f &
    596 			ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_MISCRD);
    597 		switch(processor_card_id){
    598 		case 0:
    599 			/* Cotulla */
    600 			memstart = 0xa0000000;
    601 			memsize =  0x04000000; /* 64MB */
    602 			break;
    603 		case 1:
    604 			/* XXX: Sabiani */
    605 			memstart = 0xa0000000;
    606 			memsize = 0x04000000; /* 64MB */
    607 			break;
    608 		default:
    609 			/* XXX: Unknown  */
    610 			memstart = 0xa0000000;
    611 			memsize = 0x04000000; /* 64MB */
    612 		}
    613 	}
    614 
    615 	printf("initarm: Configuring system ...\n");
    616 
    617 	/* Fake bootconfig structure for the benefit of pmap.c */
    618 	/* XXX must make the memory description h/w independent */
    619 	bootconfig.dramblocks = 1;
    620 	bootconfig.dram[0].address = memstart;
    621 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    622 
    623 	/*
    624 	 * Set up the variables that define the availablilty of
    625 	 * physical memory.  For now, we're going to set
    626 	 * physical_freestart to 0xa0200000 (where the kernel
    627 	 * was loaded), and allocate the memory we need downwards.
    628 	 * If we get too close to the page tables that RedBoot
    629 	 * set up, we will panic.  We will update physical_freestart
    630 	 * and physical_freeend later to reflect what pmap_bootstrap()
    631 	 * wants to see.
    632 	 *
    633 	 * XXX pmap_bootstrap() needs an enema.
    634 	 */
    635 	physical_start = bootconfig.dram[0].address;
    636 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
    637 
    638 	physical_freestart = 0xa0009000UL;
    639 	physical_freeend = 0xa0200000UL;
    640 
    641 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    642 
    643 #ifdef VERBOSE_INIT_ARM
    644 	/* Tell the user about the memory */
    645 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    646 	    physical_start, physical_end - 1);
    647 #endif
    648 
    649 	/*
    650 	 * Okay, the kernel starts 2MB in from the bottom of physical
    651 	 * memory.  We are going to allocate our bootstrap pages downwards
    652 	 * from there.
    653 	 *
    654 	 * We need to allocate some fixed page tables to get the kernel
    655 	 * going.  We allocate one page directory and a number of page
    656 	 * tables and store the physical addresses in the kernel_pt_table
    657 	 * array.
    658 	 *
    659 	 * The kernel page directory must be on a 16K boundary.  The page
    660 	 * tables must be on 4K boundaries.  What we do is allocate the
    661 	 * page directory on the first 16K boundary that we encounter, and
    662 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    663 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    664 	 * least one 16K aligned region.
    665 	 */
    666 
    667 #ifdef VERBOSE_INIT_ARM
    668 	printf("Allocating page tables\n");
    669 #endif
    670 
    671 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    672 
    673 #ifdef VERBOSE_INIT_ARM
    674 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    675 	       physical_freestart, free_pages, free_pages);
    676 #endif
    677 
    678 	/* Define a macro to simplify memory allocation */
    679 #define	valloc_pages(var, np)				\
    680 	alloc_pages((var).pv_pa, (np));			\
    681 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    682 
    683 #define alloc_pages(var, np)				\
    684 	physical_freeend -= ((np) * PAGE_SIZE);		\
    685 	if (physical_freeend < physical_freestart)	\
    686 		panic("initarm: out of memory");	\
    687 	(var) = physical_freeend;			\
    688 	free_pages -= (np);				\
    689 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    690 
    691 	loop1 = 0;
    692 	kernel_l1pt.pv_pa = 0;
    693 	kernel_l1pt.pv_va = 0;
    694 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    695 		/* Are we 16KB aligned for an L1 ? */
    696 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
    697 		    && kernel_l1pt.pv_pa == 0) {
    698 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    699 		} else {
    700 			valloc_pages(kernel_pt_table[loop1],
    701 			    L2_TABLE_SIZE / PAGE_SIZE);
    702 			++loop1;
    703 		}
    704 	}
    705 
    706 	/* This should never be able to happen but better confirm that. */
    707 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
    708 		panic("initarm: Failed to align the kernel page directory");
    709 
    710 	LEDSTEP();
    711 
    712 	/*
    713 	 * Allocate a page for the system page mapped to V0x00000000
    714 	 * This page will just contain the system vectors and can be
    715 	 * shared by all processes.
    716 	 */
    717 	alloc_pages(systempage.pv_pa, 1);
    718 
    719 	/* Allocate stacks for all modes */
    720 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    721 	valloc_pages(abtstack, ABT_STACK_SIZE);
    722 	valloc_pages(undstack, UND_STACK_SIZE);
    723 	valloc_pages(kernelstack, UPAGES);
    724 
    725 	/* Allocate enough pages for cleaning the Mini-Data cache. */
    726 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
    727 	valloc_pages(minidataclean, 1);
    728 
    729 #ifdef VERBOSE_INIT_ARM
    730 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    731 	    irqstack.pv_va);
    732 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    733 	    abtstack.pv_va);
    734 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    735 	    undstack.pv_va);
    736 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    737 	    kernelstack.pv_va);
    738 #endif
    739 
    740 	/*
    741 	 * XXX Defer this to later so that we can reclaim the memory
    742 	 * XXX used by the RedBoot page tables.
    743 	 */
    744 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    745 
    746 	/*
    747 	 * Ok we have allocated physical pages for the primary kernel
    748 	 * page tables
    749 	 */
    750 
    751 #ifdef VERBOSE_INIT_ARM
    752 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    753 #endif
    754 
    755 	/*
    756 	 * Now we start construction of the L1 page table
    757 	 * We start by mapping the L2 page tables into the L1.
    758 	 * This means that we can replace L1 mappings later on if necessary
    759 	 */
    760 	l1pagetable = kernel_l1pt.pv_pa;
    761 
    762 	/* Map the L2 pages tables in the L1 page table */
    763 	pmap_link_l2pt(l1pagetable, 0x00000000,
    764 	    &kernel_pt_table[KERNEL_PT_SYS]);
    765 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    766 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    767 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    768 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    769 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    770 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    771 
    772 	/* update the top of the kernel VM */
    773 	pmap_curmaxkvaddr =
    774 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    775 
    776 #ifdef VERBOSE_INIT_ARM
    777 	printf("Mapping kernel\n");
    778 #endif
    779 
    780 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    781 	{
    782 		extern char etext[], _end[];
    783 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    784 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    785 		u_int logical;
    786 
    787 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    788 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    789 
    790 		logical = 0x00200000;	/* offset of kernel in RAM */
    791 
    792 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    793 		    physical_start + logical, textsize,
    794 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    795 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    796 		    physical_start + logical, totalsize - textsize,
    797 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    798 	}
    799 
    800 #ifdef VERBOSE_INIT_ARM
    801 	printf("Constructing L2 page tables\n");
    802 #endif
    803 
    804 	/* Map the stack pages */
    805 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    806 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    807 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    808 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    809 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    810 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    811 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    812 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    813 
    814 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    815 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
    816 
    817 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    818 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    819 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    820 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    821 	}
    822 
    823 	/* Map the Mini-Data cache clean area. */
    824 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
    825 	    minidataclean.pv_pa);
    826 
    827 	/* Map the vector page. */
    828 #if 1
    829 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
    830 	 * cache-clean code there.  */
    831 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    832 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    833 #else
    834 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    835 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    836 #endif
    837 
    838 	/*
    839 	 * map integrated peripherals at same address in l1pagetable
    840 	 * so that we can continue to use console.
    841 	 */
    842 	pmap_devmap_bootstrap(l1pagetable, lubbock_devmap);
    843 
    844 	/*
    845 	 * Give the XScale global cache clean code an appropriately
    846 	 * sized chunk of unmapped VA space starting at 0xff000000
    847 	 * (our device mappings end before this address).
    848 	 */
    849 	xscale_cache_clean_addr = 0xff000000U;
    850 
    851 	/*
    852 	 * Now we have the real page tables in place so we can switch to them.
    853 	 * Once this is done we will be running with the REAL kernel page
    854 	 * tables.
    855 	 */
    856 
    857 	/*
    858 	 * Update the physical_freestart/physical_freeend/free_pages
    859 	 * variables.
    860 	 */
    861 	{
    862 		extern char _end[];
    863 
    864 		physical_freestart = physical_start +
    865 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
    866 		     KERNEL_BASE);
    867 		physical_freeend = physical_end;
    868 		free_pages =
    869 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
    870 	}
    871 
    872 	/* Switch tables */
    873 #ifdef VERBOSE_INIT_ARM
    874 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    875 	       physical_freestart, free_pages, free_pages);
    876 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    877 #endif
    878 
    879 	LEDSTEP();
    880 
    881 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    882 	setttb(kernel_l1pt.pv_pa);
    883 	cpu_tlb_flushID();
    884 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    885 	LEDSTEP();
    886 
    887 	/*
    888 	 * Moved from cpu_startup() as data_abort_handler() references
    889 	 * this during uvm init
    890 	 */
    891 	proc0paddr = (struct user *)kernelstack.pv_va;
    892 	lwp0.l_addr = proc0paddr;
    893 
    894 #ifdef VERBOSE_INIT_ARM
    895 	printf("bootstrap done.\n");
    896 #endif
    897 
    898 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
    899 
    900 	/*
    901 	 * Pages were allocated during the secondary bootstrap for the
    902 	 * stacks for different CPU modes.
    903 	 * We must now set the r13 registers in the different CPU modes to
    904 	 * point to these stacks.
    905 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    906 	 * of the stack memory.
    907 	 */
    908 	printf("init subsystems: stacks ");
    909 
    910 	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    911 	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    912 	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    913 
    914 	/*
    915 	 * Well we should set a data abort handler.
    916 	 * Once things get going this will change as we will need a proper
    917 	 * handler.
    918 	 * Until then we will use a handler that just panics but tells us
    919 	 * why.
    920 	 * Initialisation of the vectors will just panic on a data abort.
    921 	 * This just fills in a slightly better one.
    922 	 */
    923 	printf("vectors ");
    924 	data_abort_handler_address = (u_int)data_abort_handler;
    925 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    926 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    927 
    928 	/* Initialise the undefined instruction handlers */
    929 	printf("undefined ");
    930 	undefined_init();
    931 
    932 	/* Load memory into UVM. */
    933 	printf("page ");
    934 	uvm_setpagesize();        /* initialize PAGE_SIZE-dependent variables */
    935 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    936 	    atop(physical_freestart), atop(physical_freeend),
    937 	    VM_FREELIST_DEFAULT);
    938 
    939 	/* Boot strap pmap telling it where the kernel page table is */
    940 	printf("pmap ");
    941 	LEDSTEP();
    942 	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
    943 	    KERNEL_VM_BASE + KERNEL_VM_SIZE);
    944 	LEDSTEP();
    945 
    946 #ifdef __HAVE_MEMORY_DISK__
    947 	md_root_setconf(memory_disk, sizeof memory_disk);
    948 #endif
    949 
    950 	{
    951 		uint16_t sw = ioreg16_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW);
    952 
    953 		if (0 == (sw & (1<<13))) /* check S19 */
    954 			boothowto |= RB_KDB;
    955 		if (0 == (sw & (1<<12))) /* S20 */
    956 			boothowto |= RB_SINGLE;
    957 	}
    958 
    959 	LEDSTEP();
    960 
    961 #ifdef IPKDB
    962 	/* Initialise ipkdb */
    963 	ipkdb_init();
    964 	if (boothowto & RB_KDB)
    965 		ipkdb_connect(0);
    966 #endif
    967 
    968 #ifdef KGDB
    969 	if (boothowto & RB_KDB) {
    970 		kgdb_debug_init = 1;
    971 		kgdb_connect(1);
    972 	}
    973 #endif
    974 
    975 #ifdef DDB
    976 	db_machine_init();
    977 
    978 	/* Firmware doesn't load symbols. */
    979 	ddb_init(0, NULL, NULL);
    980 
    981 	if (boothowto & RB_KDB)
    982 		Debugger();
    983 #endif
    984 
    985 	/* We return the new stack pointer address */
    986 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    987 }
    988 
    989 #if 0
    990 void
    991 process_kernel_args(char *args)
    992 {
    993 
    994 	boothowto = 0;
    995 
    996 	/* Make a local copy of the bootargs */
    997 	strncpy(bootargs, args, MAX_BOOT_STRING);
    998 
    999 	args = bootargs;
   1000 	boot_file = bootargs;
   1001 
   1002 	/* Skip the kernel image filename */
   1003 	while (*args != ' ' && *args != 0)
   1004 		++args;
   1005 
   1006 	if (*args != 0)
   1007 		*args++ = 0;
   1008 
   1009 	while (*args == ' ')
   1010 		++args;
   1011 
   1012 	boot_args = args;
   1013 
   1014 	printf("bootfile: %s\n", boot_file);
   1015 	printf("bootargs: %s\n", boot_args);
   1016 
   1017 	parse_mi_bootargs(boot_args);
   1018 }
   1019 #endif
   1020 
   1021 #ifdef KGDB
   1022 #ifndef KGDB_DEVNAME
   1023 #define KGDB_DEVNAME "ffuart"
   1024 #endif
   1025 const char kgdb_devname[] = KGDB_DEVNAME;
   1026 
   1027 #if (NCOM > 0)
   1028 #ifndef KGDB_DEVMODE
   1029 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
   1030 #endif
   1031 int comkgdbmode = KGDB_DEVMODE;
   1032 #endif /* NCOM */
   1033 
   1034 #endif /* KGDB */
   1035 
   1036 
   1037 void
   1038 consinit(void)
   1039 {
   1040 	static int consinit_called = 0;
   1041 	uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN);
   1042 #if 0
   1043 	char *console = CONSDEVNAME;
   1044 #endif
   1045 
   1046 	if (consinit_called != 0)
   1047 		return;
   1048 
   1049 	consinit_called = 1;
   1050 
   1051 #if NCOM > 0
   1052 
   1053 #ifdef FFUARTCONSOLE
   1054 	/* Check switch. */
   1055 	if (0 == (ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW) & (1<<15))) {
   1056 		/* We don't use FF serial when S17=no-dot position */
   1057 	}
   1058 #ifdef KGDB
   1059 	else if (0 == strcmp(kgdb_devname, "ffuart")) {
   1060 		/* port is reserved for kgdb */
   1061 	}
   1062 #endif
   1063 	else if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
   1064 		     comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
   1065 #if 0
   1066 		/* XXX: can't call pxa2x0_clkman_config yet */
   1067 		pxa2x0_clkman_config(CKEN_FFUART, 1);
   1068 #else
   1069 		ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN,
   1070 		    ckenreg|CKEN_FFUART);
   1071 #endif
   1072 
   1073 		return;
   1074 	}
   1075 #endif /* FFUARTCONSOLE */
   1076 
   1077 #ifdef BTUARTCONSOLE
   1078 #ifdef KGDB
   1079 	if (0 == strcmp(kgdb_devname, "btuart")) {
   1080 		/* port is reserved for kgdb */
   1081 	} else
   1082 #endif
   1083 	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
   1084 		comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
   1085 		ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN,
   1086 		    ckenreg|CKEN_BTUART);
   1087 		return;
   1088 	}
   1089 #endif /* BTUARTCONSOLE */
   1090 
   1091 
   1092 #endif /* NCOM */
   1093 
   1094 }
   1095 
   1096 #ifdef KGDB
   1097 void
   1098 kgdb_port_init(void)
   1099 {
   1100 #if (NCOM > 0) && defined(COM_PXA2X0)
   1101 	paddr_t paddr = 0;
   1102 	uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN);
   1103 
   1104 	if (0 == strcmp(kgdb_devname, "ffuart")) {
   1105 		paddr = PXA2X0_FFUART_BASE;
   1106 		ckenreg |= CKEN_FFUART;
   1107 	}
   1108 	else if (0 == strcmp(kgdb_devname, "btuart")) {
   1109 		paddr = PXA2X0_BTUART_BASE;
   1110 		ckenreg |= CKEN_BTUART;
   1111 	}
   1112 
   1113 	if (paddr &&
   1114 	    0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
   1115 		kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
   1116 
   1117 		ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
   1118 	}
   1119 #endif
   1120 }
   1121 #endif
   1122 
   1123 #if 0
   1124 /*
   1125  * display a number in hex LED.
   1126  * a digit is blank when the corresponding bit in arg blank is 1
   1127  */
   1128 unsigned short led_control_value = 0;
   1129 
   1130 void
   1131 hex_led_blank(uint32_t value, int blank)
   1132 {
   1133 	int save = disable_interrupts(I32_bit);
   1134 
   1135 	ioreg_write(LUBBOCK_OBIO_VBASE+0x10, value);
   1136 	led_control_value = (led_control_value & 0xff)
   1137 		| ((blank & 0xff)<<8);
   1138 	ioreg_write(LUBBOCK_OBIO_VBASE+0x40, led_control_value);
   1139 	restore_interrupts(save);
   1140 }
   1141 #endif
   1142