lubbock_machdep.c revision 1.15.2.3 1 /* lubbock_machdep.c,v 1.15.2.1 2007/11/06 23:16:02 matt Exp */
2
3 /*
4 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 * Written by Hiroyuki Bessho for Genetec Corporation.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of Genetec Corporation may not be used to endorse or
16 * promote products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Machine dependant functions for kernel setup for
32 * Intel DBPXA250 evaluation board (a.k.a. Lubbock).
33 * Based on iq80310_machhdep.c
34 */
35 /*
36 * Copyright (c) 2001 Wasabi Systems, Inc.
37 * All rights reserved.
38 *
39 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 * must display the following acknowledgement:
51 * This product includes software developed for the NetBSD Project by
52 * Wasabi Systems, Inc.
53 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
54 * or promote products derived from this software without specific prior
55 * written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
60 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 * POSSIBILITY OF SUCH DAMAGE.
68 */
69
70 /*
71 * Copyright (c) 1997,1998 Mark Brinicombe.
72 * Copyright (c) 1997,1998 Causality Limited.
73 * All rights reserved.
74 *
75 * Redistribution and use in source and binary forms, with or without
76 * modification, are permitted provided that the following conditions
77 * are met:
78 * 1. Redistributions of source code must retain the above copyright
79 * notice, this list of conditions and the following disclaimer.
80 * 2. Redistributions in binary form must reproduce the above copyright
81 * notice, this list of conditions and the following disclaimer in the
82 * documentation and/or other materials provided with the distribution.
83 * 3. All advertising materials mentioning features or use of this software
84 * must display the following acknowledgement:
85 * This product includes software developed by Mark Brinicombe
86 * for the NetBSD Project.
87 * 4. The name of the company nor the name of the author may be used to
88 * endorse or promote products derived from this software without specific
89 * prior written permission.
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
92 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
93 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
94 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
95 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
96 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
97 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101 * SUCH DAMAGE.
102 *
103 * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
104 * boards using RedBoot firmware.
105 */
106
107 /*
108 * DIP switches:
109 *
110 * S19: no-dot: set RB_KDB. enter kgdb session.
111 * S20: no-dot: set RB_SINGLE. don't go multi user mode.
112 */
113
114 #include <sys/cdefs.h>
115 __KERNEL_RCSID(0, "lubbock_machdep.c,v 1.15.2.1 2007/11/06 23:16:02 matt Exp");
116
117 #include "opt_ddb.h"
118 #include "opt_kgdb.h"
119 #include "opt_pmap_debug.h"
120 #include "opt_md.h"
121 #include "opt_com.h"
122 #include "md.h"
123 #include "lcd.h"
124
125 #include <sys/param.h>
126 #include <sys/device.h>
127 #include <sys/systm.h>
128 #include <sys/kernel.h>
129 #include <sys/exec.h>
130 #include <sys/proc.h>
131 #include <sys/msgbuf.h>
132 #include <sys/reboot.h>
133 #include <sys/termios.h>
134 #include <sys/ksyms.h>
135
136 #include <uvm/uvm_extern.h>
137
138 #include <sys/conf.h>
139 #include <dev/cons.h>
140 #include <dev/md.h>
141 #include <dev/ic/smc91cxxreg.h>
142
143 #include <machine/db_machdep.h>
144 #include <ddb/db_sym.h>
145 #include <ddb/db_extern.h>
146 #ifdef KGDB
147 #include <sys/kgdb.h>
148 #endif
149
150 #include <machine/bootconfig.h>
151 #include <machine/bus.h>
152 #include <machine/cpu.h>
153 #include <machine/frame.h>
154 #include <arm/undefined.h>
155
156 #include <arm/arm32/machdep.h>
157
158 #include <arm/xscale/pxa2x0reg.h>
159 #include <arm/xscale/pxa2x0var.h>
160 #include <arm/xscale/pxa2x0_gpio.h>
161 #include <arm/sa11x0/sa1111_reg.h>
162 #include <evbarm/lubbock/lubbock_reg.h>
163 #include <evbarm/lubbock/lubbock_var.h>
164
165 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
166 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
167 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
168
169 /*
170 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
171 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
172 */
173 #define KERNEL_VM_SIZE 0x0C000000
174
175
176 /*
177 * Address to call from cpu_reset() to reset the machine.
178 * This is machine architecture dependant as it varies depending
179 * on where the ROM appears when you turn the MMU off.
180 */
181
182 u_int cpu_reset_address = 0;
183
184 /* Define various stack sizes in pages */
185 #define IRQ_STACK_SIZE 1
186 #define ABT_STACK_SIZE 1
187 #define UND_STACK_SIZE 1
188
189 BootConfig bootconfig; /* Boot config storage */
190 char *boot_args = NULL;
191 char *boot_file = NULL;
192
193 vm_offset_t physical_start;
194 vm_offset_t physical_freestart;
195 vm_offset_t physical_freeend;
196 vm_offset_t physical_end;
197 u_int free_pages;
198 vm_offset_t pagetables_start;
199 int physmem = 0;
200
201 /*int debug_flags;*/
202 #ifndef PMAP_STATIC_L1S
203 int max_processes = 64; /* Default number */
204 #endif /* !PMAP_STATIC_L1S */
205
206 /* Physical and virtual addresses for some global pages */
207 pv_addr_t systempage;
208 pv_addr_t irqstack;
209 pv_addr_t undstack;
210 pv_addr_t abtstack;
211 pv_addr_t kernelstack;
212 pv_addr_t minidataclean;
213
214 vm_offset_t msgbufphys;
215
216 extern u_int data_abort_handler_address;
217 extern u_int prefetch_abort_handler_address;
218 extern u_int undefined_handler_address;
219
220 #ifdef PMAP_DEBUG
221 extern int pmap_debug_level;
222 #endif
223
224 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
225 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
226 #define KERNEL_PT_KERNEL_NUM 4
227 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
228 /* Page tables for mapping kernel VM */
229 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
230 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
231
232 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
233
234 struct user *proc0paddr;
235
236 /* Prototypes */
237
238 #if 0
239 void process_kernel_args(char *);
240 #endif
241
242 void consinit(void);
243 void kgdb_port_init(void);
244 void change_clock(uint32_t v);
245
246 bs_protos(bs_notimpl);
247
248 #include "com.h"
249 #if NCOM > 0
250 #include <dev/ic/comreg.h>
251 #include <dev/ic/comvar.h>
252 #endif
253
254 #ifndef CONSPEED
255 #define CONSPEED B115200 /* What RedBoot uses */
256 #endif
257 #ifndef CONMODE
258 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
259 #endif
260
261 int comcnspeed = CONSPEED;
262 int comcnmode = CONMODE;
263
264 static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
265 { 44, GPIO_ALT_FN_1_IN }, /* BTCST */
266 { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */
267
268 { 29, GPIO_ALT_FN_1_IN }, /* SDATA_IN0 */
269
270 { -1 }
271 };
272 static struct pxa2x0_gpioconf *lubbock_gpioconf[] = {
273 pxa25x_com_btuart_gpioconf,
274 pxa25x_com_ffuart_gpioconf,
275 #if 0
276 pxa25x_com_stuart_gpioconf,
277 #endif
278 pxa25x_pcic_gpioconf,
279 pxa25x_pxaacu_gpioconf,
280 boarddep_gpioconf,
281 NULL
282 };
283
284 /*
285 * void cpu_reboot(int howto, char *bootstr)
286 *
287 * Reboots the system
288 *
289 * Deal with any syncing, unmounting, dumping and shutdown hooks,
290 * then reset the CPU.
291 */
292 void
293 cpu_reboot(int howto, char *bootstr)
294 {
295 #ifdef DIAGNOSTIC
296 /* info */
297 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
298 #endif
299
300 /*
301 * If we are still cold then hit the air brakes
302 * and crash to earth fast
303 */
304 if (cold) {
305 doshutdownhooks();
306 printf("The operating system has halted.\n");
307 printf("Please press any key to reboot.\n\n");
308 cngetc();
309 printf("rebooting...\n");
310 cpu_reset();
311 /*NOTREACHED*/
312 }
313
314 /* Disable console buffering */
315 /* cnpollc(1);*/
316
317 /*
318 * If RB_NOSYNC was not specified sync the discs.
319 * Note: Unless cold is set to 1 here, syslogd will die during the
320 * unmount. It looks like syslogd is getting woken up only to find
321 * that it cannot page part of the binary in as the filesystem has
322 * been unmounted.
323 */
324 if (!(howto & RB_NOSYNC))
325 bootsync();
326
327 /* Say NO to interrupts */
328 splhigh();
329
330 /* Do a dump if requested. */
331 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
332 dumpsys();
333
334 /* Run any shutdown hooks */
335 doshutdownhooks();
336
337 /* Make sure IRQ's are disabled */
338 IRQdisable;
339
340 if (howto & RB_HALT) {
341 printf("The operating system has halted.\n");
342 printf("Please press any key to reboot.\n\n");
343 cngetc();
344 }
345
346 printf("rebooting...\n");
347 cpu_reset();
348 /*NOTREACHED*/
349 }
350
351 static inline
352 pd_entry_t *
353 read_ttb(void)
354 {
355 long ttb;
356
357 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
358
359
360 return (pd_entry_t *)(ttb & ~((1<<14)-1));
361 }
362
363 /*
364 * Static device mappings. These peripheral registers are mapped at
365 * fixed virtual addresses very early in initarm() so that we can use
366 * them while booting the kernel, and stay at the same address
367 * throughout whole kernel's life time.
368 *
369 * We use this table twice; once with bootstrap page table, and once
370 * with kernel's page table which we build up in initarm().
371 *
372 * Since we map these registers into the bootstrap page table using
373 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
374 * registers segment-aligned and segment-rounded in order to avoid
375 * using the 2nd page tables.
376 */
377
378 #define _A(a) ((a) & ~L1_S_OFFSET)
379 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
380
381 static const struct pmap_devmap lubbock_devmap[] = {
382 {
383 LUBBOCK_OBIO_VBASE,
384 _A(LUBBOCK_OBIO_PBASE),
385 _S(LUBBOCK_OBIO_SIZE),
386 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
387 },
388 {
389 LUBBOCK_GPIO_VBASE,
390 _A(PXA2X0_GPIO_BASE),
391 _S(PXA250_GPIO_SIZE),
392 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
393 },
394 {
395 LUBBOCK_CLKMAN_VBASE,
396 _A(PXA2X0_CLKMAN_BASE),
397 _S(PXA2X0_CLKMAN_SIZE),
398 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
399 },
400 {
401 LUBBOCK_INTCTL_VBASE,
402 _A(PXA2X0_INTCTL_BASE),
403 _S(PXA2X0_INTCTL_SIZE),
404 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
405 },
406 {
407 LUBBOCK_FFUART_VBASE,
408 _A(PXA2X0_FFUART_BASE),
409 _S(4 * COM_NPORTS),
410 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
411 },
412 {
413 LUBBOCK_BTUART_VBASE,
414 _A(PXA2X0_BTUART_BASE),
415 _S(4 * COM_NPORTS),
416 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
417 },
418
419 {0, 0, 0, 0,}
420 };
421
422 #undef _A
423 #undef _S
424
425 /*
426 * u_int initarm(...)
427 *
428 * Initial entry point on startup. This gets called before main() is
429 * entered.
430 * It should be responsible for setting up everything that must be
431 * in place when main is called.
432 * This includes
433 * Taking a copy of the boot configuration structure.
434 * Initialising the physical console so characters can be printed.
435 * Setting up page tables for the kernel
436 * Relocating the kernel to the bottom of physical memory
437 */
438 u_int
439 initarm(void *arg)
440 {
441 extern vaddr_t xscale_cache_clean_addr;
442 int loop;
443 int loop1;
444 u_int l1pagetable;
445 paddr_t memstart;
446 psize_t memsize;
447 int led_data = 0;
448 #ifdef DIAGNOSTIC
449 extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
450 #endif
451 #define LEDSTEP_P() ioreg_write(LUBBOCK_OBIO_PBASE+LUBBOCK_HEXLED, led_data++)
452 #define LEDSTEP() hex_led(led_data++)
453
454 /* use physical address until pagetable is set */
455 LEDSTEP_P();
456
457 /* map some peripheral registers at static I/O area */
458 pmap_devmap_bootstrap((vaddr_t)read_ttb(), lubbock_devmap);
459
460 LEDSTEP_P();
461
462 /* start 32.768 kHz OSC */
463 ioreg_write(LUBBOCK_CLKMAN_VBASE + 0x08, 2);
464 /* Get ready for splfoo() */
465 pxa2x0_intr_bootstrap(LUBBOCK_INTCTL_VBASE);
466
467 LEDSTEP();
468
469 /*
470 * Heads up ... Setup the CPU / MMU / TLB functions
471 */
472 if (set_cpufuncs())
473 panic("cpu not recognized!");
474
475 LEDSTEP();
476
477
478 #if 0
479 /* Calibrate the delay loop. */
480 #endif
481
482 /*
483 * Okay, RedBoot has provided us with the following memory map:
484 *
485 * Physical Address Range Description
486 * ----------------------- ----------------------------------
487 * 0x00000000 - 0x01ffffff flash Memory (32MB)
488 * 0x04000000 - 0x05ffffff Application flash Memory (32MB)
489 * 0x08000000 - 0x080000ff I/O baseboard registers
490 * 0x0a000000 - 0x0a0fffff SRAM (1MB)
491 * 0x0c000000 - 0x0c0fffff Ethernet Controller
492 * 0x0e000000 - 0x0e0fffff Ethernet Controller (Attribute)
493 * 0x10000000 - 0x103fffff SA-1111 Companion Chip
494 * 0x14000000 - 0x17ffffff Expansion Card (64MB)
495 * 0x40000000 - 0x480fffff Processor Registers
496 * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB)
497 *
498 *
499 * Virtual Address Range X C B Description
500 * ----------------------- - - - ----------------------------------
501 * 0x00000000 - 0x00003fff N Y Y SDRAM
502 * 0x00004000 - 0x000fffff N Y N Boot ROM
503 * 0x00100000 - 0x01ffffff N N N Application Flash
504 * 0x04000000 - 0x05ffffff N N N Exp Application Flash
505 * 0x08000000 - 0x080fffff N N N I/O baseboard registers
506 * 0x0a000000 - 0x0a0fffff N N N SRAM
507 * 0x40000000 - 0x480fffff N N N Processor Registers
508 * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM
509 * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM
510 * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region
511 * (done by this routine)
512 * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers
513 * 0xfd100000 - 0xfd3fffff N N N Processor Registers.
514 * 0xfd400000 - 0xfd4fffff N N N FF-UART
515 * 0xfd500000 - 0xfd5fffff N N N BT-UART
516 *
517 * RedBoot's first level page table is at 0xa0004000. There
518 * are also 2 second-level tables at 0xa0008000 and
519 * 0xa0008400. We will continue to use them until we switch to
520 * our pagetable by setttb().
521 *
522 */
523
524 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */
525 pxa2x0_gpio_bootstrap(LUBBOCK_GPIO_VBASE);
526 pxa2x0_gpio_config(lubbock_gpioconf);
527
528 /* turn on clock to UART block.
529 XXX: this should not be done here. */
530 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, CKEN_FFUART|CKEN_BTUART |
531 ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN));
532
533 LEDSTEP();
534
535 consinit();
536 LEDSTEP();
537 #ifdef KGDB
538 kgdb_port_init();
539 LEDSTEP();
540 #endif
541
542
543 /* Talk to the user */
544 printf("\nNetBSD/evbarm (lubbock) booting ...\n");
545
546 /* Tweak memory controller */
547 {
548 /* Modify access timing for CS3 (91c96) */
549
550 uint32_t tmp =
551 ioreg_read(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1);
552 ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1,
553 (tmp & 0xffff) | (0x3881<<16));
554 /* RRR=3, RDN=8, RDF=8
555 * XXX: can be faster?
556 */
557 }
558
559
560 /* Initialize for PCMCIA/CF sockets */
561 {
562 uint32_t tmp;
563
564 /* Activate two sockets.
565 XXX: This code segment should be moved to
566 pcmcia MD attach routine.
567 XXX: These bits should be toggled based on
568 existene of PCMCIA/CF cards
569 */
570 ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MECR,
571 MECR_NOS|MECR_CIT);
572
573 tmp = ioreg_read(LUBBOCK_SACC_PBASE+SACCSBI_SKCR);
574 ioreg_write(LUBBOCK_SACC_PBASE+SACCSBI_SKCR,
575 (tmp & ~(1<<4)) | (1<<0));
576 }
577
578 #if 0
579 /*
580 * Examine the boot args string for options we need to know about
581 * now.
582 */
583 process_kernel_args((char *)nwbootinfo.bt_args);
584 #endif
585
586 {
587 int processor_card_id;
588
589 processor_card_id = 0x000f &
590 ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_MISCRD);
591 switch(processor_card_id){
592 case 0:
593 /* Cotulla */
594 memstart = 0xa0000000;
595 memsize = 0x04000000; /* 64MB */
596 break;
597 case 1:
598 /* XXX: Sabiani */
599 memstart = 0xa0000000;
600 memsize = 0x04000000; /* 64MB */
601 break;
602 default:
603 /* XXX: Unknown */
604 memstart = 0xa0000000;
605 memsize = 0x04000000; /* 64MB */
606 }
607 }
608
609 printf("initarm: Configuring system ...\n");
610
611 /* Fake bootconfig structure for the benefit of pmap.c */
612 /* XXX must make the memory description h/w independent */
613 bootconfig.dramblocks = 1;
614 bootconfig.dram[0].address = memstart;
615 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
616
617 /*
618 * Set up the variables that define the availablilty of
619 * physical memory. For now, we're going to set
620 * physical_freestart to 0xa0200000 (where the kernel
621 * was loaded), and allocate the memory we need downwards.
622 * If we get too close to the page tables that RedBoot
623 * set up, we will panic. We will update physical_freestart
624 * and physical_freeend later to reflect what pmap_bootstrap()
625 * wants to see.
626 *
627 * XXX pmap_bootstrap() needs an enema.
628 */
629 physical_start = bootconfig.dram[0].address;
630 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
631
632 physical_freestart = 0xa0009000UL;
633 physical_freeend = 0xa0200000UL;
634
635 physmem = (physical_end - physical_start) / PAGE_SIZE;
636
637 #ifdef VERBOSE_INIT_ARM
638 /* Tell the user about the memory */
639 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
640 physical_start, physical_end - 1);
641 #endif
642
643 /*
644 * Okay, the kernel starts 2MB in from the bottom of physical
645 * memory. We are going to allocate our bootstrap pages downwards
646 * from there.
647 *
648 * We need to allocate some fixed page tables to get the kernel
649 * going. We allocate one page directory and a number of page
650 * tables and store the physical addresses in the kernel_pt_table
651 * array.
652 *
653 * The kernel page directory must be on a 16K boundary. The page
654 * tables must be on 4K boundaries. What we do is allocate the
655 * page directory on the first 16K boundary that we encounter, and
656 * the page tables on 4K boundaries otherwise. Since we allocate
657 * at least 3 L2 page tables, we are guaranteed to encounter at
658 * least one 16K aligned region.
659 */
660
661 #ifdef VERBOSE_INIT_ARM
662 printf("Allocating page tables\n");
663 #endif
664
665 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
666
667 #ifdef VERBOSE_INIT_ARM
668 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
669 physical_freestart, free_pages, free_pages);
670 #endif
671
672 /* Define a macro to simplify memory allocation */
673 #define valloc_pages(var, np) \
674 alloc_pages((var).pv_pa, (np)); \
675 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
676
677 #define alloc_pages(var, np) \
678 physical_freeend -= ((np) * PAGE_SIZE); \
679 if (physical_freeend < physical_freestart) \
680 panic("initarm: out of memory"); \
681 (var) = physical_freeend; \
682 free_pages -= (np); \
683 memset((char *)(var), 0, ((np) * PAGE_SIZE));
684
685 loop1 = 0;
686 kernel_l1pt.pv_pa = 0;
687 kernel_l1pt.pv_va = 0;
688 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
689 /* Are we 16KB aligned for an L1 ? */
690 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
691 && kernel_l1pt.pv_pa == 0) {
692 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
693 } else {
694 valloc_pages(kernel_pt_table[loop1],
695 L2_TABLE_SIZE / PAGE_SIZE);
696 ++loop1;
697 }
698 }
699
700 /* This should never be able to happen but better confirm that. */
701 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
702 panic("initarm: Failed to align the kernel page directory");
703
704 LEDSTEP();
705
706 /*
707 * Allocate a page for the system page mapped to V0x00000000
708 * This page will just contain the system vectors and can be
709 * shared by all processes.
710 */
711 alloc_pages(systempage.pv_pa, 1);
712
713 /* Allocate stacks for all modes */
714 valloc_pages(irqstack, IRQ_STACK_SIZE);
715 valloc_pages(abtstack, ABT_STACK_SIZE);
716 valloc_pages(undstack, UND_STACK_SIZE);
717 valloc_pages(kernelstack, UPAGES);
718
719 /* Allocate enough pages for cleaning the Mini-Data cache. */
720 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
721 valloc_pages(minidataclean, 1);
722
723 #ifdef VERBOSE_INIT_ARM
724 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
725 irqstack.pv_va);
726 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
727 abtstack.pv_va);
728 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
729 undstack.pv_va);
730 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
731 kernelstack.pv_va);
732 #endif
733
734 /*
735 * XXX Defer this to later so that we can reclaim the memory
736 * XXX used by the RedBoot page tables.
737 */
738 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
739
740 /*
741 * Ok we have allocated physical pages for the primary kernel
742 * page tables
743 */
744
745 #ifdef VERBOSE_INIT_ARM
746 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
747 #endif
748
749 /*
750 * Now we start construction of the L1 page table
751 * We start by mapping the L2 page tables into the L1.
752 * This means that we can replace L1 mappings later on if necessary
753 */
754 l1pagetable = kernel_l1pt.pv_pa;
755
756 /* Map the L2 pages tables in the L1 page table */
757 pmap_link_l2pt(l1pagetable, 0x00000000,
758 &kernel_pt_table[KERNEL_PT_SYS]);
759 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
760 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
761 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
762 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
763 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
764 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
765
766 /* update the top of the kernel VM */
767 pmap_curmaxkvaddr =
768 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
769
770 #ifdef VERBOSE_INIT_ARM
771 printf("Mapping kernel\n");
772 #endif
773
774 /* Now we fill in the L2 pagetable for the kernel static code/data */
775 {
776 extern char etext[], _end[];
777 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
778 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
779 u_int logical;
780
781 textsize = (textsize + PGOFSET) & ~PGOFSET;
782 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
783
784 logical = 0x00200000; /* offset of kernel in RAM */
785
786 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
787 physical_start + logical, textsize,
788 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
789 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
790 physical_start + logical, totalsize - textsize,
791 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
792 }
793
794 #ifdef VERBOSE_INIT_ARM
795 printf("Constructing L2 page tables\n");
796 #endif
797
798 /* Map the stack pages */
799 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
800 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
801 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
802 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
803 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
804 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
805 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
806 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
807
808 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
809 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
810
811 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
812 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
813 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
814 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
815 }
816
817 /* Map the Mini-Data cache clean area. */
818 xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
819 minidataclean.pv_pa);
820
821 /* Map the vector page. */
822 #if 1
823 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
824 * cache-clean code there. */
825 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
826 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
827 #else
828 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
829 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
830 #endif
831
832 /*
833 * map integrated peripherals at same address in l1pagetable
834 * so that we can continue to use console.
835 */
836 pmap_devmap_bootstrap(l1pagetable, lubbock_devmap);
837
838 /*
839 * Give the XScale global cache clean code an appropriately
840 * sized chunk of unmapped VA space starting at 0xff000000
841 * (our device mappings end before this address).
842 */
843 xscale_cache_clean_addr = 0xff000000U;
844
845 /*
846 * Now we have the real page tables in place so we can switch to them.
847 * Once this is done we will be running with the REAL kernel page
848 * tables.
849 */
850
851 /*
852 * Update the physical_freestart/physical_freeend/free_pages
853 * variables.
854 */
855 {
856 extern char _end[];
857
858 physical_freestart = physical_start +
859 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
860 KERNEL_BASE);
861 physical_freeend = physical_end;
862 free_pages =
863 (physical_freeend - physical_freestart) / PAGE_SIZE;
864 }
865
866 /* Switch tables */
867 #ifdef VERBOSE_INIT_ARM
868 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
869 physical_freestart, free_pages, free_pages);
870 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
871 #endif
872
873 LEDSTEP();
874
875 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
876 setttb(kernel_l1pt.pv_pa);
877 cpu_tlb_flushID();
878 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
879 LEDSTEP();
880
881 /*
882 * Moved from cpu_startup() as data_abort_handler() references
883 * this during uvm init
884 */
885 proc0paddr = (struct user *)kernelstack.pv_va;
886 lwp0.l_addr = proc0paddr;
887
888 #ifdef VERBOSE_INIT_ARM
889 printf("bootstrap done.\n");
890 #endif
891
892 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
893
894 /*
895 * Pages were allocated during the secondary bootstrap for the
896 * stacks for different CPU modes.
897 * We must now set the r13 registers in the different CPU modes to
898 * point to these stacks.
899 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
900 * of the stack memory.
901 */
902 printf("init subsystems: stacks ");
903
904 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
905 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
906 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
907
908 /*
909 * Well we should set a data abort handler.
910 * Once things get going this will change as we will need a proper
911 * handler.
912 * Until then we will use a handler that just panics but tells us
913 * why.
914 * Initialisation of the vectors will just panic on a data abort.
915 * This just fills in a slightly better one.
916 */
917 printf("vectors ");
918 data_abort_handler_address = (u_int)data_abort_handler;
919 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
920 undefined_handler_address = (u_int)undefinedinstruction_bounce;
921
922 /* Initialise the undefined instruction handlers */
923 printf("undefined ");
924 undefined_init();
925
926 /* Load memory into UVM. */
927 printf("page ");
928 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
929 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
930 atop(physical_freestart), atop(physical_freeend),
931 VM_FREELIST_DEFAULT);
932
933 /* Boot strap pmap telling it where the kernel page table is */
934 printf("pmap ");
935 LEDSTEP();
936 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
937 LEDSTEP();
938
939 #ifdef __HAVE_MEMORY_DISK__
940 md_root_setconf(memory_disk, sizeof memory_disk);
941 #endif
942
943 {
944 uint16_t sw = ioreg16_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW);
945
946 if (0 == (sw & (1<<13))) /* check S19 */
947 boothowto |= RB_KDB;
948 if (0 == (sw & (1<<12))) /* S20 */
949 boothowto |= RB_SINGLE;
950 }
951
952 LEDSTEP();
953
954 #ifdef KGDB
955 if (boothowto & RB_KDB) {
956 kgdb_debug_init = 1;
957 kgdb_connect(1);
958 }
959 #endif
960
961 #ifdef DDB
962 db_machine_init();
963
964 /* Firmware doesn't load symbols. */
965 ddb_init(0, NULL, NULL);
966
967 if (boothowto & RB_KDB)
968 Debugger();
969 #endif
970
971 /* We return the new stack pointer address */
972 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
973 }
974
975 #if 0
976 void
977 process_kernel_args(char *args)
978 {
979
980 boothowto = 0;
981
982 /* Make a local copy of the bootargs */
983 strncpy(bootargs, args, MAX_BOOT_STRING);
984
985 args = bootargs;
986 boot_file = bootargs;
987
988 /* Skip the kernel image filename */
989 while (*args != ' ' && *args != 0)
990 ++args;
991
992 if (*args != 0)
993 *args++ = 0;
994
995 while (*args == ' ')
996 ++args;
997
998 boot_args = args;
999
1000 printf("bootfile: %s\n", boot_file);
1001 printf("bootargs: %s\n", boot_args);
1002
1003 parse_mi_bootargs(boot_args);
1004 }
1005 #endif
1006
1007 #ifdef KGDB
1008 #ifndef KGDB_DEVNAME
1009 #define KGDB_DEVNAME "ffuart"
1010 #endif
1011 const char kgdb_devname[] = KGDB_DEVNAME;
1012
1013 #if (NCOM > 0)
1014 #ifndef KGDB_DEVMODE
1015 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
1016 #endif
1017 int comkgdbmode = KGDB_DEVMODE;
1018 #endif /* NCOM */
1019
1020 #endif /* KGDB */
1021
1022
1023 void
1024 consinit(void)
1025 {
1026 static int consinit_called = 0;
1027 uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN);
1028 #if 0
1029 char *console = CONSDEVNAME;
1030 #endif
1031
1032 if (consinit_called != 0)
1033 return;
1034
1035 consinit_called = 1;
1036
1037 #if NCOM > 0
1038
1039 #ifdef FFUARTCONSOLE
1040 /* Check switch. */
1041 if (0 == (ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW) & (1<<15))) {
1042 /* We don't use FF serial when S17=no-dot position */
1043 }
1044 #ifdef KGDB
1045 else if (0 == strcmp(kgdb_devname, "ffuart")) {
1046 /* port is reserved for kgdb */
1047 }
1048 #endif
1049 else if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
1050 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
1051 #if 0
1052 /* XXX: can't call pxa2x0_clkman_config yet */
1053 pxa2x0_clkman_config(CKEN_FFUART, 1);
1054 #else
1055 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN,
1056 ckenreg|CKEN_FFUART);
1057 #endif
1058
1059 return;
1060 }
1061 #endif /* FFUARTCONSOLE */
1062
1063 #ifdef BTUARTCONSOLE
1064 #ifdef KGDB
1065 if (0 == strcmp(kgdb_devname, "btuart")) {
1066 /* port is reserved for kgdb */
1067 } else
1068 #endif
1069 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
1070 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
1071 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN,
1072 ckenreg|CKEN_BTUART);
1073 return;
1074 }
1075 #endif /* BTUARTCONSOLE */
1076
1077
1078 #endif /* NCOM */
1079
1080 }
1081
1082 #ifdef KGDB
1083 void
1084 kgdb_port_init(void)
1085 {
1086 #if (NCOM > 0) && defined(COM_PXA2X0)
1087 paddr_t paddr = 0;
1088 uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN);
1089
1090 if (0 == strcmp(kgdb_devname, "ffuart")) {
1091 paddr = PXA2X0_FFUART_BASE;
1092 ckenreg |= CKEN_FFUART;
1093 }
1094 else if (0 == strcmp(kgdb_devname, "btuart")) {
1095 paddr = PXA2X0_BTUART_BASE;
1096 ckenreg |= CKEN_BTUART;
1097 }
1098
1099 if (paddr &&
1100 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
1101 kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
1102
1103 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
1104 }
1105 #endif
1106 }
1107 #endif
1108
1109 #if 0
1110 /*
1111 * display a number in hex LED.
1112 * a digit is blank when the corresponding bit in arg blank is 1
1113 */
1114 unsigned short led_control_value = 0;
1115
1116 void
1117 hex_led_blank(uint32_t value, int blank)
1118 {
1119 int save = disable_interrupts(I32_bit);
1120
1121 ioreg_write(LUBBOCK_OBIO_VBASE+0x10, value);
1122 led_control_value = (led_control_value & 0xff)
1123 | ((blank & 0xff)<<8);
1124 ioreg_write(LUBBOCK_OBIO_VBASE+0x40, led_control_value);
1125 restore_interrupts(save);
1126 }
1127 #endif
1128