lubbock_machdep.c revision 1.17.6.2 1 /* $NetBSD: lubbock_machdep.c,v 1.17.6.2 2009/01/17 13:27:58 mjf Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 * Written by Hiroyuki Bessho for Genetec Corporation.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of Genetec Corporation may not be used to endorse or
16 * promote products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Machine dependant functions for kernel setup for
32 * Intel DBPXA250 evaluation board (a.k.a. Lubbock).
33 * Based on iq80310_machhdep.c
34 */
35 /*
36 * Copyright (c) 2001 Wasabi Systems, Inc.
37 * All rights reserved.
38 *
39 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 * must display the following acknowledgement:
51 * This product includes software developed for the NetBSD Project by
52 * Wasabi Systems, Inc.
53 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
54 * or promote products derived from this software without specific prior
55 * written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
60 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 * POSSIBILITY OF SUCH DAMAGE.
68 */
69
70 /*
71 * Copyright (c) 1997,1998 Mark Brinicombe.
72 * Copyright (c) 1997,1998 Causality Limited.
73 * All rights reserved.
74 *
75 * Redistribution and use in source and binary forms, with or without
76 * modification, are permitted provided that the following conditions
77 * are met:
78 * 1. Redistributions of source code must retain the above copyright
79 * notice, this list of conditions and the following disclaimer.
80 * 2. Redistributions in binary form must reproduce the above copyright
81 * notice, this list of conditions and the following disclaimer in the
82 * documentation and/or other materials provided with the distribution.
83 * 3. All advertising materials mentioning features or use of this software
84 * must display the following acknowledgement:
85 * This product includes software developed by Mark Brinicombe
86 * for the NetBSD Project.
87 * 4. The name of the company nor the name of the author may be used to
88 * endorse or promote products derived from this software without specific
89 * prior written permission.
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
92 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
93 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
94 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
95 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
96 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
97 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101 * SUCH DAMAGE.
102 *
103 * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
104 * boards using RedBoot firmware.
105 */
106
107 /*
108 * DIP switches:
109 *
110 * S19: no-dot: set RB_KDB. enter kgdb session.
111 * S20: no-dot: set RB_SINGLE. don't go multi user mode.
112 */
113
114 #include <sys/cdefs.h>
115 __KERNEL_RCSID(0, "$NetBSD: lubbock_machdep.c,v 1.17.6.2 2009/01/17 13:27:58 mjf Exp $");
116
117 #include "opt_ddb.h"
118 #include "opt_kgdb.h"
119 #include "opt_pmap_debug.h"
120 #include "opt_md.h"
121 #include "opt_com.h"
122 #include "md.h"
123 #include "lcd.h"
124
125 #include <sys/param.h>
126 #include <sys/device.h>
127 #include <sys/systm.h>
128 #include <sys/kernel.h>
129 #include <sys/exec.h>
130 #include <sys/proc.h>
131 #include <sys/msgbuf.h>
132 #include <sys/reboot.h>
133 #include <sys/termios.h>
134 #include <sys/ksyms.h>
135
136 #include <uvm/uvm_extern.h>
137
138 #include <sys/conf.h>
139 #include <dev/cons.h>
140 #include <dev/md.h>
141 #include <dev/ic/smc91cxxreg.h>
142
143 #include <machine/db_machdep.h>
144 #include <ddb/db_sym.h>
145 #include <ddb/db_extern.h>
146 #ifdef KGDB
147 #include <sys/kgdb.h>
148 #endif
149
150 #include <machine/bootconfig.h>
151 #include <machine/bus.h>
152 #include <machine/cpu.h>
153 #include <machine/frame.h>
154 #include <arm/undefined.h>
155
156 #include <arm/arm32/machdep.h>
157
158 #include <arm/xscale/pxa2x0reg.h>
159 #include <arm/xscale/pxa2x0var.h>
160 #include <arm/xscale/pxa2x0_gpio.h>
161 #include <arm/sa11x0/sa1111_reg.h>
162 #include <evbarm/lubbock/lubbock_reg.h>
163 #include <evbarm/lubbock/lubbock_var.h>
164
165 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
166 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
167 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
168
169 /*
170 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
171 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
172 */
173 #define KERNEL_VM_SIZE 0x0C000000
174
175
176 /*
177 * Address to call from cpu_reset() to reset the machine.
178 * This is machine architecture dependant as it varies depending
179 * on where the ROM appears when you turn the MMU off.
180 */
181
182 u_int cpu_reset_address = 0;
183
184 /* Define various stack sizes in pages */
185 #define IRQ_STACK_SIZE 1
186 #define ABT_STACK_SIZE 1
187 #define UND_STACK_SIZE 1
188
189 BootConfig bootconfig; /* Boot config storage */
190 char *boot_args = NULL;
191 char *boot_file = NULL;
192
193 vm_offset_t physical_start;
194 vm_offset_t physical_freestart;
195 vm_offset_t physical_freeend;
196 vm_offset_t physical_end;
197 u_int free_pages;
198 vm_offset_t pagetables_start;
199 int physmem = 0;
200
201 /*int debug_flags;*/
202 #ifndef PMAP_STATIC_L1S
203 int max_processes = 64; /* Default number */
204 #endif /* !PMAP_STATIC_L1S */
205
206 /* Physical and virtual addresses for some global pages */
207 pv_addr_t systempage;
208 pv_addr_t irqstack;
209 pv_addr_t undstack;
210 pv_addr_t abtstack;
211 pv_addr_t kernelstack;
212 pv_addr_t minidataclean;
213
214 vm_offset_t msgbufphys;
215
216 extern u_int data_abort_handler_address;
217 extern u_int prefetch_abort_handler_address;
218 extern u_int undefined_handler_address;
219
220 #ifdef PMAP_DEBUG
221 extern int pmap_debug_level;
222 #endif
223
224 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
225 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
226 #define KERNEL_PT_KERNEL_NUM 4
227 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
228 /* Page tables for mapping kernel VM */
229 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
230 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
231
232 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
233
234 struct user *proc0paddr;
235
236 /* Prototypes */
237
238 #if 0
239 void process_kernel_args(char *);
240 #endif
241
242 void consinit(void);
243 void kgdb_port_init(void);
244 void change_clock(uint32_t v);
245
246 bs_protos(bs_notimpl);
247
248 #include "com.h"
249 #if NCOM > 0
250 #include <dev/ic/comreg.h>
251 #include <dev/ic/comvar.h>
252 #endif
253
254 #ifndef CONSPEED
255 #define CONSPEED B115200 /* What RedBoot uses */
256 #endif
257 #ifndef CONMODE
258 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
259 #endif
260
261 int comcnspeed = CONSPEED;
262 int comcnmode = CONMODE;
263
264 static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
265 { 44, GPIO_ALT_FN_1_IN }, /* BTCST */
266 { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */
267
268 { 29, GPIO_ALT_FN_1_IN }, /* SDATA_IN0 */
269
270 { -1 }
271 };
272 static struct pxa2x0_gpioconf *lubbock_gpioconf[] = {
273 pxa25x_com_btuart_gpioconf,
274 pxa25x_com_ffuart_gpioconf,
275 #if 0
276 pxa25x_com_stuart_gpioconf,
277 #endif
278 pxa25x_pcic_gpioconf,
279 pxa25x_pxaacu_gpioconf,
280 boarddep_gpioconf,
281 NULL
282 };
283
284 /*
285 * void cpu_reboot(int howto, char *bootstr)
286 *
287 * Reboots the system
288 *
289 * Deal with any syncing, unmounting, dumping and shutdown hooks,
290 * then reset the CPU.
291 */
292 void
293 cpu_reboot(int howto, char *bootstr)
294 {
295 #ifdef DIAGNOSTIC
296 /* info */
297 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
298 #endif
299
300 /*
301 * If we are still cold then hit the air brakes
302 * and crash to earth fast
303 */
304 if (cold) {
305 doshutdownhooks();
306 pmf_system_shutdown(boothowto);
307 printf("The operating system has halted.\n");
308 printf("Please press any key to reboot.\n\n");
309 cngetc();
310 printf("rebooting...\n");
311 cpu_reset();
312 /*NOTREACHED*/
313 }
314
315 /* Disable console buffering */
316 /* cnpollc(1);*/
317
318 /*
319 * If RB_NOSYNC was not specified sync the discs.
320 * Note: Unless cold is set to 1 here, syslogd will die during the
321 * unmount. It looks like syslogd is getting woken up only to find
322 * that it cannot page part of the binary in as the filesystem has
323 * been unmounted.
324 */
325 if (!(howto & RB_NOSYNC))
326 bootsync();
327
328 /* Say NO to interrupts */
329 splhigh();
330
331 /* Do a dump if requested. */
332 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
333 dumpsys();
334
335 /* Run any shutdown hooks */
336 doshutdownhooks();
337
338 pmf_system_shutdown(boothowto);
339
340 /* Make sure IRQ's are disabled */
341 IRQdisable;
342
343 if (howto & RB_HALT) {
344 printf("The operating system has halted.\n");
345 printf("Please press any key to reboot.\n\n");
346 cngetc();
347 }
348
349 printf("rebooting...\n");
350 cpu_reset();
351 /*NOTREACHED*/
352 }
353
354 static inline
355 pd_entry_t *
356 read_ttb(void)
357 {
358 long ttb;
359
360 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
361
362
363 return (pd_entry_t *)(ttb & ~((1<<14)-1));
364 }
365
366 /*
367 * Static device mappings. These peripheral registers are mapped at
368 * fixed virtual addresses very early in initarm() so that we can use
369 * them while booting the kernel, and stay at the same address
370 * throughout whole kernel's life time.
371 *
372 * We use this table twice; once with bootstrap page table, and once
373 * with kernel's page table which we build up in initarm().
374 *
375 * Since we map these registers into the bootstrap page table using
376 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
377 * registers segment-aligned and segment-rounded in order to avoid
378 * using the 2nd page tables.
379 */
380
381 #define _A(a) ((a) & ~L1_S_OFFSET)
382 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
383
384 static const struct pmap_devmap lubbock_devmap[] = {
385 {
386 LUBBOCK_OBIO_VBASE,
387 _A(LUBBOCK_OBIO_PBASE),
388 _S(LUBBOCK_OBIO_SIZE),
389 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
390 },
391 {
392 LUBBOCK_GPIO_VBASE,
393 _A(PXA2X0_GPIO_BASE),
394 _S(PXA250_GPIO_SIZE),
395 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
396 },
397 {
398 LUBBOCK_CLKMAN_VBASE,
399 _A(PXA2X0_CLKMAN_BASE),
400 _S(PXA2X0_CLKMAN_SIZE),
401 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
402 },
403 {
404 LUBBOCK_INTCTL_VBASE,
405 _A(PXA2X0_INTCTL_BASE),
406 _S(PXA2X0_INTCTL_SIZE),
407 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
408 },
409 {
410 LUBBOCK_FFUART_VBASE,
411 _A(PXA2X0_FFUART_BASE),
412 _S(4 * COM_NPORTS),
413 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
414 },
415 {
416 LUBBOCK_BTUART_VBASE,
417 _A(PXA2X0_BTUART_BASE),
418 _S(4 * COM_NPORTS),
419 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
420 },
421
422 {0, 0, 0, 0,}
423 };
424
425 #undef _A
426 #undef _S
427
428 /*
429 * u_int initarm(...)
430 *
431 * Initial entry point on startup. This gets called before main() is
432 * entered.
433 * It should be responsible for setting up everything that must be
434 * in place when main is called.
435 * This includes
436 * Taking a copy of the boot configuration structure.
437 * Initialising the physical console so characters can be printed.
438 * Setting up page tables for the kernel
439 * Relocating the kernel to the bottom of physical memory
440 */
441 u_int
442 initarm(void *arg)
443 {
444 extern vaddr_t xscale_cache_clean_addr;
445 int loop;
446 int loop1;
447 u_int l1pagetable;
448 paddr_t memstart;
449 psize_t memsize;
450 int led_data = 0;
451 #ifdef DIAGNOSTIC
452 extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
453 #endif
454 #define LEDSTEP_P() ioreg_write(LUBBOCK_OBIO_PBASE+LUBBOCK_HEXLED, led_data++)
455 #define LEDSTEP() hex_led(led_data++)
456
457 /* use physical address until pagetable is set */
458 LEDSTEP_P();
459
460 /* map some peripheral registers at static I/O area */
461 pmap_devmap_bootstrap((vaddr_t)read_ttb(), lubbock_devmap);
462
463 LEDSTEP_P();
464
465 /* start 32.768 kHz OSC */
466 ioreg_write(LUBBOCK_CLKMAN_VBASE + 0x08, 2);
467 /* Get ready for splfoo() */
468 pxa2x0_intr_bootstrap(LUBBOCK_INTCTL_VBASE);
469
470 LEDSTEP();
471
472 /*
473 * Heads up ... Setup the CPU / MMU / TLB functions
474 */
475 if (set_cpufuncs())
476 panic("cpu not recognized!");
477
478 LEDSTEP();
479
480
481 #if 0
482 /* Calibrate the delay loop. */
483 #endif
484
485 /*
486 * Okay, RedBoot has provided us with the following memory map:
487 *
488 * Physical Address Range Description
489 * ----------------------- ----------------------------------
490 * 0x00000000 - 0x01ffffff flash Memory (32MB)
491 * 0x04000000 - 0x05ffffff Application flash Memory (32MB)
492 * 0x08000000 - 0x080000ff I/O baseboard registers
493 * 0x0a000000 - 0x0a0fffff SRAM (1MB)
494 * 0x0c000000 - 0x0c0fffff Ethernet Controller
495 * 0x0e000000 - 0x0e0fffff Ethernet Controller (Attribute)
496 * 0x10000000 - 0x103fffff SA-1111 Companion Chip
497 * 0x14000000 - 0x17ffffff Expansion Card (64MB)
498 * 0x40000000 - 0x480fffff Processor Registers
499 * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB)
500 *
501 *
502 * Virtual Address Range X C B Description
503 * ----------------------- - - - ----------------------------------
504 * 0x00000000 - 0x00003fff N Y Y SDRAM
505 * 0x00004000 - 0x000fffff N Y N Boot ROM
506 * 0x00100000 - 0x01ffffff N N N Application Flash
507 * 0x04000000 - 0x05ffffff N N N Exp Application Flash
508 * 0x08000000 - 0x080fffff N N N I/O baseboard registers
509 * 0x0a000000 - 0x0a0fffff N N N SRAM
510 * 0x40000000 - 0x480fffff N N N Processor Registers
511 * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM
512 * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM
513 * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region
514 * (done by this routine)
515 * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers
516 * 0xfd100000 - 0xfd3fffff N N N Processor Registers.
517 * 0xfd400000 - 0xfd4fffff N N N FF-UART
518 * 0xfd500000 - 0xfd5fffff N N N BT-UART
519 *
520 * RedBoot's first level page table is at 0xa0004000. There
521 * are also 2 second-level tables at 0xa0008000 and
522 * 0xa0008400. We will continue to use them until we switch to
523 * our pagetable by setttb().
524 *
525 */
526
527 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */
528 pxa2x0_gpio_bootstrap(LUBBOCK_GPIO_VBASE);
529 pxa2x0_gpio_config(lubbock_gpioconf);
530
531 /* turn on clock to UART block.
532 XXX: this should not be done here. */
533 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, CKEN_FFUART|CKEN_BTUART |
534 ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN));
535
536 LEDSTEP();
537
538 consinit();
539 LEDSTEP();
540 #ifdef KGDB
541 kgdb_port_init();
542 LEDSTEP();
543 #endif
544
545
546 /* Talk to the user */
547 printf("\nNetBSD/evbarm (lubbock) booting ...\n");
548
549 /* Tweak memory controller */
550 {
551 /* Modify access timing for CS3 (91c96) */
552
553 uint32_t tmp =
554 ioreg_read(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1);
555 ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1,
556 (tmp & 0xffff) | (0x3881<<16));
557 /* RRR=3, RDN=8, RDF=8
558 * XXX: can be faster?
559 */
560 }
561
562
563 /* Initialize for PCMCIA/CF sockets */
564 {
565 uint32_t tmp;
566
567 /* Activate two sockets.
568 XXX: This code segment should be moved to
569 pcmcia MD attach routine.
570 XXX: These bits should be toggled based on
571 existene of PCMCIA/CF cards
572 */
573 ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MECR,
574 MECR_NOS|MECR_CIT);
575
576 tmp = ioreg_read(LUBBOCK_SACC_PBASE+SACCSBI_SKCR);
577 ioreg_write(LUBBOCK_SACC_PBASE+SACCSBI_SKCR,
578 (tmp & ~(1<<4)) | (1<<0));
579 }
580
581 #if 0
582 /*
583 * Examine the boot args string for options we need to know about
584 * now.
585 */
586 process_kernel_args((char *)nwbootinfo.bt_args);
587 #endif
588
589 {
590 int processor_card_id;
591
592 processor_card_id = 0x000f &
593 ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_MISCRD);
594 switch(processor_card_id){
595 case 0:
596 /* Cotulla */
597 memstart = 0xa0000000;
598 memsize = 0x04000000; /* 64MB */
599 break;
600 case 1:
601 /* XXX: Sabiani */
602 memstart = 0xa0000000;
603 memsize = 0x04000000; /* 64MB */
604 break;
605 default:
606 /* XXX: Unknown */
607 memstart = 0xa0000000;
608 memsize = 0x04000000; /* 64MB */
609 }
610 }
611
612 printf("initarm: Configuring system ...\n");
613
614 /* Fake bootconfig structure for the benefit of pmap.c */
615 /* XXX must make the memory description h/w independent */
616 bootconfig.dramblocks = 1;
617 bootconfig.dram[0].address = memstart;
618 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
619
620 /*
621 * Set up the variables that define the availablilty of
622 * physical memory. For now, we're going to set
623 * physical_freestart to 0xa0200000 (where the kernel
624 * was loaded), and allocate the memory we need downwards.
625 * If we get too close to the page tables that RedBoot
626 * set up, we will panic. We will update physical_freestart
627 * and physical_freeend later to reflect what pmap_bootstrap()
628 * wants to see.
629 *
630 * XXX pmap_bootstrap() needs an enema.
631 */
632 physical_start = bootconfig.dram[0].address;
633 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
634
635 physical_freestart = 0xa0009000UL;
636 physical_freeend = 0xa0200000UL;
637
638 physmem = (physical_end - physical_start) / PAGE_SIZE;
639
640 #ifdef VERBOSE_INIT_ARM
641 /* Tell the user about the memory */
642 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
643 physical_start, physical_end - 1);
644 #endif
645
646 /*
647 * Okay, the kernel starts 2MB in from the bottom of physical
648 * memory. We are going to allocate our bootstrap pages downwards
649 * from there.
650 *
651 * We need to allocate some fixed page tables to get the kernel
652 * going. We allocate one page directory and a number of page
653 * tables and store the physical addresses in the kernel_pt_table
654 * array.
655 *
656 * The kernel page directory must be on a 16K boundary. The page
657 * tables must be on 4K boundaries. What we do is allocate the
658 * page directory on the first 16K boundary that we encounter, and
659 * the page tables on 4K boundaries otherwise. Since we allocate
660 * at least 3 L2 page tables, we are guaranteed to encounter at
661 * least one 16K aligned region.
662 */
663
664 #ifdef VERBOSE_INIT_ARM
665 printf("Allocating page tables\n");
666 #endif
667
668 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
669
670 #ifdef VERBOSE_INIT_ARM
671 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
672 physical_freestart, free_pages, free_pages);
673 #endif
674
675 /* Define a macro to simplify memory allocation */
676 #define valloc_pages(var, np) \
677 alloc_pages((var).pv_pa, (np)); \
678 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
679
680 #define alloc_pages(var, np) \
681 physical_freeend -= ((np) * PAGE_SIZE); \
682 if (physical_freeend < physical_freestart) \
683 panic("initarm: out of memory"); \
684 (var) = physical_freeend; \
685 free_pages -= (np); \
686 memset((char *)(var), 0, ((np) * PAGE_SIZE));
687
688 loop1 = 0;
689 kernel_l1pt.pv_pa = 0;
690 kernel_l1pt.pv_va = 0;
691 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
692 /* Are we 16KB aligned for an L1 ? */
693 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
694 && kernel_l1pt.pv_pa == 0) {
695 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
696 } else {
697 valloc_pages(kernel_pt_table[loop1],
698 L2_TABLE_SIZE / PAGE_SIZE);
699 ++loop1;
700 }
701 }
702
703 /* This should never be able to happen but better confirm that. */
704 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
705 panic("initarm: Failed to align the kernel page directory");
706
707 LEDSTEP();
708
709 /*
710 * Allocate a page for the system page mapped to V0x00000000
711 * This page will just contain the system vectors and can be
712 * shared by all processes.
713 */
714 alloc_pages(systempage.pv_pa, 1);
715
716 /* Allocate stacks for all modes */
717 valloc_pages(irqstack, IRQ_STACK_SIZE);
718 valloc_pages(abtstack, ABT_STACK_SIZE);
719 valloc_pages(undstack, UND_STACK_SIZE);
720 valloc_pages(kernelstack, UPAGES);
721
722 /* Allocate enough pages for cleaning the Mini-Data cache. */
723 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
724 valloc_pages(minidataclean, 1);
725
726 #ifdef VERBOSE_INIT_ARM
727 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
728 irqstack.pv_va);
729 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
730 abtstack.pv_va);
731 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
732 undstack.pv_va);
733 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
734 kernelstack.pv_va);
735 #endif
736
737 /*
738 * XXX Defer this to later so that we can reclaim the memory
739 * XXX used by the RedBoot page tables.
740 */
741 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
742
743 /*
744 * Ok we have allocated physical pages for the primary kernel
745 * page tables
746 */
747
748 #ifdef VERBOSE_INIT_ARM
749 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
750 #endif
751
752 /*
753 * Now we start construction of the L1 page table
754 * We start by mapping the L2 page tables into the L1.
755 * This means that we can replace L1 mappings later on if necessary
756 */
757 l1pagetable = kernel_l1pt.pv_pa;
758
759 /* Map the L2 pages tables in the L1 page table */
760 pmap_link_l2pt(l1pagetable, 0x00000000,
761 &kernel_pt_table[KERNEL_PT_SYS]);
762 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
763 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
764 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
765 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
766 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
767 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
768
769 /* update the top of the kernel VM */
770 pmap_curmaxkvaddr =
771 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
772
773 #ifdef VERBOSE_INIT_ARM
774 printf("Mapping kernel\n");
775 #endif
776
777 /* Now we fill in the L2 pagetable for the kernel static code/data */
778 {
779 extern char etext[], _end[];
780 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
781 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
782 u_int logical;
783
784 textsize = (textsize + PGOFSET) & ~PGOFSET;
785 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
786
787 logical = 0x00200000; /* offset of kernel in RAM */
788
789 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
790 physical_start + logical, textsize,
791 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
792 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
793 physical_start + logical, totalsize - textsize,
794 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
795 }
796
797 #ifdef VERBOSE_INIT_ARM
798 printf("Constructing L2 page tables\n");
799 #endif
800
801 /* Map the stack pages */
802 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
803 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
804 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
805 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
806 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
807 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
808 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
809 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
810
811 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
812 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
813
814 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
815 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
816 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
817 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
818 }
819
820 /* Map the Mini-Data cache clean area. */
821 xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
822 minidataclean.pv_pa);
823
824 /* Map the vector page. */
825 #if 1
826 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
827 * cache-clean code there. */
828 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
829 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
830 #else
831 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
832 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
833 #endif
834
835 /*
836 * map integrated peripherals at same address in l1pagetable
837 * so that we can continue to use console.
838 */
839 pmap_devmap_bootstrap(l1pagetable, lubbock_devmap);
840
841 /*
842 * Give the XScale global cache clean code an appropriately
843 * sized chunk of unmapped VA space starting at 0xff000000
844 * (our device mappings end before this address).
845 */
846 xscale_cache_clean_addr = 0xff000000U;
847
848 /*
849 * Now we have the real page tables in place so we can switch to them.
850 * Once this is done we will be running with the REAL kernel page
851 * tables.
852 */
853
854 /*
855 * Update the physical_freestart/physical_freeend/free_pages
856 * variables.
857 */
858 {
859 extern char _end[];
860
861 physical_freestart = physical_start +
862 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
863 KERNEL_BASE);
864 physical_freeend = physical_end;
865 free_pages =
866 (physical_freeend - physical_freestart) / PAGE_SIZE;
867 }
868
869 /* Switch tables */
870 #ifdef VERBOSE_INIT_ARM
871 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
872 physical_freestart, free_pages, free_pages);
873 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
874 #endif
875
876 LEDSTEP();
877
878 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
879 setttb(kernel_l1pt.pv_pa);
880 cpu_tlb_flushID();
881 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
882 LEDSTEP();
883
884 /*
885 * Moved from cpu_startup() as data_abort_handler() references
886 * this during uvm init
887 */
888 proc0paddr = (struct user *)kernelstack.pv_va;
889 lwp0.l_addr = proc0paddr;
890
891 #ifdef VERBOSE_INIT_ARM
892 printf("bootstrap done.\n");
893 #endif
894
895 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
896
897 /*
898 * Pages were allocated during the secondary bootstrap for the
899 * stacks for different CPU modes.
900 * We must now set the r13 registers in the different CPU modes to
901 * point to these stacks.
902 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
903 * of the stack memory.
904 */
905 printf("init subsystems: stacks ");
906
907 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
908 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
909 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
910
911 /*
912 * Well we should set a data abort handler.
913 * Once things get going this will change as we will need a proper
914 * handler.
915 * Until then we will use a handler that just panics but tells us
916 * why.
917 * Initialisation of the vectors will just panic on a data abort.
918 * This just fills in a slightly better one.
919 */
920 printf("vectors ");
921 data_abort_handler_address = (u_int)data_abort_handler;
922 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
923 undefined_handler_address = (u_int)undefinedinstruction_bounce;
924
925 /* Initialise the undefined instruction handlers */
926 printf("undefined ");
927 undefined_init();
928
929 /* Load memory into UVM. */
930 printf("page ");
931 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
932 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
933 atop(physical_freestart), atop(physical_freeend),
934 VM_FREELIST_DEFAULT);
935
936 /* Boot strap pmap telling it where the kernel page table is */
937 printf("pmap ");
938 LEDSTEP();
939 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
940 LEDSTEP();
941
942 #ifdef __HAVE_MEMORY_DISK__
943 md_root_setconf(memory_disk, sizeof memory_disk);
944 #endif
945
946 {
947 uint16_t sw = ioreg16_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW);
948
949 if (0 == (sw & (1<<13))) /* check S19 */
950 boothowto |= RB_KDB;
951 if (0 == (sw & (1<<12))) /* S20 */
952 boothowto |= RB_SINGLE;
953 }
954
955 LEDSTEP();
956
957 #ifdef KGDB
958 if (boothowto & RB_KDB) {
959 kgdb_debug_init = 1;
960 kgdb_connect(1);
961 }
962 #endif
963
964 #ifdef DDB
965 db_machine_init();
966
967 /* Firmware doesn't load symbols. */
968 ddb_init(0, NULL, NULL);
969
970 if (boothowto & RB_KDB)
971 Debugger();
972 #endif
973
974 /* We return the new stack pointer address */
975 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
976 }
977
978 #if 0
979 void
980 process_kernel_args(char *args)
981 {
982
983 boothowto = 0;
984
985 /* Make a local copy of the bootargs */
986 strncpy(bootargs, args, MAX_BOOT_STRING);
987
988 args = bootargs;
989 boot_file = bootargs;
990
991 /* Skip the kernel image filename */
992 while (*args != ' ' && *args != 0)
993 ++args;
994
995 if (*args != 0)
996 *args++ = 0;
997
998 while (*args == ' ')
999 ++args;
1000
1001 boot_args = args;
1002
1003 printf("bootfile: %s\n", boot_file);
1004 printf("bootargs: %s\n", boot_args);
1005
1006 parse_mi_bootargs(boot_args);
1007 }
1008 #endif
1009
1010 #ifdef KGDB
1011 #ifndef KGDB_DEVNAME
1012 #define KGDB_DEVNAME "ffuart"
1013 #endif
1014 const char kgdb_devname[] = KGDB_DEVNAME;
1015
1016 #if (NCOM > 0)
1017 #ifndef KGDB_DEVMODE
1018 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
1019 #endif
1020 int comkgdbmode = KGDB_DEVMODE;
1021 #endif /* NCOM */
1022
1023 #endif /* KGDB */
1024
1025
1026 void
1027 consinit(void)
1028 {
1029 static int consinit_called = 0;
1030 uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN);
1031 #if 0
1032 char *console = CONSDEVNAME;
1033 #endif
1034
1035 if (consinit_called != 0)
1036 return;
1037
1038 consinit_called = 1;
1039
1040 #if NCOM > 0
1041
1042 #ifdef FFUARTCONSOLE
1043 /* Check switch. */
1044 if (0 == (ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW) & (1<<15))) {
1045 /* We don't use FF serial when S17=no-dot position */
1046 }
1047 #ifdef KGDB
1048 else if (0 == strcmp(kgdb_devname, "ffuart")) {
1049 /* port is reserved for kgdb */
1050 }
1051 #endif
1052 else if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
1053 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
1054 #if 0
1055 /* XXX: can't call pxa2x0_clkman_config yet */
1056 pxa2x0_clkman_config(CKEN_FFUART, 1);
1057 #else
1058 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN,
1059 ckenreg|CKEN_FFUART);
1060 #endif
1061
1062 return;
1063 }
1064 #endif /* FFUARTCONSOLE */
1065
1066 #ifdef BTUARTCONSOLE
1067 #ifdef KGDB
1068 if (0 == strcmp(kgdb_devname, "btuart")) {
1069 /* port is reserved for kgdb */
1070 } else
1071 #endif
1072 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
1073 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
1074 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN,
1075 ckenreg|CKEN_BTUART);
1076 return;
1077 }
1078 #endif /* BTUARTCONSOLE */
1079
1080
1081 #endif /* NCOM */
1082
1083 }
1084
1085 #ifdef KGDB
1086 void
1087 kgdb_port_init(void)
1088 {
1089 #if (NCOM > 0) && defined(COM_PXA2X0)
1090 paddr_t paddr = 0;
1091 uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN);
1092
1093 if (0 == strcmp(kgdb_devname, "ffuart")) {
1094 paddr = PXA2X0_FFUART_BASE;
1095 ckenreg |= CKEN_FFUART;
1096 }
1097 else if (0 == strcmp(kgdb_devname, "btuart")) {
1098 paddr = PXA2X0_BTUART_BASE;
1099 ckenreg |= CKEN_BTUART;
1100 }
1101
1102 if (paddr &&
1103 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
1104 kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
1105
1106 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
1107 }
1108 #endif
1109 }
1110 #endif
1111
1112 #if 0
1113 /*
1114 * display a number in hex LED.
1115 * a digit is blank when the corresponding bit in arg blank is 1
1116 */
1117 unsigned short led_control_value = 0;
1118
1119 void
1120 hex_led_blank(uint32_t value, int blank)
1121 {
1122 int save = disable_interrupts(I32_bit);
1123
1124 ioreg_write(LUBBOCK_OBIO_VBASE+0x10, value);
1125 led_control_value = (led_control_value & 0xff)
1126 | ((blank & 0xff)<<8);
1127 ioreg_write(LUBBOCK_OBIO_VBASE+0x40, led_control_value);
1128 restore_interrupts(save);
1129 }
1130 #endif
1131