lubbock_machdep.c revision 1.26 1 /* $NetBSD: lubbock_machdep.c,v 1.26 2010/11/28 08:23:24 hannken Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 * Written by Hiroyuki Bessho for Genetec Corporation.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of Genetec Corporation may not be used to endorse or
16 * promote products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Machine dependant functions for kernel setup for
32 * Intel DBPXA250 evaluation board (a.k.a. Lubbock).
33 * Based on iq80310_machhdep.c
34 */
35 /*
36 * Copyright (c) 2001 Wasabi Systems, Inc.
37 * All rights reserved.
38 *
39 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 * must display the following acknowledgement:
51 * This product includes software developed for the NetBSD Project by
52 * Wasabi Systems, Inc.
53 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
54 * or promote products derived from this software without specific prior
55 * written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
60 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 * POSSIBILITY OF SUCH DAMAGE.
68 */
69
70 /*
71 * Copyright (c) 1997,1998 Mark Brinicombe.
72 * Copyright (c) 1997,1998 Causality Limited.
73 * All rights reserved.
74 *
75 * Redistribution and use in source and binary forms, with or without
76 * modification, are permitted provided that the following conditions
77 * are met:
78 * 1. Redistributions of source code must retain the above copyright
79 * notice, this list of conditions and the following disclaimer.
80 * 2. Redistributions in binary form must reproduce the above copyright
81 * notice, this list of conditions and the following disclaimer in the
82 * documentation and/or other materials provided with the distribution.
83 * 3. All advertising materials mentioning features or use of this software
84 * must display the following acknowledgement:
85 * This product includes software developed by Mark Brinicombe
86 * for the NetBSD Project.
87 * 4. The name of the company nor the name of the author may be used to
88 * endorse or promote products derived from this software without specific
89 * prior written permission.
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
92 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
93 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
94 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
95 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
96 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
97 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101 * SUCH DAMAGE.
102 *
103 * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
104 * boards using RedBoot firmware.
105 */
106
107 /*
108 * DIP switches:
109 *
110 * S19: no-dot: set RB_KDB. enter kgdb session.
111 * S20: no-dot: set RB_SINGLE. don't go multi user mode.
112 */
113
114 #include <sys/cdefs.h>
115 __KERNEL_RCSID(0, "$NetBSD: lubbock_machdep.c,v 1.26 2010/11/28 08:23:24 hannken Exp $");
116
117 #include "opt_ddb.h"
118 #include "opt_kgdb.h"
119 #include "opt_pmap_debug.h"
120 #include "opt_md.h"
121 #include "opt_com.h"
122 #include "lcd.h"
123
124 #include <sys/param.h>
125 #include <sys/device.h>
126 #include <sys/systm.h>
127 #include <sys/kernel.h>
128 #include <sys/exec.h>
129 #include <sys/proc.h>
130 #include <sys/msgbuf.h>
131 #include <sys/reboot.h>
132 #include <sys/termios.h>
133 #include <sys/ksyms.h>
134
135 #include <uvm/uvm_extern.h>
136
137 #include <sys/conf.h>
138 #include <dev/cons.h>
139 #include <dev/md.h>
140 #include <dev/ic/smc91cxxreg.h>
141
142 #include <machine/db_machdep.h>
143 #include <ddb/db_sym.h>
144 #include <ddb/db_extern.h>
145 #ifdef KGDB
146 #include <sys/kgdb.h>
147 #endif
148
149 #include <machine/bootconfig.h>
150 #include <machine/bus.h>
151 #include <machine/cpu.h>
152 #include <machine/frame.h>
153 #include <arm/undefined.h>
154
155 #include <arm/arm32/machdep.h>
156
157 #include <arm/xscale/pxa2x0reg.h>
158 #include <arm/xscale/pxa2x0var.h>
159 #include <arm/xscale/pxa2x0_gpio.h>
160 #include <arm/sa11x0/sa1111_reg.h>
161 #include <evbarm/lubbock/lubbock_reg.h>
162 #include <evbarm/lubbock/lubbock_var.h>
163
164 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
165 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
166 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
167
168 /*
169 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
170 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
171 */
172 #define KERNEL_VM_SIZE 0x0C000000
173
174
175 /*
176 * Address to call from cpu_reset() to reset the machine.
177 * This is machine architecture dependant as it varies depending
178 * on where the ROM appears when you turn the MMU off.
179 */
180
181 u_int cpu_reset_address = 0;
182
183 /* Define various stack sizes in pages */
184 #define IRQ_STACK_SIZE 1
185 #define ABT_STACK_SIZE 1
186 #define UND_STACK_SIZE 1
187
188 BootConfig bootconfig; /* Boot config storage */
189 char *boot_args = NULL;
190 char *boot_file = NULL;
191
192 vm_offset_t physical_start;
193 vm_offset_t physical_freestart;
194 vm_offset_t physical_freeend;
195 vm_offset_t physical_end;
196 u_int free_pages;
197
198 /*int debug_flags;*/
199 #ifndef PMAP_STATIC_L1S
200 int max_processes = 64; /* Default number */
201 #endif /* !PMAP_STATIC_L1S */
202
203 /* Physical and virtual addresses for some global pages */
204 pv_addr_t systempage;
205 pv_addr_t irqstack;
206 pv_addr_t undstack;
207 pv_addr_t abtstack;
208 pv_addr_t kernelstack;
209 pv_addr_t minidataclean;
210
211 vm_offset_t msgbufphys;
212
213 extern u_int data_abort_handler_address;
214 extern u_int prefetch_abort_handler_address;
215 extern u_int undefined_handler_address;
216
217 #ifdef PMAP_DEBUG
218 extern int pmap_debug_level;
219 #endif
220
221 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
222 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
223 #define KERNEL_PT_KERNEL_NUM 4
224 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
225 /* Page tables for mapping kernel VM */
226 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
227 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
228
229 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
230
231 /* Prototypes */
232
233 #if 0
234 void process_kernel_args(char *);
235 #endif
236
237 void consinit(void);
238 void kgdb_port_init(void);
239 void change_clock(uint32_t v);
240
241 bs_protos(bs_notimpl);
242
243 #include "com.h"
244 #if NCOM > 0
245 #include <dev/ic/comreg.h>
246 #include <dev/ic/comvar.h>
247 #endif
248
249 #ifndef CONSPEED
250 #define CONSPEED B115200 /* What RedBoot uses */
251 #endif
252 #ifndef CONMODE
253 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
254 #endif
255
256 int comcnspeed = CONSPEED;
257 int comcnmode = CONMODE;
258
259 static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
260 { 44, GPIO_ALT_FN_1_IN }, /* BTCST */
261 { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */
262
263 { 29, GPIO_ALT_FN_1_IN }, /* SDATA_IN0 */
264
265 { -1 }
266 };
267 static struct pxa2x0_gpioconf *lubbock_gpioconf[] = {
268 pxa25x_com_btuart_gpioconf,
269 pxa25x_com_ffuart_gpioconf,
270 #if 0
271 pxa25x_com_stuart_gpioconf,
272 #endif
273 pxa25x_pcic_gpioconf,
274 pxa25x_pxaacu_gpioconf,
275 boarddep_gpioconf,
276 NULL
277 };
278
279 /*
280 * void cpu_reboot(int howto, char *bootstr)
281 *
282 * Reboots the system
283 *
284 * Deal with any syncing, unmounting, dumping and shutdown hooks,
285 * then reset the CPU.
286 */
287 void
288 cpu_reboot(int howto, char *bootstr)
289 {
290 #ifdef DIAGNOSTIC
291 /* info */
292 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
293 #endif
294
295 /*
296 * If we are still cold then hit the air brakes
297 * and crash to earth fast
298 */
299 if (cold) {
300 doshutdownhooks();
301 pmf_system_shutdown(boothowto);
302 printf("The operating system has halted.\n");
303 printf("Please press any key to reboot.\n\n");
304 cngetc();
305 printf("rebooting...\n");
306 cpu_reset();
307 /*NOTREACHED*/
308 }
309
310 /* Disable console buffering */
311 /* cnpollc(1);*/
312
313 /*
314 * If RB_NOSYNC was not specified sync the discs.
315 * Note: Unless cold is set to 1 here, syslogd will die during the
316 * unmount. It looks like syslogd is getting woken up only to find
317 * that it cannot page part of the binary in as the filesystem has
318 * been unmounted.
319 */
320 if (!(howto & RB_NOSYNC))
321 bootsync();
322
323 /* Say NO to interrupts */
324 splhigh();
325
326 /* Do a dump if requested. */
327 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
328 dumpsys();
329
330 /* Run any shutdown hooks */
331 doshutdownhooks();
332
333 pmf_system_shutdown(boothowto);
334
335 /* Make sure IRQ's are disabled */
336 IRQdisable;
337
338 if (howto & RB_HALT) {
339 printf("The operating system has halted.\n");
340 printf("Please press any key to reboot.\n\n");
341 cngetc();
342 }
343
344 printf("rebooting...\n");
345 cpu_reset();
346 /*NOTREACHED*/
347 }
348
349 static inline
350 pd_entry_t *
351 read_ttb(void)
352 {
353 long ttb;
354
355 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
356
357
358 return (pd_entry_t *)(ttb & ~((1<<14)-1));
359 }
360
361 /*
362 * Static device mappings. These peripheral registers are mapped at
363 * fixed virtual addresses very early in initarm() so that we can use
364 * them while booting the kernel, and stay at the same address
365 * throughout whole kernel's life time.
366 *
367 * We use this table twice; once with bootstrap page table, and once
368 * with kernel's page table which we build up in initarm().
369 *
370 * Since we map these registers into the bootstrap page table using
371 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
372 * registers segment-aligned and segment-rounded in order to avoid
373 * using the 2nd page tables.
374 */
375
376 #define _A(a) ((a) & ~L1_S_OFFSET)
377 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
378
379 static const struct pmap_devmap lubbock_devmap[] = {
380 {
381 LUBBOCK_OBIO_VBASE,
382 _A(LUBBOCK_OBIO_PBASE),
383 _S(LUBBOCK_OBIO_SIZE),
384 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
385 },
386 {
387 LUBBOCK_GPIO_VBASE,
388 _A(PXA2X0_GPIO_BASE),
389 _S(PXA250_GPIO_SIZE),
390 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
391 },
392 {
393 LUBBOCK_CLKMAN_VBASE,
394 _A(PXA2X0_CLKMAN_BASE),
395 _S(PXA2X0_CLKMAN_SIZE),
396 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
397 },
398 {
399 LUBBOCK_INTCTL_VBASE,
400 _A(PXA2X0_INTCTL_BASE),
401 _S(PXA2X0_INTCTL_SIZE),
402 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
403 },
404 {
405 LUBBOCK_FFUART_VBASE,
406 _A(PXA2X0_FFUART_BASE),
407 _S(4 * COM_NPORTS),
408 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
409 },
410 {
411 LUBBOCK_BTUART_VBASE,
412 _A(PXA2X0_BTUART_BASE),
413 _S(4 * COM_NPORTS),
414 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
415 },
416
417 {0, 0, 0, 0,}
418 };
419
420 #undef _A
421 #undef _S
422
423 /*
424 * u_int initarm(...)
425 *
426 * Initial entry point on startup. This gets called before main() is
427 * entered.
428 * It should be responsible for setting up everything that must be
429 * in place when main is called.
430 * This includes
431 * Taking a copy of the boot configuration structure.
432 * Initialising the physical console so characters can be printed.
433 * Setting up page tables for the kernel
434 * Relocating the kernel to the bottom of physical memory
435 */
436 u_int
437 initarm(void *arg)
438 {
439 extern vaddr_t xscale_cache_clean_addr;
440 int loop;
441 int loop1;
442 u_int l1pagetable;
443 paddr_t memstart;
444 psize_t memsize;
445 int led_data = 0;
446 #ifdef DIAGNOSTIC
447 extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
448 #endif
449 #define LEDSTEP_P() ioreg_write(LUBBOCK_OBIO_PBASE+LUBBOCK_HEXLED, led_data++)
450 #define LEDSTEP() hex_led(led_data++)
451
452 /* use physical address until pagetable is set */
453 LEDSTEP_P();
454
455 /* map some peripheral registers at static I/O area */
456 pmap_devmap_bootstrap((vaddr_t)read_ttb(), lubbock_devmap);
457
458 LEDSTEP_P();
459
460 /* start 32.768 kHz OSC */
461 ioreg_write(LUBBOCK_CLKMAN_VBASE + 0x08, 2);
462 /* Get ready for splfoo() */
463 pxa2x0_intr_bootstrap(LUBBOCK_INTCTL_VBASE);
464
465 LEDSTEP();
466
467 /*
468 * Heads up ... Setup the CPU / MMU / TLB functions
469 */
470 if (set_cpufuncs())
471 panic("cpu not recognized!");
472
473 LEDSTEP();
474
475
476 #if 0
477 /* Calibrate the delay loop. */
478 #endif
479
480 /*
481 * Okay, RedBoot has provided us with the following memory map:
482 *
483 * Physical Address Range Description
484 * ----------------------- ----------------------------------
485 * 0x00000000 - 0x01ffffff flash Memory (32MB)
486 * 0x04000000 - 0x05ffffff Application flash Memory (32MB)
487 * 0x08000000 - 0x080000ff I/O baseboard registers
488 * 0x0a000000 - 0x0a0fffff SRAM (1MB)
489 * 0x0c000000 - 0x0c0fffff Ethernet Controller
490 * 0x0e000000 - 0x0e0fffff Ethernet Controller (Attribute)
491 * 0x10000000 - 0x103fffff SA-1111 Companion Chip
492 * 0x14000000 - 0x17ffffff Expansion Card (64MB)
493 * 0x40000000 - 0x480fffff Processor Registers
494 * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB)
495 *
496 *
497 * Virtual Address Range X C B Description
498 * ----------------------- - - - ----------------------------------
499 * 0x00000000 - 0x00003fff N Y Y SDRAM
500 * 0x00004000 - 0x000fffff N Y N Boot ROM
501 * 0x00100000 - 0x01ffffff N N N Application Flash
502 * 0x04000000 - 0x05ffffff N N N Exp Application Flash
503 * 0x08000000 - 0x080fffff N N N I/O baseboard registers
504 * 0x0a000000 - 0x0a0fffff N N N SRAM
505 * 0x40000000 - 0x480fffff N N N Processor Registers
506 * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM
507 * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM
508 * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region
509 * (done by this routine)
510 * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers
511 * 0xfd100000 - 0xfd3fffff N N N Processor Registers.
512 * 0xfd400000 - 0xfd4fffff N N N FF-UART
513 * 0xfd500000 - 0xfd5fffff N N N BT-UART
514 *
515 * RedBoot's first level page table is at 0xa0004000. There
516 * are also 2 second-level tables at 0xa0008000 and
517 * 0xa0008400. We will continue to use them until we switch to
518 * our pagetable by cpu_setttb().
519 *
520 */
521
522 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */
523 pxa2x0_gpio_bootstrap(LUBBOCK_GPIO_VBASE);
524 pxa2x0_gpio_config(lubbock_gpioconf);
525
526 /* turn on clock to UART block.
527 XXX: this should not be done here. */
528 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, CKEN_FFUART|CKEN_BTUART |
529 ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN));
530
531 LEDSTEP();
532
533 consinit();
534 LEDSTEP();
535 #ifdef KGDB
536 kgdb_port_init();
537 LEDSTEP();
538 #endif
539
540
541 /* Talk to the user */
542 printf("\nNetBSD/evbarm (lubbock) booting ...\n");
543
544 /* Tweak memory controller */
545 {
546 /* Modify access timing for CS3 (91c96) */
547
548 uint32_t tmp =
549 ioreg_read(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1);
550 ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1,
551 (tmp & 0xffff) | (0x3881<<16));
552 /* RRR=3, RDN=8, RDF=8
553 * XXX: can be faster?
554 */
555 }
556
557
558 /* Initialize for PCMCIA/CF sockets */
559 {
560 uint32_t tmp;
561
562 /* Activate two sockets.
563 XXX: This code segment should be moved to
564 pcmcia MD attach routine.
565 XXX: These bits should be toggled based on
566 existene of PCMCIA/CF cards
567 */
568 ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MECR,
569 MECR_NOS|MECR_CIT);
570
571 tmp = ioreg_read(LUBBOCK_SACC_PBASE+SACCSBI_SKCR);
572 ioreg_write(LUBBOCK_SACC_PBASE+SACCSBI_SKCR,
573 (tmp & ~(1<<4)) | (1<<0));
574 }
575
576 #if 0
577 /*
578 * Examine the boot args string for options we need to know about
579 * now.
580 */
581 process_kernel_args((char *)nwbootinfo.bt_args);
582 #endif
583
584 {
585 int processor_card_id;
586
587 processor_card_id = 0x000f &
588 ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_MISCRD);
589 switch(processor_card_id){
590 case 0:
591 /* Cotulla */
592 memstart = 0xa0000000;
593 memsize = 0x04000000; /* 64MB */
594 break;
595 case 1:
596 /* XXX: Sabiani */
597 memstart = 0xa0000000;
598 memsize = 0x04000000; /* 64MB */
599 break;
600 default:
601 /* XXX: Unknown */
602 memstart = 0xa0000000;
603 memsize = 0x04000000; /* 64MB */
604 }
605 }
606
607 printf("initarm: Configuring system ...\n");
608
609 /* Fake bootconfig structure for the benefit of pmap.c */
610 /* XXX must make the memory description h/w independent */
611 bootconfig.dramblocks = 1;
612 bootconfig.dram[0].address = memstart;
613 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
614
615 /*
616 * Set up the variables that define the availablilty of
617 * physical memory. For now, we're going to set
618 * physical_freestart to 0xa0200000 (where the kernel
619 * was loaded), and allocate the memory we need downwards.
620 * If we get too close to the page tables that RedBoot
621 * set up, we will panic. We will update physical_freestart
622 * and physical_freeend later to reflect what pmap_bootstrap()
623 * wants to see.
624 *
625 * XXX pmap_bootstrap() needs an enema.
626 */
627 physical_start = bootconfig.dram[0].address;
628 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
629
630 physical_freestart = 0xa0009000UL;
631 physical_freeend = 0xa0200000UL;
632
633 physmem = (physical_end - physical_start) / PAGE_SIZE;
634
635 #ifdef VERBOSE_INIT_ARM
636 /* Tell the user about the memory */
637 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
638 physical_start, physical_end - 1);
639 #endif
640
641 /*
642 * Okay, the kernel starts 2MB in from the bottom of physical
643 * memory. We are going to allocate our bootstrap pages downwards
644 * from there.
645 *
646 * We need to allocate some fixed page tables to get the kernel
647 * going. We allocate one page directory and a number of page
648 * tables and store the physical addresses in the kernel_pt_table
649 * array.
650 *
651 * The kernel page directory must be on a 16K boundary. The page
652 * tables must be on 4K boundaries. What we do is allocate the
653 * page directory on the first 16K boundary that we encounter, and
654 * the page tables on 4K boundaries otherwise. Since we allocate
655 * at least 3 L2 page tables, we are guaranteed to encounter at
656 * least one 16K aligned region.
657 */
658
659 #ifdef VERBOSE_INIT_ARM
660 printf("Allocating page tables\n");
661 #endif
662
663 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
664
665 #ifdef VERBOSE_INIT_ARM
666 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
667 physical_freestart, free_pages, free_pages);
668 #endif
669
670 /* Define a macro to simplify memory allocation */
671 #define valloc_pages(var, np) \
672 alloc_pages((var).pv_pa, (np)); \
673 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
674
675 #define alloc_pages(var, np) \
676 physical_freeend -= ((np) * PAGE_SIZE); \
677 if (physical_freeend < physical_freestart) \
678 panic("initarm: out of memory"); \
679 (var) = physical_freeend; \
680 free_pages -= (np); \
681 memset((char *)(var), 0, ((np) * PAGE_SIZE));
682
683 loop1 = 0;
684 kernel_l1pt.pv_pa = 0;
685 kernel_l1pt.pv_va = 0;
686 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
687 /* Are we 16KB aligned for an L1 ? */
688 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
689 && kernel_l1pt.pv_pa == 0) {
690 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
691 } else {
692 valloc_pages(kernel_pt_table[loop1],
693 L2_TABLE_SIZE / PAGE_SIZE);
694 ++loop1;
695 }
696 }
697
698 /* This should never be able to happen but better confirm that. */
699 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
700 panic("initarm: Failed to align the kernel page directory");
701
702 LEDSTEP();
703
704 /*
705 * Allocate a page for the system page mapped to V0x00000000
706 * This page will just contain the system vectors and can be
707 * shared by all processes.
708 */
709 alloc_pages(systempage.pv_pa, 1);
710
711 /* Allocate stacks for all modes */
712 valloc_pages(irqstack, IRQ_STACK_SIZE);
713 valloc_pages(abtstack, ABT_STACK_SIZE);
714 valloc_pages(undstack, UND_STACK_SIZE);
715 valloc_pages(kernelstack, UPAGES);
716
717 /* Allocate enough pages for cleaning the Mini-Data cache. */
718 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
719 valloc_pages(minidataclean, 1);
720
721 #ifdef VERBOSE_INIT_ARM
722 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
723 irqstack.pv_va);
724 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
725 abtstack.pv_va);
726 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
727 undstack.pv_va);
728 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
729 kernelstack.pv_va);
730 #endif
731
732 /*
733 * XXX Defer this to later so that we can reclaim the memory
734 * XXX used by the RedBoot page tables.
735 */
736 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
737
738 /*
739 * Ok we have allocated physical pages for the primary kernel
740 * page tables
741 */
742
743 #ifdef VERBOSE_INIT_ARM
744 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
745 #endif
746
747 /*
748 * Now we start construction of the L1 page table
749 * We start by mapping the L2 page tables into the L1.
750 * This means that we can replace L1 mappings later on if necessary
751 */
752 l1pagetable = kernel_l1pt.pv_pa;
753
754 /* Map the L2 pages tables in the L1 page table */
755 pmap_link_l2pt(l1pagetable, 0x00000000,
756 &kernel_pt_table[KERNEL_PT_SYS]);
757 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
758 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
759 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
760 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
761 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
762 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
763
764 /* update the top of the kernel VM */
765 pmap_curmaxkvaddr =
766 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
767
768 #ifdef VERBOSE_INIT_ARM
769 printf("Mapping kernel\n");
770 #endif
771
772 /* Now we fill in the L2 pagetable for the kernel static code/data */
773 {
774 extern char etext[], _end[];
775 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
776 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
777 u_int logical;
778
779 textsize = (textsize + PGOFSET) & ~PGOFSET;
780 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
781
782 logical = 0x00200000; /* offset of kernel in RAM */
783
784 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
785 physical_start + logical, textsize,
786 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
787 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
788 physical_start + logical, totalsize - textsize,
789 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
790 }
791
792 #ifdef VERBOSE_INIT_ARM
793 printf("Constructing L2 page tables\n");
794 #endif
795
796 /* Map the stack pages */
797 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
798 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
799 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
800 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
801 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
802 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
803 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
804 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
805
806 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
807 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
808
809 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
810 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
811 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
812 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
813 }
814
815 /* Map the Mini-Data cache clean area. */
816 xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
817 minidataclean.pv_pa);
818
819 /* Map the vector page. */
820 #if 1
821 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
822 * cache-clean code there. */
823 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
824 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
825 #else
826 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
827 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
828 #endif
829
830 /*
831 * map integrated peripherals at same address in l1pagetable
832 * so that we can continue to use console.
833 */
834 pmap_devmap_bootstrap(l1pagetable, lubbock_devmap);
835
836 /*
837 * Give the XScale global cache clean code an appropriately
838 * sized chunk of unmapped VA space starting at 0xff000000
839 * (our device mappings end before this address).
840 */
841 xscale_cache_clean_addr = 0xff000000U;
842
843 /*
844 * Now we have the real page tables in place so we can switch to them.
845 * Once this is done we will be running with the REAL kernel page
846 * tables.
847 */
848
849 /*
850 * Update the physical_freestart/physical_freeend/free_pages
851 * variables.
852 */
853 {
854 extern char _end[];
855
856 physical_freestart = physical_start +
857 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
858 KERNEL_BASE);
859 physical_freeend = physical_end;
860 free_pages =
861 (physical_freeend - physical_freestart) / PAGE_SIZE;
862 }
863
864 /* Switch tables */
865 #ifdef VERBOSE_INIT_ARM
866 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
867 physical_freestart, free_pages, free_pages);
868 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
869 #endif
870
871 LEDSTEP();
872
873 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
874 cpu_setttb(kernel_l1pt.pv_pa);
875 cpu_tlb_flushID();
876 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
877 LEDSTEP();
878
879 /*
880 * Moved from cpu_startup() as data_abort_handler() references
881 * this during uvm init
882 */
883 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
884
885 #ifdef VERBOSE_INIT_ARM
886 printf("bootstrap done.\n");
887 #endif
888
889 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
890
891 /*
892 * Pages were allocated during the secondary bootstrap for the
893 * stacks for different CPU modes.
894 * We must now set the r13 registers in the different CPU modes to
895 * point to these stacks.
896 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
897 * of the stack memory.
898 */
899 printf("init subsystems: stacks ");
900
901 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
902 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
903 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
904
905 /*
906 * Well we should set a data abort handler.
907 * Once things get going this will change as we will need a proper
908 * handler.
909 * Until then we will use a handler that just panics but tells us
910 * why.
911 * Initialisation of the vectors will just panic on a data abort.
912 * This just fills in a slightly better one.
913 */
914 printf("vectors ");
915 data_abort_handler_address = (u_int)data_abort_handler;
916 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
917 undefined_handler_address = (u_int)undefinedinstruction_bounce;
918
919 /* Initialise the undefined instruction handlers */
920 printf("undefined ");
921 undefined_init();
922
923 /* Load memory into UVM. */
924 printf("page ");
925 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
926 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
927 atop(physical_freestart), atop(physical_freeend),
928 VM_FREELIST_DEFAULT);
929
930 /* Boot strap pmap telling it where the kernel page table is */
931 printf("pmap ");
932 LEDSTEP();
933 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
934 LEDSTEP();
935
936 #ifdef __HAVE_MEMORY_DISK__
937 md_root_setconf(memory_disk, sizeof memory_disk);
938 #endif
939
940 {
941 uint16_t sw = ioreg16_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW);
942
943 if (0 == (sw & (1<<13))) /* check S19 */
944 boothowto |= RB_KDB;
945 if (0 == (sw & (1<<12))) /* S20 */
946 boothowto |= RB_SINGLE;
947 }
948
949 LEDSTEP();
950
951 #ifdef KGDB
952 if (boothowto & RB_KDB) {
953 kgdb_debug_init = 1;
954 kgdb_connect(1);
955 }
956 #endif
957
958 #ifdef DDB
959 db_machine_init();
960
961 /* Firmware doesn't load symbols. */
962 ddb_init(0, NULL, NULL);
963
964 if (boothowto & RB_KDB)
965 Debugger();
966 #endif
967
968 /* We return the new stack pointer address */
969 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
970 }
971
972 #if 0
973 void
974 process_kernel_args(char *args)
975 {
976
977 boothowto = 0;
978
979 /* Make a local copy of the bootargs */
980 strncpy(bootargs, args, MAX_BOOT_STRING);
981
982 args = bootargs;
983 boot_file = bootargs;
984
985 /* Skip the kernel image filename */
986 while (*args != ' ' && *args != 0)
987 ++args;
988
989 if (*args != 0)
990 *args++ = 0;
991
992 while (*args == ' ')
993 ++args;
994
995 boot_args = args;
996
997 printf("bootfile: %s\n", boot_file);
998 printf("bootargs: %s\n", boot_args);
999
1000 parse_mi_bootargs(boot_args);
1001 }
1002 #endif
1003
1004 #ifdef KGDB
1005 #ifndef KGDB_DEVNAME
1006 #define KGDB_DEVNAME "ffuart"
1007 #endif
1008 const char kgdb_devname[] = KGDB_DEVNAME;
1009
1010 #if (NCOM > 0)
1011 #ifndef KGDB_DEVMODE
1012 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
1013 #endif
1014 int comkgdbmode = KGDB_DEVMODE;
1015 #endif /* NCOM */
1016
1017 #endif /* KGDB */
1018
1019
1020 void
1021 consinit(void)
1022 {
1023 static int consinit_called = 0;
1024 uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN);
1025 #if 0
1026 char *console = CONSDEVNAME;
1027 #endif
1028
1029 if (consinit_called != 0)
1030 return;
1031
1032 consinit_called = 1;
1033
1034 #if NCOM > 0
1035
1036 #ifdef FFUARTCONSOLE
1037 /* Check switch. */
1038 if (0 == (ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW) & (1<<15))) {
1039 /* We don't use FF serial when S17=no-dot position */
1040 }
1041 #ifdef KGDB
1042 else if (0 == strcmp(kgdb_devname, "ffuart")) {
1043 /* port is reserved for kgdb */
1044 }
1045 #endif
1046 else if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
1047 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
1048 #if 0
1049 /* XXX: can't call pxa2x0_clkman_config yet */
1050 pxa2x0_clkman_config(CKEN_FFUART, 1);
1051 #else
1052 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN,
1053 ckenreg|CKEN_FFUART);
1054 #endif
1055
1056 return;
1057 }
1058 #endif /* FFUARTCONSOLE */
1059
1060 #ifdef BTUARTCONSOLE
1061 #ifdef KGDB
1062 if (0 == strcmp(kgdb_devname, "btuart")) {
1063 /* port is reserved for kgdb */
1064 } else
1065 #endif
1066 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
1067 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
1068 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN,
1069 ckenreg|CKEN_BTUART);
1070 return;
1071 }
1072 #endif /* BTUARTCONSOLE */
1073
1074
1075 #endif /* NCOM */
1076
1077 }
1078
1079 #ifdef KGDB
1080 void
1081 kgdb_port_init(void)
1082 {
1083 #if (NCOM > 0) && defined(COM_PXA2X0)
1084 paddr_t paddr = 0;
1085 uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN);
1086
1087 if (0 == strcmp(kgdb_devname, "ffuart")) {
1088 paddr = PXA2X0_FFUART_BASE;
1089 ckenreg |= CKEN_FFUART;
1090 }
1091 else if (0 == strcmp(kgdb_devname, "btuart")) {
1092 paddr = PXA2X0_BTUART_BASE;
1093 ckenreg |= CKEN_BTUART;
1094 }
1095
1096 if (paddr &&
1097 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
1098 kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
1099
1100 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
1101 }
1102 #endif
1103 }
1104 #endif
1105
1106 #if 0
1107 /*
1108 * display a number in hex LED.
1109 * a digit is blank when the corresponding bit in arg blank is 1
1110 */
1111 unsigned short led_control_value = 0;
1112
1113 void
1114 hex_led_blank(uint32_t value, int blank)
1115 {
1116 int save = disable_interrupts(I32_bit);
1117
1118 ioreg_write(LUBBOCK_OBIO_VBASE+0x10, value);
1119 led_control_value = (led_control_value & 0xff)
1120 | ((blank & 0xff)<<8);
1121 ioreg_write(LUBBOCK_OBIO_VBASE+0x40, led_control_value);
1122 restore_interrupts(save);
1123 }
1124 #endif
1125