marvell_machdep.c revision 1.3 1 1.3 jakllsch /* $NetBSD: marvell_machdep.c,v 1.3 2011/02/01 22:54:24 jakllsch Exp $ */
2 1.1 kiyohara /*
3 1.1 kiyohara * Copyright (c) 2007, 2008, 2010 KIYOHARA Takashi
4 1.1 kiyohara * All rights reserved.
5 1.1 kiyohara *
6 1.1 kiyohara * Redistribution and use in source and binary forms, with or without
7 1.1 kiyohara * modification, are permitted provided that the following conditions
8 1.1 kiyohara * are met:
9 1.1 kiyohara * 1. Redistributions of source code must retain the above copyright
10 1.1 kiyohara * notice, this list of conditions and the following disclaimer.
11 1.1 kiyohara * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 kiyohara * notice, this list of conditions and the following disclaimer in the
13 1.1 kiyohara * documentation and/or other materials provided with the distribution.
14 1.1 kiyohara *
15 1.1 kiyohara * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 1.1 kiyohara * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 1.1 kiyohara * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 1.1 kiyohara * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19 1.1 kiyohara * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20 1.1 kiyohara * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 1.1 kiyohara * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 1.1 kiyohara * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23 1.1 kiyohara * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 1.1 kiyohara * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 1.1 kiyohara * POSSIBILITY OF SUCH DAMAGE.
26 1.1 kiyohara */
27 1.1 kiyohara #include <sys/cdefs.h>
28 1.3 jakllsch __KERNEL_RCSID(0, "$NetBSD: marvell_machdep.c,v 1.3 2011/02/01 22:54:24 jakllsch Exp $");
29 1.1 kiyohara
30 1.1 kiyohara #include "opt_evbarm_boardtype.h"
31 1.1 kiyohara #include "opt_ddb.h"
32 1.1 kiyohara #include "opt_pci.h"
33 1.1 kiyohara #include "opt_mvsoc.h"
34 1.1 kiyohara #include "com.h"
35 1.1 kiyohara #include "gtpci.h"
36 1.1 kiyohara #include "mvpex.h"
37 1.1 kiyohara
38 1.1 kiyohara #include <sys/param.h>
39 1.1 kiyohara #include <sys/kernel.h>
40 1.1 kiyohara #include <sys/reboot.h>
41 1.1 kiyohara #include <sys/systm.h>
42 1.1 kiyohara #include <sys/termios.h>
43 1.1 kiyohara
44 1.1 kiyohara #include <prop/proplib.h>
45 1.1 kiyohara
46 1.1 kiyohara #include <dev/cons.h>
47 1.1 kiyohara #include <dev/md.h>
48 1.1 kiyohara
49 1.1 kiyohara #include <dev/marvell/marvellreg.h>
50 1.1 kiyohara #include <dev/marvell/marvellvar.h>
51 1.1 kiyohara #include <dev/pci/pcireg.h>
52 1.1 kiyohara #include <dev/pci/pcivar.h>
53 1.1 kiyohara
54 1.1 kiyohara #include <machine/autoconf.h>
55 1.1 kiyohara #include <machine/bootconfig.h>
56 1.1 kiyohara #include <machine/pci_machdep.h>
57 1.1 kiyohara
58 1.1 kiyohara #include <uvm/uvm_extern.h>
59 1.1 kiyohara
60 1.1 kiyohara #include <arm/db_machdep.h>
61 1.1 kiyohara #include <arm/undefined.h>
62 1.1 kiyohara #include <arm/arm32/machdep.h>
63 1.1 kiyohara
64 1.1 kiyohara #include <arm/marvell/mvsocreg.h>
65 1.1 kiyohara #include <arm/marvell/mvsocvar.h>
66 1.1 kiyohara #include <arm/marvell/orionreg.h>
67 1.1 kiyohara #include <arm/marvell/kirkwoodreg.h>
68 1.1 kiyohara #include <arm/marvell/mvsocgppvar.h>
69 1.1 kiyohara
70 1.1 kiyohara #include <evbarm/marvell/marvellreg.h>
71 1.1 kiyohara #include <evbarm/marvell/marvellvar.h>
72 1.1 kiyohara
73 1.1 kiyohara #include <ddb/db_extern.h>
74 1.1 kiyohara #include <ddb/db_sym.h>
75 1.1 kiyohara
76 1.1 kiyohara #include "ksyms.h"
77 1.1 kiyohara
78 1.1 kiyohara
79 1.1 kiyohara /* Kernel text starts 2MB in from the bottom of the kernel address space. */
80 1.1 kiyohara #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00000000)
81 1.1 kiyohara #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
82 1.1 kiyohara
83 1.1 kiyohara /*
84 1.1 kiyohara * The range 0xc1000000 - 0xccffffff is available for kernel VM space
85 1.1 kiyohara * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
86 1.1 kiyohara */
87 1.1 kiyohara #define KERNEL_VM_SIZE 0x0c000000
88 1.1 kiyohara
89 1.1 kiyohara /*
90 1.1 kiyohara * Address to call from cpu_reset() to reset the machine.
91 1.1 kiyohara * This is machine architecture dependant as it varies depending
92 1.1 kiyohara * on where the ROM appears when you turn the MMU off.
93 1.1 kiyohara */
94 1.1 kiyohara
95 1.1 kiyohara u_int cpu_reset_address = 0xffff0000;
96 1.1 kiyohara
97 1.1 kiyohara /* Define various stack sizes in pages */
98 1.1 kiyohara #define IRQ_STACK_SIZE 1
99 1.1 kiyohara #define ABT_STACK_SIZE 1
100 1.1 kiyohara #ifdef IPKDB
101 1.1 kiyohara #define UND_STACK_SIZE 2
102 1.1 kiyohara #else
103 1.1 kiyohara #define UND_STACK_SIZE 1
104 1.1 kiyohara #endif
105 1.1 kiyohara
106 1.1 kiyohara BootConfig bootconfig; /* Boot config storage */
107 1.1 kiyohara char *boot_args = NULL;
108 1.1 kiyohara
109 1.1 kiyohara vm_offset_t physical_start;
110 1.1 kiyohara vm_offset_t physical_freestart;
111 1.1 kiyohara vm_offset_t physical_freeend;
112 1.1 kiyohara vm_offset_t physical_end;
113 1.1 kiyohara u_int free_pages;
114 1.1 kiyohara int physmem = 0;
115 1.1 kiyohara
116 1.1 kiyohara /* Physical and virtual addresses for some global pages */
117 1.1 kiyohara pv_addr_t systempage;
118 1.1 kiyohara pv_addr_t irqstack;
119 1.1 kiyohara pv_addr_t undstack;
120 1.1 kiyohara pv_addr_t abtstack;
121 1.1 kiyohara pv_addr_t kernelstack;
122 1.1 kiyohara
123 1.1 kiyohara vm_offset_t msgbufphys;
124 1.1 kiyohara
125 1.1 kiyohara extern u_int data_abort_handler_address;
126 1.1 kiyohara extern u_int prefetch_abort_handler_address;
127 1.1 kiyohara extern u_int undefined_handler_address;
128 1.1 kiyohara
129 1.1 kiyohara extern char _end[];
130 1.1 kiyohara
131 1.1 kiyohara #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
132 1.1 kiyohara #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
133 1.1 kiyohara #define KERNEL_PT_KERNEL_NUM 4
134 1.1 kiyohara #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
135 1.1 kiyohara /* Page tables for mapping kernel VM */
136 1.1 kiyohara #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
137 1.1 kiyohara #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
138 1.1 kiyohara
139 1.1 kiyohara pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
140 1.1 kiyohara
141 1.1 kiyohara /*
142 1.1 kiyohara * Macros to translate between physical and virtual for a subset of the
143 1.1 kiyohara * kernel address space. *Not* for general use.
144 1.1 kiyohara */
145 1.1 kiyohara #define KERNEL_BASE_PHYS physical_start
146 1.1 kiyohara #define KERN_VTOPHYS(va) \
147 1.1 kiyohara ((paddr_t)((vaddr_t)va - KERNEL_BASE + KERNEL_BASE_PHYS))
148 1.1 kiyohara #define KERN_PHYSTOV(pa) \
149 1.1 kiyohara ((vaddr_t)((paddr_t)pa - KERNEL_BASE_PHYS + KERNEL_BASE))
150 1.1 kiyohara
151 1.1 kiyohara
152 1.1 kiyohara #include "com.h"
153 1.1 kiyohara #if NCOM > 0
154 1.1 kiyohara #include <dev/ic/comreg.h>
155 1.1 kiyohara #include <dev/ic/comvar.h>
156 1.1 kiyohara #endif
157 1.1 kiyohara
158 1.1 kiyohara #ifndef CONSPEED
159 1.1 kiyohara #define CONSPEED B115200 /* It's a setting of the default of u-boot */
160 1.1 kiyohara #endif
161 1.1 kiyohara #ifndef CONMODE
162 1.1 kiyohara #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
163 1.1 kiyohara
164 1.1 kiyohara int comcnspeed = CONSPEED;
165 1.1 kiyohara int comcnmode = CONMODE;
166 1.1 kiyohara #endif
167 1.1 kiyohara
168 1.1 kiyohara #include "opt_kgdb.h"
169 1.1 kiyohara #ifdef KGDB
170 1.1 kiyohara #include <sys/kgdb.h>
171 1.1 kiyohara #endif
172 1.1 kiyohara
173 1.1 kiyohara static void marvell_device_register(device_t, void *);
174 1.1 kiyohara #if NGTPCI > 0 || NMVPEX > 0
175 1.1 kiyohara static void marvell_startend_by_tag(int, uint64_t *, uint64_t *);
176 1.1 kiyohara #endif
177 1.1 kiyohara
178 1.3 jakllsch static void
179 1.3 jakllsch marvell_system_reset(void)
180 1.3 jakllsch {
181 1.3 jakllsch /* unmask soft reset */
182 1.3 jakllsch write_mlmbreg(MVSOC_MLMB_RSTOUTNMASKR,
183 1.3 jakllsch MVSOC_MLMB_RSTOUTNMASKR_SOFTRSTOUTEN);
184 1.3 jakllsch /* assert soft reset */
185 1.3 jakllsch write_mlmbreg(MVSOC_MLMB_SSRR, MVSOC_MLMB_SSRR_SYSTEMSOFTRST);
186 1.3 jakllsch /* if we're still running, jump to the reset address */
187 1.3 jakllsch cpu_reset();
188 1.3 jakllsch /*NOTREACHED*/
189 1.3 jakllsch }
190 1.1 kiyohara
191 1.1 kiyohara void
192 1.1 kiyohara cpu_reboot(int howto, char *bootstr)
193 1.1 kiyohara {
194 1.1 kiyohara
195 1.1 kiyohara /*
196 1.1 kiyohara * If we are still cold then hit the air brakes
197 1.1 kiyohara * and crash to earth fast
198 1.1 kiyohara */
199 1.1 kiyohara if (cold) {
200 1.1 kiyohara doshutdownhooks();
201 1.1 kiyohara printf("The operating system has halted.\r\n");
202 1.1 kiyohara printf("Please press any key to reboot.\r\n");
203 1.1 kiyohara cngetc();
204 1.1 kiyohara printf("rebooting...\r\n");
205 1.3 jakllsch marvell_system_reset();
206 1.1 kiyohara }
207 1.1 kiyohara
208 1.1 kiyohara /*
209 1.1 kiyohara * If RB_NOSYNC was not specified sync the discs.
210 1.1 kiyohara * Note: Unless cold is set to 1 here, syslogd will die during the
211 1.1 kiyohara * unmount. It looks like syslogd is getting woken up only to find
212 1.1 kiyohara * that it cannot page part of the binary in as the filesystem has
213 1.1 kiyohara * been unmounted.
214 1.1 kiyohara */
215 1.1 kiyohara if (!(howto & RB_NOSYNC))
216 1.1 kiyohara bootsync();
217 1.1 kiyohara
218 1.1 kiyohara /* Say NO to interrupts */
219 1.1 kiyohara splhigh();
220 1.1 kiyohara
221 1.1 kiyohara /* Do a dump if requested. */
222 1.1 kiyohara if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
223 1.1 kiyohara dumpsys();
224 1.1 kiyohara
225 1.1 kiyohara /* Run any shutdown hooks */
226 1.1 kiyohara doshutdownhooks();
227 1.1 kiyohara
228 1.1 kiyohara /* Make sure IRQ's are disabled */
229 1.1 kiyohara IRQdisable;
230 1.1 kiyohara
231 1.1 kiyohara if (howto & RB_HALT) {
232 1.1 kiyohara printf("The operating system has halted.\r\n");
233 1.1 kiyohara printf("Please press any key to reboot.\r\n");
234 1.1 kiyohara cngetc();
235 1.1 kiyohara }
236 1.1 kiyohara
237 1.1 kiyohara printf("rebooting...\r\n");
238 1.3 jakllsch marvell_system_reset();
239 1.1 kiyohara
240 1.1 kiyohara /*NOTREACHED*/
241 1.1 kiyohara }
242 1.1 kiyohara
243 1.1 kiyohara static inline
244 1.1 kiyohara pd_entry_t *
245 1.1 kiyohara read_ttb(void)
246 1.1 kiyohara {
247 1.1 kiyohara long ttb;
248 1.1 kiyohara
249 1.1 kiyohara __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
250 1.1 kiyohara
251 1.1 kiyohara return (pd_entry_t *)(ttb & ~((1<<14)-1));
252 1.1 kiyohara }
253 1.1 kiyohara
254 1.1 kiyohara /*
255 1.1 kiyohara * Static device mappings. These peripheral registers are mapped at
256 1.1 kiyohara * fixed virtual addresses very early in initarm() so that we can use
257 1.1 kiyohara * them while booting the kernel, and stay at the same address
258 1.1 kiyohara * throughout whole kernel's life time.
259 1.1 kiyohara *
260 1.1 kiyohara * We use this table twice; once with bootstrap page table, and once
261 1.1 kiyohara * with kernel's page table which we build up in initarm().
262 1.1 kiyohara *
263 1.1 kiyohara * Since we map these registers into the bootstrap page table using
264 1.1 kiyohara * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
265 1.1 kiyohara * registers segment-aligned and segment-rounded in order to avoid
266 1.1 kiyohara * using the 2nd page tables.
267 1.1 kiyohara */
268 1.1 kiyohara #define _A(a) ((a) & ~L1_S_OFFSET)
269 1.1 kiyohara #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
270 1.1 kiyohara
271 1.1 kiyohara static const struct pmap_devmap marvell_devmap[] = {
272 1.1 kiyohara {
273 1.1 kiyohara MARVELL_INTERREGS_VBASE,
274 1.1 kiyohara _A(MARVELL_INTERREGS_PBASE),
275 1.1 kiyohara _S(MARVELL_INTERREGS_SIZE),
276 1.1 kiyohara VM_PROT_READ|VM_PROT_WRITE,
277 1.1 kiyohara PTE_NOCACHE,
278 1.1 kiyohara },
279 1.1 kiyohara
280 1.1 kiyohara { 0, 0, 0, 0, 0 }
281 1.1 kiyohara };
282 1.1 kiyohara
283 1.1 kiyohara #undef _A
284 1.1 kiyohara #undef _S
285 1.1 kiyohara
286 1.1 kiyohara
287 1.1 kiyohara /*
288 1.1 kiyohara * u_int initarm(...)
289 1.1 kiyohara *
290 1.1 kiyohara * Initial entry point on startup. This gets called before main() is
291 1.1 kiyohara * entered.
292 1.1 kiyohara * It should be responsible for setting up everything that must be
293 1.1 kiyohara * in place when main is called.
294 1.1 kiyohara * This includes
295 1.1 kiyohara * Taking a copy of the boot configuration structure.
296 1.1 kiyohara * Initialising the physical console so characters can be printed.
297 1.1 kiyohara * Setting up page tables for the kernel
298 1.1 kiyohara * Relocating the kernel to the bottom of physical memory
299 1.1 kiyohara */
300 1.1 kiyohara u_int
301 1.1 kiyohara initarm(void *arg)
302 1.1 kiyohara {
303 1.1 kiyohara uint32_t target, attr, base, size;
304 1.1 kiyohara u_int l1pagetable;
305 1.1 kiyohara int loop, pt_index, cs, memtag = 0, iotag = 0, window;
306 1.1 kiyohara
307 1.1 kiyohara /* map some peripheral registers */
308 1.1 kiyohara pmap_devmap_bootstrap((vaddr_t)read_ttb(), marvell_devmap);
309 1.1 kiyohara
310 1.1 kiyohara mvsoc_bootstrap(MARVELL_INTERREGS_VBASE);
311 1.1 kiyohara
312 1.1 kiyohara /* Get ready for splfoo() */
313 1.1 kiyohara switch (mvsoc_model()) {
314 1.1 kiyohara #ifdef ORION
315 1.1 kiyohara case MARVELL_ORION_1_88F1181:
316 1.1 kiyohara case MARVELL_ORION_1_88F5082:
317 1.1 kiyohara case MARVELL_ORION_1_88F5180N:
318 1.1 kiyohara case MARVELL_ORION_1_88F5181:
319 1.1 kiyohara case MARVELL_ORION_1_88F5182:
320 1.1 kiyohara case MARVELL_ORION_1_88F6082:
321 1.1 kiyohara case MARVELL_ORION_1_88F6183:
322 1.1 kiyohara case MARVELL_ORION_1_88W8660:
323 1.1 kiyohara case MARVELL_ORION_2_88F1281:
324 1.1 kiyohara case MARVELL_ORION_2_88F5281:
325 1.1 kiyohara orion_intr_bootstrap();
326 1.1 kiyohara
327 1.1 kiyohara memtag = ORION_TAG_PEX0_MEM;
328 1.1 kiyohara iotag = ORION_TAG_PEX0_IO;
329 1.1 kiyohara nwindow = ORION_MLMB_NWINDOW;
330 1.1 kiyohara nremap = ORION_MLMB_NREMAP;
331 1.1 kiyohara
332 1.1 kiyohara orion_getclks(MARVELL_INTERREGS_VBASE);
333 1.1 kiyohara if (mvTclk == 166666667) /* 166MHz */
334 1.1 kiyohara mvTclk = 166664740; /* ???? */
335 1.1 kiyohara break;
336 1.1 kiyohara #endif /* ORION */
337 1.1 kiyohara
338 1.1 kiyohara #ifdef KIRKWOOD
339 1.1 kiyohara case MARVELL_KIRKWOOD_88F6180:
340 1.1 kiyohara case MARVELL_KIRKWOOD_88F6192:
341 1.1 kiyohara case MARVELL_KIRKWOOD_88F6281:
342 1.1 kiyohara kirkwood_intr_bootstrap();
343 1.1 kiyohara
344 1.1 kiyohara memtag = KIRKWOOD_TAG_PEX_MEM;
345 1.1 kiyohara iotag = KIRKWOOD_TAG_PEX_IO;
346 1.1 kiyohara nwindow = KIRKWOOD_MLMB_NWINDOW;
347 1.1 kiyohara nremap = KIRKWOOD_MLMB_NREMAP;
348 1.1 kiyohara
349 1.1 kiyohara kirkwood_getclks(MARVELL_INTERREGS_VBASE);
350 1.1 kiyohara break;
351 1.1 kiyohara #endif /* KIRKWOOD */
352 1.1 kiyohara
353 1.1 kiyohara #ifdef MV78XX0
354 1.1 kiyohara case MARVELL_MV78XX0_MV78100:
355 1.1 kiyohara case MARVELL_MV78XX0_MV78200:
356 1.1 kiyohara mv78xx0_intr_bootstrap();
357 1.1 kiyohara
358 1.1 kiyohara memtag = MV78XX0_TAG_PEX_MEM;
359 1.1 kiyohara iotag = MV78XX0_TAG_PEX_IO;
360 1.1 kiyohara nwindow = MV78XX0_MLMB_NWINDOW;
361 1.1 kiyohara nremap = MV78XX0_MLMB_NREMAP;
362 1.1 kiyohara
363 1.1 kiyohara mv78xx0_getclks(MARVELL_INTERREGS_VBASE);
364 1.1 kiyohara break;
365 1.1 kiyohara #endif /* MV78XX0 */
366 1.1 kiyohara
367 1.1 kiyohara default:
368 1.1 kiyohara /* We can't output console here yet... */
369 1.1 kiyohara panic("unknown model...\n");
370 1.1 kiyohara
371 1.1 kiyohara /* NOTREACHED */
372 1.1 kiyohara }
373 1.1 kiyohara
374 1.1 kiyohara /* Reset PCI-Express space to window register. */
375 1.1 kiyohara window = mvsoc_target(memtag, &target, &attr, NULL, NULL);
376 1.1 kiyohara write_mlmbreg(MVSOC_MLMB_WCR(window),
377 1.1 kiyohara MVSOC_MLMB_WCR_WINEN |
378 1.1 kiyohara MVSOC_MLMB_WCR_TARGET(target) |
379 1.1 kiyohara MVSOC_MLMB_WCR_ATTR(attr) |
380 1.1 kiyohara MVSOC_MLMB_WCR_SIZE(MARVELL_PEXMEM_SIZE));
381 1.1 kiyohara write_mlmbreg(MVSOC_MLMB_WBR(window),
382 1.1 kiyohara MARVELL_PEXMEM_PBASE & MVSOC_MLMB_WBR_BASE_MASK);
383 1.1 kiyohara #ifdef PCI_NETBSD_CONFIGURE
384 1.1 kiyohara if (window < nremap) {
385 1.1 kiyohara write_mlmbreg(MVSOC_MLMB_WRLR(window),
386 1.1 kiyohara MARVELL_PEXMEM_PBASE & MVSOC_MLMB_WRLR_REMAP_MASK);
387 1.1 kiyohara write_mlmbreg(MVSOC_MLMB_WRHR(window), 0);
388 1.1 kiyohara }
389 1.1 kiyohara #endif
390 1.1 kiyohara window = mvsoc_target(iotag, &target, &attr, NULL, NULL);
391 1.1 kiyohara write_mlmbreg(MVSOC_MLMB_WCR(window),
392 1.1 kiyohara MVSOC_MLMB_WCR_WINEN |
393 1.1 kiyohara MVSOC_MLMB_WCR_TARGET(target) |
394 1.1 kiyohara MVSOC_MLMB_WCR_ATTR(attr) |
395 1.1 kiyohara MVSOC_MLMB_WCR_SIZE(MARVELL_PEXIO_SIZE));
396 1.1 kiyohara write_mlmbreg(MVSOC_MLMB_WBR(window),
397 1.1 kiyohara MARVELL_PEXIO_PBASE & MVSOC_MLMB_WBR_BASE_MASK);
398 1.1 kiyohara #ifdef PCI_NETBSD_CONFIGURE
399 1.1 kiyohara if (window < nremap) {
400 1.1 kiyohara write_mlmbreg(MVSOC_MLMB_WRLR(window),
401 1.1 kiyohara MARVELL_PEXIO_PBASE & MVSOC_MLMB_WRLR_REMAP_MASK);
402 1.1 kiyohara write_mlmbreg(MVSOC_MLMB_WRHR(window), 0);
403 1.1 kiyohara }
404 1.1 kiyohara #endif
405 1.1 kiyohara
406 1.1 kiyohara /*
407 1.1 kiyohara * Heads up ... Setup the CPU / MMU / TLB functions
408 1.1 kiyohara */
409 1.1 kiyohara if (set_cpufuncs())
410 1.1 kiyohara panic("cpu not recognized!");
411 1.1 kiyohara
412 1.1 kiyohara /*
413 1.1 kiyohara * U-Boot doesn't use the virtual memory.
414 1.1 kiyohara *
415 1.1 kiyohara * Physical Address Range Description
416 1.1 kiyohara * ----------------------- ----------------------------------
417 1.1 kiyohara * 0x00000000 - 0x0fffffff SDRAM Bank 0 (max 256MB)
418 1.1 kiyohara * 0x10000000 - 0x1fffffff SDRAM Bank 1 (max 256MB)
419 1.1 kiyohara * 0x20000000 - 0x2fffffff SDRAM Bank 2 (max 256MB)
420 1.1 kiyohara * 0x30000000 - 0x3fffffff SDRAM Bank 3 (max 256MB)
421 1.1 kiyohara * 0xf1000000 - 0xf10fffff SoC Internal Registers
422 1.1 kiyohara */
423 1.1 kiyohara
424 1.1 kiyohara cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
425 1.1 kiyohara
426 1.1 kiyohara consinit();
427 1.1 kiyohara
428 1.1 kiyohara /* Talk to the user */
429 1.1 kiyohara #define BDSTR(s) _BDSTR(s)
430 1.1 kiyohara #define _BDSTR(s) #s
431 1.1 kiyohara printf("\nNetBSD/evbarm (" BDSTR(EVBARM_BOARDTYPE) ") booting ...\n");
432 1.1 kiyohara
433 1.1 kiyohara #ifdef VERBOSE_INIT_ARM
434 1.1 kiyohara printf("initarm: Configuring system ...\n");
435 1.1 kiyohara #endif
436 1.1 kiyohara
437 1.1 kiyohara bootconfig.dramblocks = 0;
438 1.1 kiyohara physical_end = physmem = 0;
439 1.1 kiyohara for (cs = MARVELL_TAG_SDRAM_CS0; cs <= MARVELL_TAG_SDRAM_CS3; cs++) {
440 1.1 kiyohara mvsoc_target(cs, &target, &attr, &base, &size);
441 1.1 kiyohara if (size == 0)
442 1.1 kiyohara continue;
443 1.1 kiyohara
444 1.1 kiyohara bootconfig.dram[bootconfig.dramblocks].address = base;
445 1.1 kiyohara bootconfig.dram[bootconfig.dramblocks].pages = size / PAGE_SIZE;
446 1.1 kiyohara
447 1.1 kiyohara if (base != physical_end)
448 1.1 kiyohara panic("memory hole not support");
449 1.1 kiyohara
450 1.1 kiyohara physical_end += size;
451 1.1 kiyohara physmem += size / PAGE_SIZE;
452 1.1 kiyohara
453 1.1 kiyohara bootconfig.dramblocks++;
454 1.1 kiyohara }
455 1.1 kiyohara
456 1.1 kiyohara /*
457 1.1 kiyohara * Set up the variables that define the availablilty of
458 1.1 kiyohara * physical memory. For now, we're going to set
459 1.1 kiyohara * physical_freestart to 0xa0008000 (where the kernel
460 1.1 kiyohara * was loaded), and allocate the memory we need downwards.
461 1.1 kiyohara * If we get too close to the L1 table that we set up, we
462 1.1 kiyohara * will panic. We will update physical_freestart and
463 1.1 kiyohara * physical_freeend later to reflect what pmap_bootstrap()
464 1.1 kiyohara * wants to see.
465 1.1 kiyohara *
466 1.1 kiyohara * XXX pmap_bootstrap() needs an enema.
467 1.1 kiyohara */
468 1.1 kiyohara physical_start = bootconfig.dram[0].address;
469 1.1 kiyohara
470 1.1 kiyohara /*
471 1.1 kiyohara * Our kernel is at the beginning of memory, so set our free space to
472 1.1 kiyohara * all the memory after the kernel.
473 1.1 kiyohara */
474 1.1 kiyohara physical_freestart = KERN_VTOPHYS(round_page((vaddr_t)_end));
475 1.1 kiyohara physical_freeend = physical_end;
476 1.1 kiyohara
477 1.1 kiyohara #ifdef VERBOSE_INIT_ARM
478 1.1 kiyohara /* Tell the user about the memory */
479 1.1 kiyohara printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
480 1.1 kiyohara physical_start, physical_end - 1);
481 1.1 kiyohara #endif
482 1.1 kiyohara
483 1.1 kiyohara /*
484 1.1 kiyohara * Okay, the kernel starts 8kB in from the bottom of physical
485 1.1 kiyohara * memory. We are going to allocate our bootstrap pages upwards
486 1.1 kiyohara * from physical_freestart.
487 1.1 kiyohara *
488 1.1 kiyohara * We need to allocate some fixed page tables to get the kernel
489 1.1 kiyohara * going. We allocate one page directory and a number of page
490 1.1 kiyohara * tables and store the physical addresses in the kernel_pt_table
491 1.1 kiyohara * array.
492 1.1 kiyohara *
493 1.1 kiyohara * The kernel page directory must be on a 16K boundary. The page
494 1.1 kiyohara * tables must be on 4K bounaries. What we do is allocate the
495 1.1 kiyohara * page directory on the first 16K boundary that we encounter, and
496 1.1 kiyohara * the page tables on 4K boundaries otherwise. Since we allocate
497 1.1 kiyohara * at least 3 L2 page tables, we are guaranteed to encounter at
498 1.1 kiyohara * least one 16K aligned region.
499 1.1 kiyohara */
500 1.1 kiyohara
501 1.1 kiyohara #ifdef VERBOSE_INIT_ARM
502 1.1 kiyohara printf("Allocating page tables\n");
503 1.1 kiyohara #endif
504 1.1 kiyohara
505 1.1 kiyohara free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
506 1.1 kiyohara
507 1.1 kiyohara #ifdef VERBOSE_INIT_ARM
508 1.1 kiyohara printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
509 1.1 kiyohara physical_freestart, free_pages, free_pages);
510 1.1 kiyohara #endif
511 1.1 kiyohara
512 1.1 kiyohara /*
513 1.1 kiyohara * Define a macro to simplify memory allocation. As we allocate the
514 1.1 kiyohara * memory, make sure that we don't walk over our temporary first level
515 1.1 kiyohara * translation table.
516 1.1 kiyohara */
517 1.1 kiyohara #define valloc_pages(var, np) \
518 1.1 kiyohara (var).pv_pa = physical_freestart; \
519 1.1 kiyohara physical_freestart += ((np) * PAGE_SIZE); \
520 1.1 kiyohara if (physical_freestart > (physical_freeend - L1_TABLE_SIZE)) \
521 1.1 kiyohara panic("initarm: out of memory"); \
522 1.1 kiyohara free_pages -= (np); \
523 1.1 kiyohara (var).pv_va = KERN_PHYSTOV((var).pv_pa); \
524 1.1 kiyohara memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE));
525 1.1 kiyohara
526 1.1 kiyohara pt_index = 0;
527 1.1 kiyohara kernel_l1pt.pv_pa = 0;
528 1.1 kiyohara kernel_l1pt.pv_va = 0;
529 1.1 kiyohara for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
530 1.1 kiyohara /* Are we 16KB aligned for an L1 ? */
531 1.1 kiyohara if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0 &&
532 1.1 kiyohara kernel_l1pt.pv_pa == 0) {
533 1.1 kiyohara valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
534 1.1 kiyohara } else {
535 1.1 kiyohara valloc_pages(kernel_pt_table[pt_index],
536 1.1 kiyohara L2_TABLE_SIZE / PAGE_SIZE);
537 1.1 kiyohara ++pt_index;
538 1.1 kiyohara }
539 1.1 kiyohara }
540 1.1 kiyohara
541 1.1 kiyohara /* This should never be able to happen but better confirm that. */
542 1.1 kiyohara if (!kernel_l1pt.pv_pa ||
543 1.1 kiyohara (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
544 1.1 kiyohara panic("initarm: Failed to align the kernel page directory");
545 1.1 kiyohara
546 1.1 kiyohara /*
547 1.1 kiyohara * Allocate a page for the system page mapped to V0x00000000
548 1.1 kiyohara * This page will just contain the system vectors and can be
549 1.1 kiyohara * shared by all processes.
550 1.1 kiyohara */
551 1.1 kiyohara valloc_pages(systempage, 1);
552 1.1 kiyohara systempage.pv_va = 0x00000000;
553 1.1 kiyohara
554 1.1 kiyohara /* Allocate stacks for all modes */
555 1.1 kiyohara valloc_pages(irqstack, IRQ_STACK_SIZE);
556 1.1 kiyohara valloc_pages(abtstack, ABT_STACK_SIZE);
557 1.1 kiyohara valloc_pages(undstack, UND_STACK_SIZE);
558 1.1 kiyohara valloc_pages(kernelstack, UPAGES);
559 1.1 kiyohara
560 1.1 kiyohara #ifdef VERBOSE_INIT_ARM
561 1.1 kiyohara printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
562 1.1 kiyohara irqstack.pv_va);
563 1.1 kiyohara printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
564 1.1 kiyohara abtstack.pv_va);
565 1.1 kiyohara printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
566 1.1 kiyohara undstack.pv_va);
567 1.1 kiyohara printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
568 1.1 kiyohara kernelstack.pv_va);
569 1.1 kiyohara #endif
570 1.1 kiyohara
571 1.1 kiyohara /* Allocate the message buffer. */
572 1.1 kiyohara {
573 1.1 kiyohara pv_addr_t msgbuf;
574 1.1 kiyohara
575 1.1 kiyohara valloc_pages(msgbuf, round_page(MSGBUFSIZE) / PAGE_SIZE);
576 1.1 kiyohara msgbufphys = msgbuf.pv_pa;
577 1.1 kiyohara }
578 1.1 kiyohara
579 1.1 kiyohara /*
580 1.1 kiyohara * Ok we have allocated physical pages for the primary kernel
581 1.1 kiyohara * page tables
582 1.1 kiyohara */
583 1.1 kiyohara
584 1.1 kiyohara #ifdef VERBOSE_INIT_ARM
585 1.1 kiyohara printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
586 1.1 kiyohara #endif
587 1.1 kiyohara
588 1.1 kiyohara /*
589 1.1 kiyohara * Now we start construction of the L1 page table
590 1.1 kiyohara * We start by mapping the L2 page tables into the L1.
591 1.1 kiyohara * This means that we can replace L1 mappings later on if necessary
592 1.1 kiyohara */
593 1.1 kiyohara l1pagetable = kernel_l1pt.pv_va;
594 1.1 kiyohara
595 1.1 kiyohara /* Map the L2 pages tables in the L1 page table */
596 1.1 kiyohara pmap_link_l2pt(l1pagetable, 0x00000000,
597 1.1 kiyohara &kernel_pt_table[KERNEL_PT_SYS]);
598 1.1 kiyohara for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
599 1.1 kiyohara pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
600 1.1 kiyohara &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
601 1.1 kiyohara for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
602 1.1 kiyohara pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
603 1.1 kiyohara &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
604 1.1 kiyohara
605 1.1 kiyohara /* update the top of the kernel VM */
606 1.1 kiyohara pmap_curmaxkvaddr =
607 1.1 kiyohara KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
608 1.1 kiyohara
609 1.1 kiyohara #ifdef VERBOSE_INIT_ARM
610 1.1 kiyohara printf("Mapping kernel\n");
611 1.1 kiyohara #endif
612 1.1 kiyohara
613 1.1 kiyohara /* Now we fill in the L2 pagetable for the kernel static code/data */
614 1.1 kiyohara {
615 1.1 kiyohara extern char etext[], _end[];
616 1.1 kiyohara size_t textsize = (uintptr_t)etext - KERNEL_TEXT_BASE;
617 1.1 kiyohara size_t totalsize = (uintptr_t)_end - KERNEL_TEXT_BASE;
618 1.1 kiyohara u_int logical;
619 1.1 kiyohara
620 1.1 kiyohara textsize = (textsize + PGOFSET) & ~PGOFSET;
621 1.1 kiyohara totalsize = (totalsize + PGOFSET) & ~PGOFSET;
622 1.1 kiyohara
623 1.1 kiyohara logical = 0x00000000; /* offset of kernel in RAM */
624 1.1 kiyohara
625 1.1 kiyohara logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
626 1.1 kiyohara physical_start + logical, textsize,
627 1.1 kiyohara VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
628 1.1 kiyohara logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
629 1.1 kiyohara physical_start + logical, totalsize - textsize,
630 1.1 kiyohara VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
631 1.1 kiyohara }
632 1.1 kiyohara
633 1.1 kiyohara #ifdef VERBOSE_INIT_ARM
634 1.1 kiyohara printf("Constructing L2 page tables\n");
635 1.1 kiyohara #endif
636 1.1 kiyohara
637 1.1 kiyohara /* Map the stack pages */
638 1.1 kiyohara pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
639 1.1 kiyohara IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
640 1.1 kiyohara pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
641 1.1 kiyohara ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
642 1.1 kiyohara pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
643 1.1 kiyohara UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
644 1.1 kiyohara pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
645 1.1 kiyohara UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
646 1.1 kiyohara
647 1.1 kiyohara pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
648 1.1 kiyohara L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
649 1.1 kiyohara
650 1.1 kiyohara for (loop = 0; loop < NUM_KERNEL_PTS; ++loop)
651 1.1 kiyohara pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
652 1.1 kiyohara kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
653 1.1 kiyohara VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
654 1.1 kiyohara
655 1.1 kiyohara /* Map the vector page. */
656 1.1 kiyohara pmap_map_entry(l1pagetable, ARM_VECTORS_LOW, systempage.pv_pa,
657 1.1 kiyohara VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
658 1.1 kiyohara
659 1.1 kiyohara /*
660 1.1 kiyohara * Map integrated peripherals at same address in first level page
661 1.1 kiyohara * table so that we can continue to use console.
662 1.1 kiyohara */
663 1.1 kiyohara pmap_devmap_bootstrap(l1pagetable, marvell_devmap);
664 1.1 kiyohara
665 1.1 kiyohara /*
666 1.1 kiyohara * Now we have the real page tables in place so we can switch to them.
667 1.1 kiyohara * Once this is done we will be running with the REAL kernel page
668 1.1 kiyohara * tables.
669 1.1 kiyohara */
670 1.1 kiyohara
671 1.1 kiyohara /* Switch tables */
672 1.1 kiyohara #ifdef VERBOSE_INIT_ARM
673 1.1 kiyohara printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
674 1.1 kiyohara #endif
675 1.1 kiyohara
676 1.1 kiyohara cpu_setttb(kernel_l1pt.pv_pa);
677 1.1 kiyohara cpu_tlb_flushID();
678 1.1 kiyohara cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
679 1.1 kiyohara
680 1.1 kiyohara /*
681 1.1 kiyohara * Moved from cpu_startup() as data_abort_handler() references
682 1.1 kiyohara * this during uvm init.
683 1.1 kiyohara */
684 1.1 kiyohara uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
685 1.1 kiyohara
686 1.1 kiyohara #ifdef VERBOSE_INIT_ARM
687 1.1 kiyohara printf("bootstrap done.\n");
688 1.1 kiyohara #endif
689 1.1 kiyohara
690 1.1 kiyohara arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
691 1.1 kiyohara
692 1.1 kiyohara /*
693 1.1 kiyohara * Pages were allocated during the secondary bootstrap for the
694 1.1 kiyohara * stacks for different CPU modes.
695 1.1 kiyohara * We must now set the r13 registers in the different CPU modes to
696 1.1 kiyohara * point to these stacks.
697 1.1 kiyohara * Since the ARM stacks use STMFD etc. we must set r13 to the top end
698 1.1 kiyohara * of the stack memory.
699 1.1 kiyohara */
700 1.1 kiyohara #ifdef VERBOSE_INIT_ARM
701 1.1 kiyohara printf("init subsystems: stacks ");
702 1.1 kiyohara #endif
703 1.1 kiyohara
704 1.1 kiyohara set_stackptr(PSR_IRQ32_MODE,
705 1.1 kiyohara irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
706 1.1 kiyohara set_stackptr(PSR_ABT32_MODE,
707 1.1 kiyohara abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
708 1.1 kiyohara set_stackptr(PSR_UND32_MODE,
709 1.1 kiyohara undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
710 1.1 kiyohara
711 1.1 kiyohara /*
712 1.1 kiyohara * Well we should set a data abort handler.
713 1.1 kiyohara * Once things get going this will change as we will need a proper
714 1.1 kiyohara * handler.
715 1.1 kiyohara * Until then we will use a handler that just panics but tells us
716 1.1 kiyohara * why.
717 1.1 kiyohara * Initialisation of the vectors will just panic on a data abort.
718 1.1 kiyohara * This just fills in a slightly better one.
719 1.1 kiyohara */
720 1.1 kiyohara #ifdef VERBOSE_INIT_ARM
721 1.1 kiyohara printf("vectors ");
722 1.1 kiyohara #endif
723 1.1 kiyohara data_abort_handler_address = (u_int)data_abort_handler;
724 1.1 kiyohara prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
725 1.1 kiyohara undefined_handler_address = (u_int)undefinedinstruction_bounce;
726 1.1 kiyohara
727 1.1 kiyohara /* Initialise the undefined instruction handlers */
728 1.1 kiyohara #ifdef VERBOSE_INIT_ARM
729 1.1 kiyohara printf("undefined ");
730 1.1 kiyohara #endif
731 1.1 kiyohara undefined_init();
732 1.1 kiyohara
733 1.1 kiyohara /* Load memory into UVM. */
734 1.1 kiyohara #ifdef VERBOSE_INIT_ARM
735 1.1 kiyohara printf("page ");
736 1.1 kiyohara #endif
737 1.1 kiyohara uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
738 1.1 kiyohara uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
739 1.1 kiyohara atop(physical_freestart), atop(physical_freeend),
740 1.1 kiyohara VM_FREELIST_DEFAULT);
741 1.1 kiyohara
742 1.1 kiyohara /* Boot strap pmap telling it where the kernel page table is */
743 1.1 kiyohara #ifdef VERBOSE_INIT_ARM
744 1.1 kiyohara printf("pmap ");
745 1.1 kiyohara #endif
746 1.1 kiyohara pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
747 1.1 kiyohara
748 1.1 kiyohara #ifdef VERBOSE_INIT_ARM
749 1.1 kiyohara printf("done.\n");
750 1.1 kiyohara #endif
751 1.1 kiyohara
752 1.1 kiyohara #ifdef __HAVE_MEMORY_DISK__
753 1.1 kiyohara md_root_setconf(memory_disk, sizeof memory_disk);
754 1.1 kiyohara #endif
755 1.1 kiyohara
756 1.1 kiyohara #ifdef BOOTHOWTO
757 1.1 kiyohara boothowto |= BOOTHOWTO;
758 1.1 kiyohara #endif
759 1.1 kiyohara
760 1.1 kiyohara #ifdef KGDB
761 1.1 kiyohara if (boothowto & RB_KDB) {
762 1.1 kiyohara kgdb_debug_init = 1;
763 1.1 kiyohara kgdb_connect(1);
764 1.1 kiyohara }
765 1.1 kiyohara #endif
766 1.1 kiyohara
767 1.1 kiyohara #ifdef DDB
768 1.1 kiyohara db_machine_init();
769 1.1 kiyohara if (boothowto & RB_KDB)
770 1.1 kiyohara Debugger();
771 1.1 kiyohara #endif
772 1.1 kiyohara
773 1.1 kiyohara /* we've a specific device_register routine */
774 1.1 kiyohara evbarm_device_register = marvell_device_register;
775 1.1 kiyohara
776 1.1 kiyohara /* We return the new stack pointer address */
777 1.1 kiyohara return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
778 1.1 kiyohara }
779 1.1 kiyohara
780 1.1 kiyohara void
781 1.1 kiyohara consinit(void)
782 1.1 kiyohara {
783 1.1 kiyohara static int consinit_called = 0;
784 1.1 kiyohara
785 1.1 kiyohara if (consinit_called != 0)
786 1.1 kiyohara return;
787 1.1 kiyohara
788 1.1 kiyohara consinit_called = 1;
789 1.1 kiyohara
790 1.1 kiyohara #if NCOM > 0
791 1.1 kiyohara {
792 1.1 kiyohara extern int mvuart_cnattach(bus_space_tag_t, bus_addr_t, int,
793 1.1 kiyohara uint32_t, int);
794 1.1 kiyohara
795 1.1 kiyohara if (mvuart_cnattach(&mvsoc_bs_tag,
796 1.1 kiyohara MARVELL_INTERREGS_VBASE + MVSOC_COM0_BASE,
797 1.1 kiyohara comcnspeed, mvTclk, comcnmode))
798 1.1 kiyohara panic("can't init serial console");
799 1.1 kiyohara }
800 1.1 kiyohara #else
801 1.1 kiyohara panic("serial console not configured");
802 1.1 kiyohara #endif
803 1.1 kiyohara }
804 1.1 kiyohara
805 1.1 kiyohara
806 1.1 kiyohara static void
807 1.1 kiyohara marvell_device_register(device_t dev, void *aux)
808 1.1 kiyohara {
809 1.1 kiyohara prop_dictionary_t dict = device_properties(dev);
810 1.1 kiyohara
811 1.1 kiyohara #if NCOM > 0
812 1.1 kiyohara if (device_is_a(dev, "com") &&
813 1.1 kiyohara device_is_a(device_parent(dev), "mvsoc"))
814 1.1 kiyohara prop_dictionary_set_uint32(dict, "frequency", mvTclk);
815 1.1 kiyohara #endif
816 1.1 kiyohara if (device_is_a(dev, "gtidmac")) {
817 1.1 kiyohara prop_dictionary_set_uint32(dict,
818 1.1 kiyohara "dmb_speed", mvTclk * sizeof(uint32_t)); /* XXXXXX */
819 1.1 kiyohara prop_dictionary_set_uint32(dict,
820 1.1 kiyohara "xore-irq-begin", ORION_IRQ_XOR0);
821 1.1 kiyohara }
822 1.1 kiyohara #if NGTPCI > 0 && defined(ORION)
823 1.1 kiyohara if (device_is_a(dev, "gtpci")) {
824 1.1 kiyohara extern struct bus_space
825 1.1 kiyohara orion_pci_io_bs_tag, orion_pci_mem_bs_tag;
826 1.1 kiyohara extern struct arm32_pci_chipset arm32_gtpci_chipset;
827 1.1 kiyohara
828 1.1 kiyohara prop_data_t io_bs_tag, mem_bs_tag, pc;
829 1.1 kiyohara prop_array_t int2gpp;
830 1.1 kiyohara prop_number_t gpp;
831 1.1 kiyohara uint64_t start, end;
832 1.1 kiyohara int i, j;
833 1.1 kiyohara static struct {
834 1.1 kiyohara const char *boardtype;
835 1.1 kiyohara int pin[PCI_INTERRUPT_PIN_MAX];
836 1.1 kiyohara } hints[] = {
837 1.1 kiyohara { "kuronas_x4",
838 1.1 kiyohara { 11, PCI_INTERRUPT_PIN_NONE } },
839 1.1 kiyohara
840 1.1 kiyohara { NULL,
841 1.1 kiyohara { PCI_INTERRUPT_PIN_NONE } },
842 1.1 kiyohara };
843 1.1 kiyohara
844 1.1 kiyohara arm32_gtpci_chipset.pc_conf_v = device_private(dev);
845 1.1 kiyohara arm32_gtpci_chipset.pc_intr_v = device_private(dev);
846 1.1 kiyohara
847 1.1 kiyohara io_bs_tag = prop_data_create_data_nocopy(
848 1.1 kiyohara &orion_pci_io_bs_tag, sizeof(struct bus_space));
849 1.1 kiyohara KASSERT(io_bs_tag != NULL);
850 1.1 kiyohara prop_dictionary_set(dict, "io-bus-tag", io_bs_tag);
851 1.1 kiyohara prop_object_release(io_bs_tag);
852 1.1 kiyohara mem_bs_tag = prop_data_create_data_nocopy(
853 1.1 kiyohara &orion_pci_mem_bs_tag, sizeof(struct bus_space));
854 1.1 kiyohara KASSERT(mem_bs_tag != NULL);
855 1.1 kiyohara prop_dictionary_set(dict, "mem-bus-tag", mem_bs_tag);
856 1.1 kiyohara prop_object_release(mem_bs_tag);
857 1.1 kiyohara
858 1.1 kiyohara pc = prop_data_create_data_nocopy(&arm32_gtpci_chipset,
859 1.1 kiyohara sizeof(struct arm32_pci_chipset));
860 1.1 kiyohara KASSERT(pc != NULL);
861 1.1 kiyohara prop_dictionary_set(dict, "pci-chipset", pc);
862 1.1 kiyohara prop_object_release(pc);
863 1.1 kiyohara
864 1.1 kiyohara marvell_startend_by_tag(ORION_TAG_PCI_IO, &start, &end);
865 1.1 kiyohara prop_dictionary_set_uint64(dict, "iostart", start);
866 1.1 kiyohara prop_dictionary_set_uint64(dict, "ioend", end);
867 1.1 kiyohara marvell_startend_by_tag(ORION_TAG_PCI_MEM, &start, &end);
868 1.1 kiyohara prop_dictionary_set_uint64(dict, "memstart", start);
869 1.1 kiyohara prop_dictionary_set_uint64(dict, "memend", end);
870 1.1 kiyohara prop_dictionary_set_uint32(dict,
871 1.1 kiyohara "cache-line-size", arm_dcache_align);
872 1.1 kiyohara
873 1.1 kiyohara /* Setup the hint for interrupt-pin. */
874 1.1 kiyohara #define BDSTR(s) _BDSTR(s)
875 1.1 kiyohara #define _BDSTR(s) #s
876 1.1 kiyohara #define THIS_BOARD(str) (strcmp(str, BDSTR(EVBARM_BOARDTYPE)) == 0)
877 1.1 kiyohara for (i = 0; hints[i].boardtype != NULL; i++)
878 1.1 kiyohara if (THIS_BOARD(hints[i].boardtype))
879 1.1 kiyohara break;
880 1.1 kiyohara if (hints[i].boardtype == NULL)
881 1.1 kiyohara return;
882 1.1 kiyohara
883 1.1 kiyohara int2gpp =
884 1.1 kiyohara prop_array_create_with_capacity(PCI_INTERRUPT_PIN_MAX + 1);
885 1.1 kiyohara
886 1.1 kiyohara /* first set dummy */
887 1.1 kiyohara gpp = prop_number_create_integer(0);
888 1.1 kiyohara prop_array_add(int2gpp, gpp);
889 1.1 kiyohara prop_object_release(gpp);
890 1.1 kiyohara
891 1.1 kiyohara for (j = 0; hints[i].pin[j] != PCI_INTERRUPT_PIN_NONE; j++) {
892 1.1 kiyohara gpp = prop_number_create_integer(hints[i].pin[j]);
893 1.1 kiyohara prop_array_add(int2gpp, gpp);
894 1.1 kiyohara prop_object_release(gpp);
895 1.1 kiyohara }
896 1.1 kiyohara prop_dictionary_set(dict, "int2gpp", int2gpp);
897 1.1 kiyohara }
898 1.1 kiyohara #endif /* NGTPCI > 0 && defined(ORION) */
899 1.1 kiyohara #if NMVPEX > 0
900 1.1 kiyohara if (device_is_a(dev, "mvpex")) {
901 1.1 kiyohara #ifdef ORION
902 1.1 kiyohara extern struct bus_space
903 1.1 kiyohara orion_pex0_io_bs_tag, orion_pex0_mem_bs_tag,
904 1.1 kiyohara orion_pex1_io_bs_tag, orion_pex1_mem_bs_tag;
905 1.1 kiyohara #endif
906 1.1 kiyohara #ifdef KIRKWOOD
907 1.1 kiyohara extern struct bus_space
908 1.1 kiyohara kirkwood_pex_io_bs_tag, kirkwood_pex_mem_bs_tag;
909 1.1 kiyohara #endif
910 1.1 kiyohara extern struct arm32_pci_chipset
911 1.1 kiyohara arm32_mvpex0_chipset, arm32_mvpex1_chipset;
912 1.1 kiyohara
913 1.1 kiyohara struct marvell_attach_args *mva = aux;
914 1.1 kiyohara struct bus_space *mvpex_io_bs_tag, *mvpex_mem_bs_tag;
915 1.1 kiyohara struct arm32_pci_chipset *arm32_mvpex_chipset;
916 1.1 kiyohara prop_data_t io_bs_tag, mem_bs_tag, pc;
917 1.1 kiyohara uint64_t start, end;
918 1.1 kiyohara int iotag, memtag;
919 1.1 kiyohara
920 1.1 kiyohara switch (mvsoc_model()) {
921 1.1 kiyohara #ifdef ORION
922 1.1 kiyohara case MARVELL_ORION_1_88F5180N:
923 1.1 kiyohara case MARVELL_ORION_1_88F5181:
924 1.1 kiyohara case MARVELL_ORION_1_88F5182:
925 1.1 kiyohara case MARVELL_ORION_1_88W8660:
926 1.1 kiyohara case MARVELL_ORION_2_88F5281:
927 1.1 kiyohara if (mva->mva_offset == MVSOC_PEX_BASE) {
928 1.1 kiyohara mvpex_io_bs_tag = &orion_pex0_io_bs_tag;
929 1.1 kiyohara mvpex_mem_bs_tag = &orion_pex0_mem_bs_tag;
930 1.1 kiyohara arm32_mvpex_chipset = &arm32_mvpex0_chipset;
931 1.1 kiyohara iotag = ORION_TAG_PEX0_IO;
932 1.1 kiyohara memtag = ORION_TAG_PEX0_MEM;
933 1.1 kiyohara } else {
934 1.1 kiyohara mvpex_io_bs_tag = &orion_pex1_io_bs_tag;
935 1.1 kiyohara mvpex_mem_bs_tag = &orion_pex1_mem_bs_tag;
936 1.1 kiyohara arm32_mvpex_chipset = &arm32_mvpex1_chipset;
937 1.1 kiyohara iotag = ORION_TAG_PEX1_IO;
938 1.1 kiyohara memtag = ORION_TAG_PEX1_MEM;
939 1.1 kiyohara }
940 1.1 kiyohara break;
941 1.1 kiyohara #endif
942 1.1 kiyohara
943 1.1 kiyohara #ifdef KIRKWOOD
944 1.1 kiyohara case MARVELL_KIRKWOOD_88F6180:
945 1.1 kiyohara case MARVELL_KIRKWOOD_88F6192:
946 1.1 kiyohara case MARVELL_KIRKWOOD_88F6281:
947 1.1 kiyohara mvpex_io_bs_tag = &kirkwood_pex_io_bs_tag;
948 1.1 kiyohara mvpex_mem_bs_tag = &kirkwood_pex_mem_bs_tag;
949 1.1 kiyohara arm32_mvpex_chipset = &arm32_mvpex0_chipset;
950 1.1 kiyohara iotag = KIRKWOOD_TAG_PEX_IO;
951 1.1 kiyohara memtag = KIRKWOOD_TAG_PEX_MEM;
952 1.1 kiyohara break;
953 1.1 kiyohara #endif
954 1.1 kiyohara
955 1.1 kiyohara default:
956 1.1 kiyohara return;
957 1.1 kiyohara }
958 1.1 kiyohara
959 1.1 kiyohara arm32_mvpex_chipset->pc_conf_v = device_private(dev);
960 1.1 kiyohara arm32_mvpex_chipset->pc_intr_v = device_private(dev);
961 1.1 kiyohara
962 1.1 kiyohara io_bs_tag = prop_data_create_data_nocopy(
963 1.1 kiyohara mvpex_io_bs_tag, sizeof(struct bus_space));
964 1.1 kiyohara KASSERT(io_bs_tag != NULL);
965 1.1 kiyohara prop_dictionary_set(dict, "io-bus-tag", io_bs_tag);
966 1.1 kiyohara prop_object_release(io_bs_tag);
967 1.1 kiyohara mem_bs_tag = prop_data_create_data_nocopy(
968 1.1 kiyohara mvpex_mem_bs_tag, sizeof(struct bus_space));
969 1.1 kiyohara KASSERT(mem_bs_tag != NULL);
970 1.1 kiyohara prop_dictionary_set(dict, "mem-bus-tag", mem_bs_tag);
971 1.1 kiyohara prop_object_release(mem_bs_tag);
972 1.1 kiyohara
973 1.1 kiyohara pc = prop_data_create_data_nocopy(arm32_mvpex_chipset,
974 1.1 kiyohara sizeof(struct arm32_pci_chipset));
975 1.1 kiyohara KASSERT(pc != NULL);
976 1.1 kiyohara prop_dictionary_set(dict, "pci-chipset", pc);
977 1.1 kiyohara prop_object_release(pc);
978 1.1 kiyohara
979 1.1 kiyohara marvell_startend_by_tag(iotag, &start, &end);
980 1.1 kiyohara prop_dictionary_set_uint64(dict, "iostart", start);
981 1.1 kiyohara prop_dictionary_set_uint64(dict, "ioend", end);
982 1.1 kiyohara marvell_startend_by_tag(memtag, &start, &end);
983 1.1 kiyohara prop_dictionary_set_uint64(dict, "memstart", start);
984 1.1 kiyohara prop_dictionary_set_uint64(dict, "memend", end);
985 1.1 kiyohara prop_dictionary_set_uint32(dict,
986 1.1 kiyohara "cache-line-size", arm_dcache_align);
987 1.1 kiyohara }
988 1.1 kiyohara #endif
989 1.1 kiyohara }
990 1.1 kiyohara
991 1.1 kiyohara #if NGTPCI > 0 || NMVPEX > 0
992 1.1 kiyohara static void
993 1.1 kiyohara marvell_startend_by_tag(int tag, uint64_t *start, uint64_t *end)
994 1.1 kiyohara {
995 1.1 kiyohara uint32_t base, size;
996 1.1 kiyohara int win;
997 1.1 kiyohara
998 1.1 kiyohara win = mvsoc_target(tag, NULL, NULL, &base, &size);
999 1.1 kiyohara if (size != 0) {
1000 1.1 kiyohara if (win < nremap)
1001 1.1 kiyohara *start = read_mlmbreg(MVSOC_MLMB_WRLR(win)) |
1002 1.1 kiyohara ((read_mlmbreg(MVSOC_MLMB_WRHR(win)) << 16) << 16);
1003 1.1 kiyohara else
1004 1.1 kiyohara *start = base;
1005 1.1 kiyohara *end = *start + size - 1;
1006 1.1 kiyohara }
1007 1.1 kiyohara }
1008 1.1 kiyohara #endif
1009