marvell_machdep.c revision 1.9 1 /* $NetBSD: marvell_machdep.c,v 1.9 2012/07/18 10:28:47 kiyohara Exp $ */
2 /*
3 * Copyright (c) 2007, 2008, 2010 KIYOHARA Takashi
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: marvell_machdep.c,v 1.9 2012/07/18 10:28:47 kiyohara Exp $");
29
30 #include "opt_evbarm_boardtype.h"
31 #include "opt_ddb.h"
32 #include "opt_pci.h"
33 #include "opt_mvsoc.h"
34 #include "com.h"
35 #include "gtpci.h"
36 #include "mvpex.h"
37
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/reboot.h>
41 #include <sys/systm.h>
42 #include <sys/termios.h>
43
44 #include <prop/proplib.h>
45
46 #include <dev/cons.h>
47 #include <dev/md.h>
48
49 #include <dev/marvell/marvellreg.h>
50 #include <dev/marvell/marvellvar.h>
51 #include <dev/pci/pcireg.h>
52 #include <dev/pci/pcivar.h>
53
54 #include <machine/autoconf.h>
55 #include <machine/bootconfig.h>
56 #include <machine/pci_machdep.h>
57
58 #include <uvm/uvm_extern.h>
59
60 #include <arm/db_machdep.h>
61 #include <arm/undefined.h>
62 #include <arm/arm32/machdep.h>
63
64 #include <arm/marvell/mvsocreg.h>
65 #include <arm/marvell/mvsocvar.h>
66 #include <arm/marvell/orionreg.h>
67 #include <arm/marvell/kirkwoodreg.h>
68 #include <arm/marvell/mvsocgppvar.h>
69
70 #include <evbarm/marvell/marvellreg.h>
71 #include <evbarm/marvell/marvellvar.h>
72
73 #include <ddb/db_extern.h>
74 #include <ddb/db_sym.h>
75
76 #include "ksyms.h"
77
78
79 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
80 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00000000)
81 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
82
83 /*
84 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
85 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
86 */
87 #define KERNEL_VM_SIZE 0x0c000000
88
89 /*
90 * Address to call from cpu_reset() to reset the machine.
91 * This is machine architecture dependent as it varies depending
92 * on where the ROM appears when you turn the MMU off.
93 */
94
95 u_int cpu_reset_address = 0xffff0000;
96
97 /* Define various stack sizes in pages */
98 #define IRQ_STACK_SIZE 1
99 #define ABT_STACK_SIZE 1
100 #ifdef IPKDB
101 #define UND_STACK_SIZE 2
102 #else
103 #define UND_STACK_SIZE 1
104 #endif
105
106 BootConfig bootconfig; /* Boot config storage */
107 static char bootargs[MAX_BOOT_STRING];
108 char *boot_args = NULL;
109
110 vm_offset_t physical_start;
111 vm_offset_t physical_freestart;
112 vm_offset_t physical_freeend;
113 vm_offset_t physical_end;
114 u_int free_pages;
115 int physmem = 0;
116
117 /* Physical and virtual addresses for some global pages */
118 pv_addr_t systempage;
119 pv_addr_t irqstack;
120 pv_addr_t undstack;
121 pv_addr_t abtstack;
122 pv_addr_t kernelstack;
123
124 vm_offset_t msgbufphys;
125
126 extern u_int data_abort_handler_address;
127 extern u_int prefetch_abort_handler_address;
128 extern u_int undefined_handler_address;
129
130 extern char _end[];
131
132 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
133 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
134 #define KERNEL_PT_KERNEL_NUM 4
135 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
136 /* Page tables for mapping kernel VM */
137 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
138 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
139
140 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
141
142 /*
143 * Macros to translate between physical and virtual for a subset of the
144 * kernel address space. *Not* for general use.
145 */
146 #define KERNEL_BASE_PHYS physical_start
147 #define KERN_VTOPHYS(va) \
148 ((paddr_t)((vaddr_t)va - KERNEL_BASE + KERNEL_BASE_PHYS))
149 #define KERN_PHYSTOV(pa) \
150 ((vaddr_t)((paddr_t)pa - KERNEL_BASE_PHYS + KERNEL_BASE))
151
152
153 #include "com.h"
154 #if NCOM > 0
155 #include <dev/ic/comreg.h>
156 #include <dev/ic/comvar.h>
157 #endif
158
159 #ifndef CONSPEED
160 #define CONSPEED B115200 /* It's a setting of the default of u-boot */
161 #endif
162 #ifndef CONMODE
163 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
164
165 int comcnspeed = CONSPEED;
166 int comcnmode = CONMODE;
167 #endif
168
169 #include "opt_kgdb.h"
170 #ifdef KGDB
171 #include <sys/kgdb.h>
172 #endif
173
174 static void marvell_device_register(device_t, void *);
175 #if NGTPCI > 0 || NMVPEX > 0
176 static void marvell_startend_by_tag(int, uint64_t *, uint64_t *);
177 #endif
178
179 static void
180 marvell_system_reset(void)
181 {
182 /* unmask soft reset */
183 write_mlmbreg(MVSOC_MLMB_RSTOUTNMASKR,
184 MVSOC_MLMB_RSTOUTNMASKR_SOFTRSTOUTEN);
185 /* assert soft reset */
186 write_mlmbreg(MVSOC_MLMB_SSRR, MVSOC_MLMB_SSRR_SYSTEMSOFTRST);
187 /* if we're still running, jump to the reset address */
188 cpu_reset();
189 /*NOTREACHED*/
190 }
191
192 void
193 cpu_reboot(int howto, char *bootstr)
194 {
195
196 /*
197 * If we are still cold then hit the air brakes
198 * and crash to earth fast
199 */
200 if (cold) {
201 doshutdownhooks();
202 printf("The operating system has halted.\r\n");
203 printf("Please press any key to reboot.\r\n");
204 cngetc();
205 printf("rebooting...\r\n");
206 marvell_system_reset();
207 }
208
209 /*
210 * If RB_NOSYNC was not specified sync the discs.
211 * Note: Unless cold is set to 1 here, syslogd will die during the
212 * unmount. It looks like syslogd is getting woken up only to find
213 * that it cannot page part of the binary in as the filesystem has
214 * been unmounted.
215 */
216 if (!(howto & RB_NOSYNC))
217 bootsync();
218
219 /* Say NO to interrupts */
220 splhigh();
221
222 /* Do a dump if requested. */
223 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
224 dumpsys();
225
226 /* Run any shutdown hooks */
227 doshutdownhooks();
228
229 /* Make sure IRQ's are disabled */
230 IRQdisable;
231
232 if (howto & RB_HALT) {
233 printf("The operating system has halted.\r\n");
234 printf("Please press any key to reboot.\r\n");
235 cngetc();
236 }
237
238 printf("rebooting...\r\n");
239 marvell_system_reset();
240
241 /*NOTREACHED*/
242 }
243
244 static inline
245 pd_entry_t *
246 read_ttb(void)
247 {
248 long ttb;
249
250 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
251
252 return (pd_entry_t *)(ttb & ~((1<<14)-1));
253 }
254
255 /*
256 * Static device mappings. These peripheral registers are mapped at
257 * fixed virtual addresses very early in initarm() so that we can use
258 * them while booting the kernel, and stay at the same address
259 * throughout whole kernel's life time.
260 *
261 * We use this table twice; once with bootstrap page table, and once
262 * with kernel's page table which we build up in initarm().
263 *
264 * Since we map these registers into the bootstrap page table using
265 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
266 * registers segment-aligned and segment-rounded in order to avoid
267 * using the 2nd page tables.
268 */
269 #define _A(a) ((a) & ~L1_S_OFFSET)
270 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
271
272 static const struct pmap_devmap marvell_devmap[] = {
273 {
274 MARVELL_INTERREGS_VBASE,
275 _A(MARVELL_INTERREGS_PBASE),
276 _S(MARVELL_INTERREGS_SIZE),
277 VM_PROT_READ|VM_PROT_WRITE,
278 PTE_NOCACHE,
279 },
280
281 { 0, 0, 0, 0, 0 }
282 };
283
284 #undef _A
285 #undef _S
286
287 extern uint32_t *u_boot_args[];
288
289 /*
290 * u_int initarm(...)
291 *
292 * Initial entry point on startup. This gets called before main() is
293 * entered.
294 * It should be responsible for setting up everything that must be
295 * in place when main is called.
296 * This includes
297 * Taking a copy of the boot configuration structure.
298 * Initialising the physical console so characters can be printed.
299 * Setting up page tables for the kernel
300 * Relocating the kernel to the bottom of physical memory
301 */
302 u_int
303 initarm(void *arg)
304 {
305 uint32_t target, attr, base, size;
306 u_int l1pagetable;
307 int loop, pt_index, cs, memtag = 0, iotag = 0, window;
308
309 /* map some peripheral registers */
310 pmap_devmap_bootstrap((vaddr_t)read_ttb(), marvell_devmap);
311
312 mvsoc_bootstrap(MARVELL_INTERREGS_VBASE);
313
314 /* Get ready for splfoo() */
315 switch (mvsoc_model()) {
316 #ifdef ORION
317 case MARVELL_ORION_1_88F1181:
318 case MARVELL_ORION_1_88F5082:
319 case MARVELL_ORION_1_88F5180N:
320 case MARVELL_ORION_1_88F5181:
321 case MARVELL_ORION_1_88F5182:
322 case MARVELL_ORION_1_88F6082:
323 case MARVELL_ORION_1_88F6183:
324 case MARVELL_ORION_1_88W8660:
325 case MARVELL_ORION_2_88F1281:
326 case MARVELL_ORION_2_88F5281:
327 orion_intr_bootstrap();
328
329 memtag = ORION_TAG_PEX0_MEM;
330 iotag = ORION_TAG_PEX0_IO;
331 nwindow = ORION_MLMB_NWINDOW;
332 nremap = ORION_MLMB_NREMAP;
333
334 orion_getclks(MARVELL_INTERREGS_VBASE);
335 break;
336 #endif /* ORION */
337
338 #ifdef KIRKWOOD
339 case MARVELL_KIRKWOOD_88F6180:
340 case MARVELL_KIRKWOOD_88F6192:
341 case MARVELL_KIRKWOOD_88F6281:
342 case MARVELL_KIRKWOOD_88F6282:
343 kirkwood_intr_bootstrap();
344
345 memtag = KIRKWOOD_TAG_PEX_MEM;
346 iotag = KIRKWOOD_TAG_PEX_IO;
347 nwindow = KIRKWOOD_MLMB_NWINDOW;
348 nremap = KIRKWOOD_MLMB_NREMAP;
349
350 kirkwood_getclks(MARVELL_INTERREGS_VBASE);
351 break;
352 #endif /* KIRKWOOD */
353
354 #ifdef MV78XX0
355 case MARVELL_MV78XX0_MV78100:
356 case MARVELL_MV78XX0_MV78200:
357 mv78xx0_intr_bootstrap();
358
359 memtag = MV78XX0_TAG_PEX_MEM;
360 iotag = MV78XX0_TAG_PEX_IO;
361 nwindow = MV78XX0_MLMB_NWINDOW;
362 nremap = MV78XX0_MLMB_NREMAP;
363
364 mv78xx0_getclks(MARVELL_INTERREGS_VBASE);
365 break;
366 #endif /* MV78XX0 */
367
368 default:
369 /* We can't output console here yet... */
370 panic("unknown model...\n");
371
372 /* NOTREACHED */
373 }
374
375 /* Reset PCI-Express space to window register. */
376 window = mvsoc_target(memtag, &target, &attr, NULL, NULL);
377 write_mlmbreg(MVSOC_MLMB_WCR(window),
378 MVSOC_MLMB_WCR_WINEN |
379 MVSOC_MLMB_WCR_TARGET(target) |
380 MVSOC_MLMB_WCR_ATTR(attr) |
381 MVSOC_MLMB_WCR_SIZE(MARVELL_PEXMEM_SIZE));
382 write_mlmbreg(MVSOC_MLMB_WBR(window),
383 MARVELL_PEXMEM_PBASE & MVSOC_MLMB_WBR_BASE_MASK);
384 #ifdef PCI_NETBSD_CONFIGURE
385 if (window < nremap) {
386 write_mlmbreg(MVSOC_MLMB_WRLR(window),
387 MARVELL_PEXMEM_PBASE & MVSOC_MLMB_WRLR_REMAP_MASK);
388 write_mlmbreg(MVSOC_MLMB_WRHR(window), 0);
389 }
390 #endif
391 window = mvsoc_target(iotag, &target, &attr, NULL, NULL);
392 write_mlmbreg(MVSOC_MLMB_WCR(window),
393 MVSOC_MLMB_WCR_WINEN |
394 MVSOC_MLMB_WCR_TARGET(target) |
395 MVSOC_MLMB_WCR_ATTR(attr) |
396 MVSOC_MLMB_WCR_SIZE(MARVELL_PEXIO_SIZE));
397 write_mlmbreg(MVSOC_MLMB_WBR(window),
398 MARVELL_PEXIO_PBASE & MVSOC_MLMB_WBR_BASE_MASK);
399 #ifdef PCI_NETBSD_CONFIGURE
400 if (window < nremap) {
401 write_mlmbreg(MVSOC_MLMB_WRLR(window),
402 MARVELL_PEXIO_PBASE & MVSOC_MLMB_WRLR_REMAP_MASK);
403 write_mlmbreg(MVSOC_MLMB_WRHR(window), 0);
404 }
405 #endif
406
407 /*
408 * Heads up ... Setup the CPU / MMU / TLB functions
409 */
410 if (set_cpufuncs())
411 panic("cpu not recognized!");
412
413 /*
414 * U-Boot doesn't use the virtual memory.
415 *
416 * Physical Address Range Description
417 * ----------------------- ----------------------------------
418 * 0x00000000 - 0x0fffffff SDRAM Bank 0 (max 256MB)
419 * 0x10000000 - 0x1fffffff SDRAM Bank 1 (max 256MB)
420 * 0x20000000 - 0x2fffffff SDRAM Bank 2 (max 256MB)
421 * 0x30000000 - 0x3fffffff SDRAM Bank 3 (max 256MB)
422 * 0xf1000000 - 0xf10fffff SoC Internal Registers
423 */
424
425 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
426
427 consinit();
428
429 /* Talk to the user */
430 #ifndef EVBARM_BOARDTYPE
431 #define EVBARM_BOARDTYPE Marvell
432 #endif
433 #define BDSTR(s) _BDSTR(s)
434 #define _BDSTR(s) #s
435 printf("\nNetBSD/evbarm (" BDSTR(EVBARM_BOARDTYPE) ") booting ...\n");
436
437 /* copy command line U-Boot gave us */
438 strncpy(bootargs, (char *)u_boot_args[3], sizeof(bootargs));
439
440 #ifdef VERBOSE_INIT_ARM
441 printf("initarm: Configuring system ...\n");
442 #endif
443
444 bootconfig.dramblocks = 0;
445 physical_end = physmem = 0;
446 for (cs = MARVELL_TAG_SDRAM_CS0; cs <= MARVELL_TAG_SDRAM_CS3; cs++) {
447 mvsoc_target(cs, &target, &attr, &base, &size);
448 if (size == 0)
449 continue;
450
451 bootconfig.dram[bootconfig.dramblocks].address = base;
452 bootconfig.dram[bootconfig.dramblocks].pages = size / PAGE_SIZE;
453
454 if (base != physical_end)
455 panic("memory hole not support");
456
457 physical_end += size;
458 physmem += size / PAGE_SIZE;
459
460 bootconfig.dramblocks++;
461 }
462
463 /*
464 * Set up the variables that define the availablilty of
465 * physical memory. For now, we're going to set
466 * physical_freestart to 0xa0008000 (where the kernel
467 * was loaded), and allocate the memory we need downwards.
468 * If we get too close to the L1 table that we set up, we
469 * will panic. We will update physical_freestart and
470 * physical_freeend later to reflect what pmap_bootstrap()
471 * wants to see.
472 *
473 * XXX pmap_bootstrap() needs an enema.
474 */
475 physical_start = bootconfig.dram[0].address;
476
477 /*
478 * Our kernel is at the beginning of memory, so set our free space to
479 * all the memory after the kernel.
480 */
481 physical_freestart = KERN_VTOPHYS(round_page((vaddr_t)_end));
482 physical_freeend = physical_end;
483
484 #ifdef VERBOSE_INIT_ARM
485 /* Tell the user about the memory */
486 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
487 physical_start, physical_end - 1);
488 #endif
489
490 /*
491 * Okay, the kernel starts 8kB in from the bottom of physical
492 * memory. We are going to allocate our bootstrap pages upwards
493 * from physical_freestart.
494 *
495 * We need to allocate some fixed page tables to get the kernel
496 * going. We allocate one page directory and a number of page
497 * tables and store the physical addresses in the kernel_pt_table
498 * array.
499 *
500 * The kernel page directory must be on a 16K boundary. The page
501 * tables must be on 4K bounaries. What we do is allocate the
502 * page directory on the first 16K boundary that we encounter, and
503 * the page tables on 4K boundaries otherwise. Since we allocate
504 * at least 3 L2 page tables, we are guaranteed to encounter at
505 * least one 16K aligned region.
506 */
507
508 #ifdef VERBOSE_INIT_ARM
509 printf("Allocating page tables\n");
510 #endif
511
512 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
513
514 #ifdef VERBOSE_INIT_ARM
515 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
516 physical_freestart, free_pages, free_pages);
517 #endif
518
519 /*
520 * Define a macro to simplify memory allocation. As we allocate the
521 * memory, make sure that we don't walk over our temporary first level
522 * translation table.
523 */
524 #define valloc_pages(var, np) \
525 (var).pv_pa = physical_freestart; \
526 physical_freestart += ((np) * PAGE_SIZE); \
527 if (physical_freestart > (physical_freeend - L1_TABLE_SIZE)) \
528 panic("initarm: out of memory"); \
529 free_pages -= (np); \
530 (var).pv_va = KERN_PHYSTOV((var).pv_pa); \
531 memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE));
532
533 pt_index = 0;
534 kernel_l1pt.pv_pa = 0;
535 kernel_l1pt.pv_va = 0;
536 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
537 /* Are we 16KB aligned for an L1 ? */
538 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0 &&
539 kernel_l1pt.pv_pa == 0) {
540 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
541 } else {
542 valloc_pages(kernel_pt_table[pt_index],
543 L2_TABLE_SIZE / PAGE_SIZE);
544 ++pt_index;
545 }
546 }
547
548 /* This should never be able to happen but better confirm that. */
549 if (!kernel_l1pt.pv_pa ||
550 (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
551 panic("initarm: Failed to align the kernel page directory");
552
553 /*
554 * Allocate a page for the system page mapped to V0x00000000
555 * This page will just contain the system vectors and can be
556 * shared by all processes.
557 */
558 valloc_pages(systempage, 1);
559 systempage.pv_va = 0x00000000;
560
561 /* Allocate stacks for all modes */
562 valloc_pages(irqstack, IRQ_STACK_SIZE);
563 valloc_pages(abtstack, ABT_STACK_SIZE);
564 valloc_pages(undstack, UND_STACK_SIZE);
565 valloc_pages(kernelstack, UPAGES);
566
567 #ifdef VERBOSE_INIT_ARM
568 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
569 irqstack.pv_va);
570 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
571 abtstack.pv_va);
572 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
573 undstack.pv_va);
574 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
575 kernelstack.pv_va);
576 #endif
577
578 /* Allocate the message buffer. */
579 {
580 pv_addr_t msgbuf;
581
582 valloc_pages(msgbuf, round_page(MSGBUFSIZE) / PAGE_SIZE);
583 msgbufphys = msgbuf.pv_pa;
584 }
585
586 /*
587 * Ok we have allocated physical pages for the primary kernel
588 * page tables
589 */
590
591 #ifdef VERBOSE_INIT_ARM
592 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
593 #endif
594
595 /*
596 * Now we start construction of the L1 page table
597 * We start by mapping the L2 page tables into the L1.
598 * This means that we can replace L1 mappings later on if necessary
599 */
600 l1pagetable = kernel_l1pt.pv_va;
601
602 /* Map the L2 pages tables in the L1 page table */
603 pmap_link_l2pt(l1pagetable, 0x00000000,
604 &kernel_pt_table[KERNEL_PT_SYS]);
605 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
606 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
607 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
608 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
609 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
610 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
611
612 /* update the top of the kernel VM */
613 pmap_curmaxkvaddr =
614 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
615
616 #ifdef VERBOSE_INIT_ARM
617 printf("Mapping kernel\n");
618 #endif
619
620 /* Now we fill in the L2 pagetable for the kernel static code/data */
621 {
622 extern char etext[], _end[];
623 size_t textsize = (uintptr_t)etext - KERNEL_TEXT_BASE;
624 size_t totalsize = (uintptr_t)_end - KERNEL_TEXT_BASE;
625 u_int logical;
626
627 textsize = (textsize + PGOFSET) & ~PGOFSET;
628 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
629
630 logical = 0x00000000; /* offset of kernel in RAM */
631
632 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
633 physical_start + logical, textsize,
634 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
635 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
636 physical_start + logical, totalsize - textsize,
637 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
638 }
639
640 #ifdef VERBOSE_INIT_ARM
641 printf("Constructing L2 page tables\n");
642 #endif
643
644 /* Map the stack pages */
645 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
646 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
647 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
648 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
649 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
650 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
651 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
652 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
653
654 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
655 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
656
657 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop)
658 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
659 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
660 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
661
662 /* Map the vector page. */
663 pmap_map_entry(l1pagetable, ARM_VECTORS_LOW, systempage.pv_pa,
664 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
665
666 /*
667 * Map integrated peripherals at same address in first level page
668 * table so that we can continue to use console.
669 */
670 pmap_devmap_bootstrap(l1pagetable, marvell_devmap);
671
672 /*
673 * Now we have the real page tables in place so we can switch to them.
674 * Once this is done we will be running with the REAL kernel page
675 * tables.
676 */
677
678 /* Switch tables */
679 #ifdef VERBOSE_INIT_ARM
680 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
681 #endif
682
683 cpu_setttb(kernel_l1pt.pv_pa);
684 cpu_tlb_flushID();
685 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
686
687 /*
688 * Moved from cpu_startup() as data_abort_handler() references
689 * this during uvm init.
690 */
691 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
692
693 #ifdef VERBOSE_INIT_ARM
694 printf("bootstrap done.\n");
695 #endif
696
697 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
698
699 /*
700 * Pages were allocated during the secondary bootstrap for the
701 * stacks for different CPU modes.
702 * We must now set the r13 registers in the different CPU modes to
703 * point to these stacks.
704 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
705 * of the stack memory.
706 */
707 #ifdef VERBOSE_INIT_ARM
708 printf("init subsystems: stacks ");
709 #endif
710
711 set_stackptr(PSR_IRQ32_MODE,
712 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
713 set_stackptr(PSR_ABT32_MODE,
714 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
715 set_stackptr(PSR_UND32_MODE,
716 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
717
718 /*
719 * Well we should set a data abort handler.
720 * Once things get going this will change as we will need a proper
721 * handler.
722 * Until then we will use a handler that just panics but tells us
723 * why.
724 * Initialisation of the vectors will just panic on a data abort.
725 * This just fills in a slightly better one.
726 */
727 #ifdef VERBOSE_INIT_ARM
728 printf("vectors ");
729 #endif
730 data_abort_handler_address = (u_int)data_abort_handler;
731 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
732 undefined_handler_address = (u_int)undefinedinstruction_bounce;
733
734 /* Initialise the undefined instruction handlers */
735 #ifdef VERBOSE_INIT_ARM
736 printf("undefined ");
737 #endif
738 undefined_init();
739
740 /* Load memory into UVM. */
741 #ifdef VERBOSE_INIT_ARM
742 printf("page ");
743 #endif
744 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
745 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
746 atop(physical_freestart), atop(physical_freeend),
747 VM_FREELIST_DEFAULT);
748
749 /* Boot strap pmap telling it where the kernel page table is */
750 #ifdef VERBOSE_INIT_ARM
751 printf("pmap ");
752 #endif
753 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
754
755 #ifdef VERBOSE_INIT_ARM
756 printf("done.\n");
757 #endif
758
759 #ifdef __HAVE_MEMORY_DISK__
760 md_root_setconf(memory_disk, sizeof memory_disk);
761 #endif
762
763 boot_args = bootargs;
764 parse_mi_bootargs(boot_args);
765
766 #ifdef BOOTHOWTO
767 boothowto |= BOOTHOWTO;
768 #endif
769
770 #ifdef KGDB
771 if (boothowto & RB_KDB) {
772 kgdb_debug_init = 1;
773 kgdb_connect(1);
774 }
775 #endif
776
777 #ifdef DDB
778 db_machine_init();
779 if (boothowto & RB_KDB)
780 Debugger();
781 #endif
782
783 /* we've a specific device_register routine */
784 evbarm_device_register = marvell_device_register;
785
786 /* We return the new stack pointer address */
787 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
788 }
789
790 void
791 consinit(void)
792 {
793 static int consinit_called = 0;
794
795 if (consinit_called != 0)
796 return;
797
798 consinit_called = 1;
799
800 #if NCOM > 0
801 {
802 extern int mvuart_cnattach(bus_space_tag_t, bus_addr_t, int,
803 uint32_t, int);
804
805 if (mvuart_cnattach(&mvsoc_bs_tag,
806 MARVELL_INTERREGS_VBASE + MVSOC_COM0_BASE,
807 comcnspeed, mvTclk, comcnmode))
808 panic("can't init serial console");
809 }
810 #else
811 panic("serial console not configured");
812 #endif
813 }
814
815
816 static void
817 marvell_device_register(device_t dev, void *aux)
818 {
819 prop_dictionary_t dict = device_properties(dev);
820
821 #if NCOM > 0
822 if (device_is_a(dev, "com") &&
823 device_is_a(device_parent(dev), "mvsoc"))
824 prop_dictionary_set_uint32(dict, "frequency", mvTclk);
825 #endif
826 if (device_is_a(dev, "gtidmac")) {
827 prop_dictionary_set_uint32(dict,
828 "dmb_speed", mvTclk * sizeof(uint32_t)); /* XXXXXX */
829 prop_dictionary_set_uint32(dict,
830 "xore-irq-begin", ORION_IRQ_XOR0);
831 }
832 #if NGTPCI > 0 && defined(ORION)
833 if (device_is_a(dev, "gtpci")) {
834 extern struct bus_space
835 orion_pci_io_bs_tag, orion_pci_mem_bs_tag;
836 extern struct arm32_pci_chipset arm32_gtpci_chipset;
837
838 prop_data_t io_bs_tag, mem_bs_tag, pc;
839 prop_array_t int2gpp;
840 prop_number_t gpp;
841 uint64_t start, end;
842 int i, j;
843 static struct {
844 const char *boardtype;
845 int pin[PCI_INTERRUPT_PIN_MAX];
846 } hints[] = {
847 { "kuronas_x4",
848 { 11, PCI_INTERRUPT_PIN_NONE } },
849
850 { NULL,
851 { PCI_INTERRUPT_PIN_NONE } },
852 };
853
854 arm32_gtpci_chipset.pc_conf_v = device_private(dev);
855 arm32_gtpci_chipset.pc_intr_v = device_private(dev);
856
857 io_bs_tag = prop_data_create_data_nocopy(
858 &orion_pci_io_bs_tag, sizeof(struct bus_space));
859 KASSERT(io_bs_tag != NULL);
860 prop_dictionary_set(dict, "io-bus-tag", io_bs_tag);
861 prop_object_release(io_bs_tag);
862 mem_bs_tag = prop_data_create_data_nocopy(
863 &orion_pci_mem_bs_tag, sizeof(struct bus_space));
864 KASSERT(mem_bs_tag != NULL);
865 prop_dictionary_set(dict, "mem-bus-tag", mem_bs_tag);
866 prop_object_release(mem_bs_tag);
867
868 pc = prop_data_create_data_nocopy(&arm32_gtpci_chipset,
869 sizeof(struct arm32_pci_chipset));
870 KASSERT(pc != NULL);
871 prop_dictionary_set(dict, "pci-chipset", pc);
872 prop_object_release(pc);
873
874 marvell_startend_by_tag(ORION_TAG_PCI_IO, &start, &end);
875 prop_dictionary_set_uint64(dict, "iostart", start);
876 prop_dictionary_set_uint64(dict, "ioend", end);
877 marvell_startend_by_tag(ORION_TAG_PCI_MEM, &start, &end);
878 prop_dictionary_set_uint64(dict, "memstart", start);
879 prop_dictionary_set_uint64(dict, "memend", end);
880 prop_dictionary_set_uint32(dict,
881 "cache-line-size", arm_dcache_align);
882
883 /* Setup the hint for interrupt-pin. */
884 #define BDSTR(s) _BDSTR(s)
885 #define _BDSTR(s) #s
886 #define THIS_BOARD(str) (strcmp(str, BDSTR(EVBARM_BOARDTYPE)) == 0)
887 for (i = 0; hints[i].boardtype != NULL; i++)
888 if (THIS_BOARD(hints[i].boardtype))
889 break;
890 if (hints[i].boardtype == NULL)
891 return;
892
893 int2gpp =
894 prop_array_create_with_capacity(PCI_INTERRUPT_PIN_MAX + 1);
895
896 /* first set dummy */
897 gpp = prop_number_create_integer(0);
898 prop_array_add(int2gpp, gpp);
899 prop_object_release(gpp);
900
901 for (j = 0; hints[i].pin[j] != PCI_INTERRUPT_PIN_NONE; j++) {
902 gpp = prop_number_create_integer(hints[i].pin[j]);
903 prop_array_add(int2gpp, gpp);
904 prop_object_release(gpp);
905 }
906 prop_dictionary_set(dict, "int2gpp", int2gpp);
907 }
908 #endif /* NGTPCI > 0 && defined(ORION) */
909 #if NMVPEX > 0
910 if (device_is_a(dev, "mvpex")) {
911 #ifdef ORION
912 extern struct bus_space
913 orion_pex0_io_bs_tag, orion_pex0_mem_bs_tag,
914 orion_pex1_io_bs_tag, orion_pex1_mem_bs_tag;
915 #endif
916 #ifdef KIRKWOOD
917 extern struct bus_space
918 kirkwood_pex_io_bs_tag, kirkwood_pex_mem_bs_tag,
919 kirkwood_pex1_io_bs_tag, kirkwood_pex1_mem_bs_tag;
920 #endif
921 extern struct arm32_pci_chipset arm32_mvpex0_chipset;
922 #if defined(ORION) || defined(KIRKWOOD)
923 extern struct arm32_pci_chipset arm32_mvpex1_chipset;
924
925 struct marvell_attach_args *mva = aux;
926 #endif
927 struct bus_space *mvpex_io_bs_tag, *mvpex_mem_bs_tag;
928 struct arm32_pci_chipset *arm32_mvpex_chipset;
929 prop_data_t io_bs_tag, mem_bs_tag, pc;
930 uint64_t start, end;
931 int iotag, memtag;
932
933 switch (mvsoc_model()) {
934 #ifdef ORION
935 case MARVELL_ORION_1_88F5180N:
936 case MARVELL_ORION_1_88F5181:
937 case MARVELL_ORION_1_88F5182:
938 case MARVELL_ORION_1_88W8660:
939 case MARVELL_ORION_2_88F5281:
940 if (mva->mva_offset == MVSOC_PEX_BASE) {
941 mvpex_io_bs_tag = &orion_pex0_io_bs_tag;
942 mvpex_mem_bs_tag = &orion_pex0_mem_bs_tag;
943 arm32_mvpex_chipset = &arm32_mvpex0_chipset;
944 iotag = ORION_TAG_PEX0_IO;
945 memtag = ORION_TAG_PEX0_MEM;
946 } else {
947 mvpex_io_bs_tag = &orion_pex1_io_bs_tag;
948 mvpex_mem_bs_tag = &orion_pex1_mem_bs_tag;
949 arm32_mvpex_chipset = &arm32_mvpex1_chipset;
950 iotag = ORION_TAG_PEX1_IO;
951 memtag = ORION_TAG_PEX1_MEM;
952 }
953 break;
954 #endif
955
956 #ifdef KIRKWOOD
957 case MARVELL_KIRKWOOD_88F6282:
958 if (mva->mva_offset != MVSOC_PEX_BASE) {
959 mvpex_io_bs_tag = &kirkwood_pex1_io_bs_tag;
960 mvpex_mem_bs_tag = &kirkwood_pex1_mem_bs_tag;
961 arm32_mvpex_chipset = &arm32_mvpex1_chipset;
962 iotag = KIRKWOOD_TAG_PEX1_IO;
963 memtag = KIRKWOOD_TAG_PEX1_MEM;
964 break;
965 }
966
967 /* FALLTHROUGH */
968
969 case MARVELL_KIRKWOOD_88F6180:
970 case MARVELL_KIRKWOOD_88F6192:
971 case MARVELL_KIRKWOOD_88F6281:
972 mvpex_io_bs_tag = &kirkwood_pex_io_bs_tag;
973 mvpex_mem_bs_tag = &kirkwood_pex_mem_bs_tag;
974 arm32_mvpex_chipset = &arm32_mvpex0_chipset;
975 iotag = KIRKWOOD_TAG_PEX_IO;
976 memtag = KIRKWOOD_TAG_PEX_MEM;
977 break;
978 #endif
979
980 default:
981 return;
982 }
983
984 arm32_mvpex_chipset->pc_conf_v = device_private(dev);
985 arm32_mvpex_chipset->pc_intr_v = device_private(dev);
986
987 io_bs_tag = prop_data_create_data_nocopy(
988 mvpex_io_bs_tag, sizeof(struct bus_space));
989 KASSERT(io_bs_tag != NULL);
990 prop_dictionary_set(dict, "io-bus-tag", io_bs_tag);
991 prop_object_release(io_bs_tag);
992 mem_bs_tag = prop_data_create_data_nocopy(
993 mvpex_mem_bs_tag, sizeof(struct bus_space));
994 KASSERT(mem_bs_tag != NULL);
995 prop_dictionary_set(dict, "mem-bus-tag", mem_bs_tag);
996 prop_object_release(mem_bs_tag);
997
998 pc = prop_data_create_data_nocopy(arm32_mvpex_chipset,
999 sizeof(struct arm32_pci_chipset));
1000 KASSERT(pc != NULL);
1001 prop_dictionary_set(dict, "pci-chipset", pc);
1002 prop_object_release(pc);
1003
1004 marvell_startend_by_tag(iotag, &start, &end);
1005 prop_dictionary_set_uint64(dict, "iostart", start);
1006 prop_dictionary_set_uint64(dict, "ioend", end);
1007 marvell_startend_by_tag(memtag, &start, &end);
1008 prop_dictionary_set_uint64(dict, "memstart", start);
1009 prop_dictionary_set_uint64(dict, "memend", end);
1010 prop_dictionary_set_uint32(dict,
1011 "cache-line-size", arm_dcache_align);
1012 }
1013 #endif
1014 }
1015
1016 #if NGTPCI > 0 || NMVPEX > 0
1017 static void
1018 marvell_startend_by_tag(int tag, uint64_t *start, uint64_t *end)
1019 {
1020 uint32_t base, size;
1021 int win;
1022
1023 win = mvsoc_target(tag, NULL, NULL, &base, &size);
1024 if (size != 0) {
1025 if (win < nremap)
1026 *start = read_mlmbreg(MVSOC_MLMB_WRLR(win)) |
1027 ((read_mlmbreg(MVSOC_MLMB_WRHR(win)) << 16) << 16);
1028 else
1029 *start = base;
1030 *end = *start + size - 1;
1031 }
1032 }
1033 #endif
1034