mini2440_machdep.c revision 1.10 1 /*-
2 * Copyright (c) 2012 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Paul Fleischer <paul (at) xpg.dk>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29 /* This file is based on arch/evbarm/smdk2xx0/smdk2410_machdep.c */
30 /*
31 * Copyright (c) 2002, 2003 Fujitsu Component Limited
32 * Copyright (c) 2002, 2003, 2005 Genetec Corporation
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of The Fujitsu Component Limited nor the name of
44 * Genetec corporation may not be used to endorse or promote products
45 * derived from this software without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
48 * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
51 * DISCLAIMED. IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
52 * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
54 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
55 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
56 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
57 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
58 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 */
61 /*
62 * Copyright (c) 2001,2002 ARM Ltd
63 * All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. The name of the company may not be used to endorse or promote
74 * products derived from this software without specific prior written
75 * permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
79 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
80 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD
81 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
82 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
83 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
84 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
85 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
86 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
87 * POSSIBILITY OF SUCH DAMAGE.
88 *
89 */
90
91 /*
92 * Copyright (c) 1997,1998 Mark Brinicombe.
93 * Copyright (c) 1997,1998 Causality Limited.
94 * All rights reserved.
95 *
96 * Redistribution and use in source and binary forms, with or without
97 * modification, are permitted provided that the following conditions
98 * are met:
99 * 1. Redistributions of source code must retain the above copyright
100 * notice, this list of conditions and the following disclaimer.
101 * 2. Redistributions in binary form must reproduce the above copyright
102 * notice, this list of conditions and the following disclaimer in the
103 * documentation and/or other materials provided with the distribution.
104 * 3. All advertising materials mentioning features or use of this software
105 * must display the following acknowledgement:
106 * This product includes software developed by Mark Brinicombe
107 * for the NetBSD Project.
108 * 4. The name of the company nor the name of the author may be used to
109 * endorse or promote products derived from this software without specific
110 * prior written permission.
111 *
112 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
113 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
114 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
115 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
116 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
117 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
118 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
119 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
120 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
121 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
122 * SUCH DAMAGE.
123 *
124 * Machine dependant functions for kernel setup for integrator board
125 *
126 * Created : 24/11/97
127 */
128
129 /*
130 * Machine dependant functions for kernel setup for FriendlyARM MINI2440
131 */
132
133 #include <sys/cdefs.h>
134 __KERNEL_RCSID(0, "$NetBSD: mini2440_machdep.c,v 1.10 2016/12/22 14:47:55 cherry Exp $");
135
136 #include "opt_ddb.h"
137 #include "opt_kgdb.h"
138 #include "opt_pmap_debug.h"
139 #include "opt_md.h"
140
141 #include <sys/param.h>
142 #include <sys/device.h>
143 #include <sys/systm.h>
144 #include <sys/kernel.h>
145 #include <sys/exec.h>
146 #include <sys/proc.h>
147 #include <sys/msgbuf.h>
148 #include <sys/reboot.h>
149 #include <sys/termios.h>
150 #include <sys/ksyms.h>
151 #include <sys/mount.h>
152
153 #include <net/if.h>
154 #include <net/if_ether.h>
155 #include <net/if_media.h>
156
157 #include <uvm/uvm_extern.h>
158
159 #include <dev/cons.h>
160 #include <dev/md.h>
161
162 #include <machine/db_machdep.h>
163 #include <ddb/db_sym.h>
164 #include <ddb/db_extern.h>
165 #ifdef KGDB
166 #include <sys/kgdb.h>
167 #endif
168
169 #include <sys/exec_elf.h>
170
171 #include <sys/bus.h>
172 #include <machine/cpu.h>
173 #include <machine/frame.h>
174 #include <machine/intr.h>
175 #include <arm/undefined.h>
176
177 #include <machine/autoconf.h>
178
179 #include <arm/locore.h>
180 #include <arm/arm32/machdep.h>
181
182 #include <arm/s3c2xx0/s3c2440reg.h>
183 #include <arm/s3c2xx0/s3c2440var.h>
184
185 #include <arch/evbarm/mini2440/mini2440_bootinfo.h>
186
187 #include "ksyms.h"
188
189 #ifndef SDRAM_START
190 #define SDRAM_START S3C2440_SDRAM_START
191 #endif
192 #ifndef SDRAM_SIZE
193 #define SDRAM_SIZE (64*1024*1024) /* 64 Mb */
194 #endif
195
196 /*
197 * Address to map I/O registers in early initialize stage.
198 */
199 #define MINI2440_IO_VBASE 0xfd000000
200
201 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
202 #define KERNEL_OFFSET 0x00200000
203 #define KERNEL_TEXT_BASE (KERNEL_BASE + KERNEL_OFFSET)
204 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
205
206 /*
207 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
208 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
209 */
210 #define KERNEL_VM_SIZE 0x0C000000
211
212 /* Declared extern elsewhere in the kernel */
213 BootConfig bootconfig; /* Boot config storage */
214 char *boot_args = NULL;
215 //char *boot_file = NULL;
216
217 char bootinfo[BOOTINFO_MAXSIZE];
218 struct btinfo_rootdevice *bi_rdev;
219 struct btinfo_net *bi_net;
220 struct btinfo_bootpath *bi_path;
221
222 vaddr_t physical_start;
223 vaddr_t physical_freestart;
224 vaddr_t physical_freeend;
225 vaddr_t physical_freeend_low;
226 vaddr_t physical_end;
227 u_int free_pages;
228 vaddr_t pagetables_start;
229
230 /*int debug_flags;*/
231 #ifndef PMAP_STATIC_L1S
232 int max_processes = 64; /* Default number */
233 #endif /* !PMAP_STATIC_L1S */
234
235 paddr_t msgbufphys;
236
237 #ifdef PMAP_DEBUG
238 extern int pmap_debug_level;
239 #endif
240
241 #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
242 #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
243 #define KERNEL_PT_KERNEL_NUM 3 /* L2 tables for mapping kernel VM */
244
245 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
246
247 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
248 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
249
250 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
251
252 /* Prototypes */
253
254 void consinit(void);
255 void kgdb_port_init(void);
256 static void mini2440_ksyms(struct btinfo_symtab *bi_symtab);
257 static void *lookup_bootinfo(int type);
258 static void mini2440_device_register(device_t dev, void *aux);
259
260
261 #include "com.h"
262 #if NCOM > 0
263 #include <dev/ic/comreg.h>
264 #include <dev/ic/comvar.h>
265 #endif
266
267 #include "sscom.h"
268 #if NSSCOM > 0
269 #include "opt_sscom.h"
270 #include <arm/s3c2xx0/sscom_var.h>
271 #endif
272
273 /*
274 * Define the default console speed for the board. This is generally
275 * what the firmware provided with the board defaults to.
276 */
277 #ifndef CONSPEED
278 #define CONSPEED B115200 /* TTYDEF_SPEED */
279 #endif
280 #ifndef CONMODE
281 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
282 #endif
283
284 int comcnspeed = CONSPEED;
285 int comcnmode = CONMODE;
286
287 /*
288 * void cpu_reboot(int howto, char *bootstr)
289 *
290 * Reboots the system
291 *
292 * Deal with any syncing, unmounting, dumping and shutdown hooks,
293 * then reset the CPU.
294 */
295 void
296 cpu_reboot(int howto, char *bootstr)
297 {
298 #ifdef DIAGNOSTIC
299 /* info */
300 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
301 #endif
302
303 cpu_reset_address_paddr = vtophys((uintptr_t)s3c2440_softreset);
304
305 /*
306 * If we are still cold then hit the air brakes
307 * and crash to earth fast
308 */
309 if (cold) {
310 doshutdownhooks();
311 printf("The operating system has halted.\n");
312 printf("Please press any key to reboot.\n\n");
313 cngetc();
314 printf("rebooting...\n");
315 cpu_reset();
316 /* NOTREACHED */
317 }
318 /* Disable console buffering */
319
320 /*
321 * If RB_NOSYNC was not specified sync the discs.
322 * Note: Unless cold is set to 1 here, syslogd will die during the
323 * unmount. It looks like syslogd is getting woken up only to find
324 * that it cannot page part of the binary in as the filesystem has
325 * been unmounted.
326 */
327 if (!(howto & RB_NOSYNC))
328 bootsync();
329
330 /* Say NO to interrupts */
331 splhigh();
332
333 /* Do a dump if requested. */
334 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
335 dumpsys();
336
337 /* Run any shutdown hooks */
338 doshutdownhooks();
339
340 /* Make sure IRQ's are disabled */
341 IRQdisable;
342
343 if (howto & RB_HALT) {
344 printf("The operating system has halted.\n");
345 printf("Please press any key to reboot.\n\n");
346 cngetc();
347 }
348 printf("rebooting...\n");
349 cpu_reset();
350 /* NOTREACHED */
351 }
352
353 /*
354 * Static device mappings. These peripheral registers are mapped at
355 * fixed virtual addresses very early in initarm() so that we can use
356 * them while booting the kernel , and stay at the same address
357 * throughout whole kernel's life time.
358 *
359 * We use this table twice; once with bootstrap page table, and once
360 * with kernel's page table which we build up in initarm().
361 *
362 * Since we map these registers into the bootstrap page table using
363 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
364 * registers segment-aligned and segment-rounded in order to avoid
365 * using the 2nd page tables.
366 */
367
368 #define _A(a) ((a) & ~L1_S_OFFSET)
369 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
370
371 #define _V(n) (MINI2440_IO_VBASE + (n) * L1_S_SIZE)
372
373 #define GPIO_VBASE _V(0)
374 #define INTCTL_VBASE _V(1)
375 #define CLKMAN_VBASE _V(2)
376 #define UART_VBASE _V(3)
377
378 static const struct pmap_devmap mini2440_devmap[] = {
379 /* GPIO registers */
380 {
381 GPIO_VBASE,
382 _A(S3C2440_GPIO_BASE),
383 _S(S3C2440_GPIO_SIZE),
384 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
385 },
386 {
387 INTCTL_VBASE,
388 _A(S3C2440_INTCTL_BASE),
389 _S(S3C2440_INTCTL_SIZE),
390 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
391 },
392 {
393 CLKMAN_VBASE,
394 _A(S3C2440_CLKMAN_BASE),
395 _S(S3C24X0_CLKMAN_SIZE),
396 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
397 },
398 { /* UART registers for UART0, 1, 2. */
399 UART_VBASE,
400 _A(S3C2440_UART0_BASE),
401 _S(S3C2440_UART_BASE(3) - S3C2440_UART0_BASE),
402 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
403 },
404
405 { 0, 0, 0, 0 }
406 };
407
408 #undef _A
409 #undef _S
410
411 static inline pd_entry_t *
412 read_ttb(void)
413 {
414 long ttb;
415
416 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(ttb));
417
418
419 return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
420 }
421
422
423 #define ioreg_write32(a,v) (*(volatile uint32_t *)(a)=(v))
424
425 /*
426 * u_int initarm(...)
427 *
428 * Initial entry point on startup. This gets called before main() is
429 * entered.
430 * It should be responsible for setting up everything that must be
431 * in place when main is called.
432 * This includes
433 * Taking a copy of the boot configuration structure.
434 * Initialising the physical console so characters can be printed.
435 * Setting up page tables for the kernel
436 * Relocating the kernel to the bottom of physical memory
437 */
438
439 u_int
440 initarm(void *arg)
441 {
442 int loop;
443 int loop1;
444 u_int l1pagetable;
445 extern int etext __asm("_etext");
446 extern int end __asm("_end");
447 uint32_t kerneldatasize;
448 struct btinfo_magic *bi_magic = arg;
449 struct btinfo_bootstring *bi_bootstring;
450 struct btinfo_symtab *bi_symtab;
451
452 boothowto = 0;
453
454 /* Copy bootinfo from boot loader into kernel memory where it remains.
455 */
456 if (bi_magic != 0x0 && bi_magic->magic == BOOTINFO_MAGIC) {
457 memcpy(bootinfo, bi_magic, sizeof(bootinfo));
458 } else {
459 memset(bootinfo, 0, sizeof(bootinfo));
460 }
461
462 /* Extract boot_args from bootinfo */
463 bi_bootstring = lookup_bootinfo(BTINFO_BOOTSTRING);
464 if (bi_bootstring ) {
465 printf("Bootloader args are %s\n", bi_bootstring->bootstring);
466 boot_args = bi_bootstring->bootstring;
467 parse_mi_bootargs(boot_args);
468 }
469
470 #define pdatb (*(volatile uint8_t *)(S3C2440_GPIO_BASE+GPIO_PBDAT))
471
472 // 0x1E0 is the mask for GPB5, GPB6, GPB7, and GPB8
473 #define __LED(x) (pdatb = (pdatb & ~0x1e0) | (~(1<<(x+5)) & 0x1e0))
474
475 __LED(0);
476
477 /*
478 * Heads up ... Setup the CPU / MMU / TLB functions
479 */
480 if (set_cpufuncs())
481 panic("cpu not recognized!");
482
483 /*
484 * Map I/O registers that are used in startup. Now we are
485 * still using page table prepared by bootloader. Later we'll
486 * map those registers at the same address in the kernel page
487 * table.
488 */
489 pmap_devmap_bootstrap((vaddr_t)read_ttb(), mini2440_devmap);
490
491 #undef pdatb
492 #define pdatb (*(volatile uint8_t *)(GPIO_VBASE+GPIO_PBDAT))
493
494 /* Disable all peripheral interrupts */
495 ioreg_write32(INTCTL_VBASE + INTCTL_INTMSK, ~0);
496
497 __LED(1);
498
499 /* initialize some variables so that splfoo() doesn't
500 touch illegal address. */
501 s3c2xx0_intr_bootstrap(INTCTL_VBASE);
502
503 __LED(2);
504 consinit();
505 __LED(3);
506
507 /* Extract information from the bootloader configuration */
508 bi_rdev = lookup_bootinfo(BTINFO_ROOTDEVICE);
509 bi_net = lookup_bootinfo(BTINFO_NET);
510 bi_path = lookup_bootinfo(BTINFO_BOOTPATH);
511
512 #ifdef VERBOSE_INIT_ARM
513 printf("consinit done\n");
514 #endif
515
516 #ifdef KGDB
517 kgdb_port_init();
518 #endif
519
520 #ifdef VERBOSE_INIT_ARM
521 /* Talk to the user */
522 printf("\nNetBSD/evbarm (MINI2440) booting ...\n");
523 #endif
524 /*
525 * Ok we have the following memory map
526 *
527 * Physical Address Range Description
528 * ----------------------- ----------------------------------
529 * 0x30000000 - 0x33ffffff SDRAM (64MB)
530 *
531 * Kernel is loaded by bootloader at 0x30200000
532 *
533 * The initarm() has the responsibility for creating the kernel
534 * page tables.
535 * It must also set up various memory pointers that are used
536 * by pmap etc.
537 */
538
539 /* Fake bootconfig structure for the benefit of pmap.c */
540 /* XXX must make the memory description h/w independent */
541 bootconfig.dramblocks = 1;
542 bootconfig.dram[0].address = SDRAM_START;
543 bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE;
544
545 /*
546 * Set up the variables that define the availablilty of
547 * physical memory.
548 * We use the 2MB between the physical start and the kernel to
549 * begin with. Allocating from 0x30200000 and downwards
550 * If we get too close to the bottom of SDRAM, we
551 * will panic. We will update physical_freestart and
552 * physical_freeend later to reflect what pmap_bootstrap()
553 * wants to see.
554 *
555 * XXX pmap_bootstrap() needs an enema.
556 */
557 physical_start = bootconfig.dram[0].address;
558 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
559
560 physical_freestart = SDRAM_START; /* XXX */
561 physical_freeend = SDRAM_START + KERNEL_OFFSET;
562
563 physmem = (physical_end - physical_start) / PAGE_SIZE;
564
565 #ifdef VERBOSE_INIT_ARM
566 /* Tell the user about the memory */
567 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
568 physical_start, physical_end - 1);
569 printf("phys_end: 0x%08lx\n", physical_end);
570 #endif
571
572 /*
573 * XXX
574 * Okay, the kernel starts 2MB in from the bottom of physical
575 * memory. We are going to allocate our bootstrap pages downwards
576 * from there.
577 *
578 * We need to allocate some fixed page tables to get the kernel
579 * going. We allocate one page directory and a number of page
580 * tables and store the physical addresses in the kernel_pt_table
581 * array.
582 *
583 * The kernel page directory must be on a 16K boundary. The page
584 * tables must be on 4K boundaries. What we do is allocate the
585 * page directory on the first 16K boundary that we encounter, and
586 * the page tables on 4K boundaries otherwise. Since we allocate
587 * at least 3 L2 page tables, we are guaranteed to encounter at
588 * least one 16K aligned region.
589 */
590
591 #ifdef VERBOSE_INIT_ARM
592 printf("Allocating page tables\n");
593 #endif
594
595 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
596
597 #ifdef VERBOSE_INIT_ARM
598 printf("freestart = 0x%08lx, free_pages = %d (0x%08x), freeend = 0x%08lx\n",
599 physical_freestart, free_pages, free_pages, physical_freeend);
600 #endif
601
602 /* Define a macro to simplify memory allocation */
603 #define valloc_pages(var, np) \
604 alloc_pages((var).pv_pa, (np)); \
605 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
606
607 #define alloc_pages(var, np) \
608 physical_freeend -= ((np) * PAGE_SIZE); \
609 if (physical_freeend < physical_freestart) \
610 panic("initarm: out of memory"); \
611 (var) = physical_freeend; \
612 free_pages -= (np); \
613 memset((char *)(var), 0, ((np) * PAGE_SIZE));
614
615 loop1 = 0;
616 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
617 /* Are we 16KB aligned for an L1 ? */
618 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
619 && kernel_l1pt.pv_pa == 0) {
620 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
621 } else {
622 valloc_pages(kernel_pt_table[loop1],
623 L2_TABLE_SIZE / PAGE_SIZE);
624 ++loop1;
625 }
626 }
627
628 /* This should never be able to happen but better confirm that. */
629 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
630 panic("initarm: Failed to align the kernel page directory\n");
631
632 /*
633 * Allocate a page for the system page mapped to V0x00000000
634 * This page will just contain the system vectors and can be
635 * shared by all processes.
636 */
637 alloc_pages(systempage.pv_pa, 1);
638
639 /* Allocate stacks for all modes */
640 valloc_pages(irqstack, IRQ_STACK_SIZE);
641 valloc_pages(abtstack, ABT_STACK_SIZE);
642 valloc_pages(undstack, UND_STACK_SIZE);
643 valloc_pages(kernelstack, UPAGES);
644
645 #ifdef VERBOSE_INIT_ARM
646 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
647 irqstack.pv_va);
648 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
649 abtstack.pv_va);
650 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
651 undstack.pv_va);
652 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
653 kernelstack.pv_va);
654 printf("Free memory in bootstrap region: %ld bytes\n", physical_freeend - physical_freestart);
655 #endif
656
657 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
658
659 physical_freeend_low = physical_freeend;
660
661 /*
662 * Ok we have allocated physical pages for the primary kernel
663 * page tables
664 */
665
666 #ifdef VERBOSE_INIT_ARM
667 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
668 #endif
669
670 /*
671 * Now we start construction of the L1 page table
672 * We start by mapping the L2 page tables into the L1.
673 * This means that we can replace L1 mappings later on if necessary
674 */
675 l1pagetable = kernel_l1pt.pv_pa;
676
677 /* Map the L2 pages tables in the L1 page table */
678 pmap_link_l2pt(l1pagetable, 0x00000000,
679 &kernel_pt_table[KERNEL_PT_SYS]);
680 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
681 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
682 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
683 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
684 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
685 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
686
687 /* update the top of the kernel VM */
688 pmap_curmaxkvaddr =
689 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
690
691 #ifdef VERBOSE_INIT_ARM
692 printf("Mapping kernel\n");
693 #endif
694
695 /* Now we fill in the L2 pagetable for the kernel static code/data */
696 {
697 /* Total size must include symbol table, if it exists.
698 The size of the symbol table can be acquired from the ELF
699 header, to which a pointer is passed in the boot info (ssym).
700 */
701 size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE;
702 kerneldatasize = (uintptr_t)&end - KERNEL_TEXT_BASE;
703 u_int logical;
704
705 bi_symtab = lookup_bootinfo(BTINFO_SYMTAB);
706
707 if (bi_symtab) {
708 Elf_Ehdr *elfHeader;
709 Elf_Shdr *sectionHeader;
710 int nsection;
711 int sz = 0;
712
713 elfHeader = bi_symtab->ssym;
714
715 #ifdef VERBOSE_INIT_ARM
716 printf("Symbol table information provided by bootloader\n");
717 printf("ELF header is at %p\n", elfHeader);
718 #endif
719 sectionHeader = (Elf_Shdr*)((char*)(bi_symtab->ssym) +
720 (elfHeader->e_shoff));
721 nsection = elfHeader->e_shnum;
722 #ifdef VERBOSE_INIT_ARM
723 printf("Number of sections: %d\n", nsection);
724 #endif
725 for(; nsection > 0; nsection--, sectionHeader++) {
726 if (sectionHeader->sh_offset > 0 &&
727 (sectionHeader->sh_offset + sectionHeader->sh_size) > sz)
728 sz = sectionHeader->sh_offset + sectionHeader->sh_size;
729 }
730 #ifdef VERBOSE_INIT_ARM
731 printf("Max size of sections: %d\n", sz);
732 #endif
733 kerneldatasize += sz;
734 }
735
736 #ifdef VERBOSE_INIT_ARM
737 printf("Textsize: %u, kerneldatasize: %u\n", (uint)textsize,
738 (uint)kerneldatasize);
739 printf("&etext: 0x%x\n", (uint)&etext);
740 printf("&end: 0x%x\n", (uint)&end);
741 printf("KERNEL_TEXT_BASE: 0x%x\n", KERNEL_TEXT_BASE);
742 #endif
743
744 textsize = (textsize + PGOFSET) & ~PGOFSET;
745 kerneldatasize = (kerneldatasize + PGOFSET) & ~PGOFSET;
746
747 logical = KERNEL_OFFSET; /* offset of kernel in RAM */
748
749 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
750 physical_start + logical, textsize,
751 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
752 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
753 physical_start + logical, kerneldatasize - textsize,
754 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
755 }
756
757 #ifdef VERBOSE_INIT_ARM
758 printf("Constructing L2 page tables\n");
759 #endif
760
761 /* Map the stack pages */
762 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
763 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
764 PTE_CACHE);
765 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
766 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
767 PTE_CACHE);
768 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
769 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
770 PTE_CACHE);
771 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
772 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
773
774 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
775 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
776
777 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
778 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
779 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
780 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
781 }
782
783 /* Map the vector page. */
784 #if 0
785 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
786 * cache-clean code there. */
787 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
788 VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
789 #else
790 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
791 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
792 #endif
793
794 /*
795 * map integrated peripherals at same address in l1pagetable
796 * so that we can continue to use console.
797 */
798 pmap_devmap_bootstrap(l1pagetable, mini2440_devmap);
799
800 /*
801 * Now we have the real page tables in place so we can switch to them.
802 * Once this is done we will be running with the REAL kernel page
803 * tables.
804 */
805 /*
806 * Update the physical_freestart/physical_freeend/free_pages
807 * variables.
808 */
809 physical_freestart = physical_start +
810 (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize;
811 physical_freeend = physical_end;
812 free_pages =
813 (physical_freeend - physical_freestart) / PAGE_SIZE;
814
815 /* Switch tables */
816 #ifdef VERBOSE_INIT_ARM
817 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
818 physical_freestart, free_pages, free_pages);
819 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
820 #endif
821 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
822 cpu_setttb(kernel_l1pt.pv_pa, true);
823 cpu_tlb_flushID();
824 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
825
826 /*
827 * Moved from cpu_startup() as data_abort_handler() references
828 * this during uvm init
829 */
830 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
831
832 #ifdef VERBOSE_INIT_ARM
833 printf("done!\n");
834 #endif
835
836 #ifdef VERBOSE_INIT_ARM
837 printf("bootstrap done.\n");
838 #endif
839
840 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
841
842 /*
843 * Pages were allocated during the secondary bootstrap for the
844 * stacks for different CPU modes.
845 * We must now set the r13 registers in the different CPU modes to
846 * point to these stacks.
847 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
848 * of the stack memory.
849 */
850 #ifdef VERBOSE_INIT_ARM
851 printf("init subsystems: stacks ");
852 #endif
853
854 set_stackptr(PSR_IRQ32_MODE,
855 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
856 set_stackptr(PSR_ABT32_MODE,
857 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
858 set_stackptr(PSR_UND32_MODE,
859 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
860
861 cpu_idcache_wbinv_all();
862
863 /*
864 * Well we should set a data abort handler.
865 * Once things get going this will change as we will need a proper
866 * handler.
867 * Until then we will use a handler that just panics but tells us
868 * why.
869 * Initialisation of the vectors will just panic on a data abort.
870 * This just fills in a slightly better one.
871 */
872 #ifdef VERBOSE_INIT_ARM
873 printf("vectors ");
874 #endif
875 data_abort_handler_address = (u_int)data_abort_handler;
876 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
877 undefined_handler_address = (u_int)undefinedinstruction_bounce;
878
879 /* Initialise the undefined instruction handlers */
880 #ifdef VERBOSE_INIT_ARM
881 printf("undefined ");
882 #endif
883 undefined_init();
884
885 /* Load memory into UVM. */
886 #ifdef VERBOSE_INIT_ARM
887 printf("page ");
888 #endif
889 uvm_md_init();
890 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
891 atop(physical_freestart), atop(physical_freeend),
892 VM_FREELIST_DEFAULT);
893 uvm_page_physload(atop(SDRAM_START), atop(physical_freeend_low),
894 atop(SDRAM_START), atop(physical_freeend_low),
895 VM_FREELIST_DEFAULT);
896
897
898 /* Boot strap pmap telling it where the kernel page table is */
899 #ifdef VERBOSE_INIT_ARM
900 printf("pmap ");
901 #endif
902 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
903
904 #ifdef VERBOSE_INIT_ARM
905 printf("done.\n");
906 #endif
907
908 #ifdef BOOTHOWTO
909 boothowto |= BOOTHOWTO;
910 #endif
911
912 #ifdef KGDB
913 if (boothowto & RB_KDB) {
914 kgdb_debug_init = 1;
915 kgdb_connect(1);
916 }
917 #endif
918
919 mini2440_ksyms(bi_symtab);
920
921 #ifdef DDB
922 /*db_machine_init();*/
923 if (boothowto & RB_KDB)
924 Debugger();
925 #endif
926
927 evbarm_device_register = mini2440_device_register;
928
929 /* We return the new stack pointer address */
930 return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
931 }
932
933 void
934 consinit(void)
935 {
936 static int consinit_done = 0;
937 #if defined(SSCOM0CONSOLE) || defined(SSCOM1CONSOLE)
938 bus_space_tag_t iot = &s3c2xx0_bs_tag;
939 #endif
940 int pclk;
941
942 if (consinit_done != 0)
943 return;
944
945 consinit_done = 1;
946
947 s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
948
949 #if NSSCOM > 0
950 #ifdef SSCOM0CONSOLE
951 if (0 == s3c2440_sscom_cnattach(iot, 0, comcnspeed,
952 pclk, comcnmode))
953 return;
954 #endif
955 #ifdef SSCOM1CONSOLE
956 if (0 == s3c2440_sscom_cnattach(iot, 1, comcnspeed,
957 pclk, comcnmode))
958 return;
959 #endif
960 #endif /* NSSCOM */
961 #if NCOM>0 && defined(CONCOMADDR)
962 if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
963 COM_FREQ, COM_TYPE_NORMAL, comcnmode))
964 panic("can't init serial console @%x", CONCOMADDR);
965 return;
966 #endif
967
968 consinit_done = 0;
969 }
970
971
972 #ifdef KGDB
973
974 #if (NSSCOM > 0)
975
976 #ifdef KGDB_DEVNAME
977 const char kgdb_devname[] = KGDB_DEVNAME;
978 #else
979 const char kgdb_devname[] = "";
980 #endif
981
982 #ifndef KGDB_DEVMODE
983 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */
984 #endif
985 int kgdb_sscom_mode = KGDB_DEVMODE;
986
987 #endif /* NSSCOM */
988
989 void
990 kgdb_port_init(void)
991 {
992 #if (NSSCOM > 0)
993 int unit = -1;
994 int pclk;
995
996 if (strcmp(kgdb_devname, "sscom0") == 0)
997 unit = 0;
998 else if (strcmp(kgdb_devname, "sscom1") == 0)
999 unit = 1;
1000
1001 if (unit >= 0) {
1002 s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
1003
1004 s3c2440_sscom_kgdb_attach(&s3c2xx0_bs_tag,
1005 unit, kgdb_rate, pclk, kgdb_sscom_mode);
1006 }
1007 #endif
1008 }
1009 #endif
1010
1011
1012 static struct arm32_dma_range mini2440_dma_ranges[1];
1013
1014 bus_dma_tag_t
1015 s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template)
1016 {
1017 extern paddr_t physical_start, physical_end;
1018 struct arm32_bus_dma_tag *dmat;
1019
1020 mini2440_dma_ranges[0].dr_sysbase = physical_start;
1021 mini2440_dma_ranges[0].dr_busbase = physical_start;
1022 mini2440_dma_ranges[0].dr_len = physical_end - physical_start;
1023
1024 #if 1
1025 dmat = dma_tag_template;
1026 #else
1027 dmat = malloc(sizeof *dmat, M_DEVBUF, M_NOWAIT);
1028 if (dmat == NULL)
1029 return NULL;
1030 *dmat = *dma_tag_template;
1031 #endif
1032
1033 dmat->_ranges = mini2440_dma_ranges;
1034 dmat->_nranges = 1;
1035
1036 return dmat;
1037 }
1038
1039 void
1040 mini2440_ksyms(struct btinfo_symtab *bi_symtab)
1041 {
1042 #if NKSYMS || defined(DDB) || defined(LKM)
1043 extern int end;
1044
1045 #ifdef DDB
1046 db_machine_init();
1047 #endif
1048 if (bi_symtab == NULL) {
1049 return;
1050 }
1051 #ifdef VERBOSE_INIT_ARM
1052 printf("Got symbol table. nsym=%d, ssym=%p, esym=%p\n",
1053 bi_symtab->nsym,
1054 bi_symtab->ssym,
1055 bi_symtab->esym);
1056 #endif
1057
1058 ksyms_addsyms_elf(bi_symtab->nsym,
1059 (int*)bi_symtab->ssym,
1060 (int*)bi_symtab->esym);
1061 #endif
1062 }
1063
1064 void *
1065 lookup_bootinfo(int type)
1066 {
1067 struct btinfo_common *bt;
1068 struct btinfo_common *help = (struct btinfo_common *)bootinfo;
1069
1070 if (help->next == 0)
1071 return (NULL); /* bootinfo[] was not made */
1072 do {
1073 bt = help;
1074 if (bt->type == type)
1075 return (help);
1076 help = (struct btinfo_common *)((char*)help + bt->next);
1077 } while (bt->next &&
1078 (size_t)help < (size_t)bootinfo + BOOTINFO_MAXSIZE);
1079
1080 return (NULL);
1081 }
1082
1083
1084 extern char *booted_kernel;
1085
1086 static void
1087 mini2440_device_register(device_t dev, void *aux) {
1088 if (device_class(dev) == DV_IFNET) {
1089 #ifndef MEMORY_DISK_IS_ROOT
1090 if (bi_rdev != NULL && device_is_a(dev, bi_rdev->devname) ) {
1091 booted_device = dev;
1092 rootfstype = MOUNT_NFS;
1093 if( bi_path != NULL ) {
1094 booted_kernel = bi_path->bootpath;
1095 }
1096 }
1097 #endif
1098 if (bi_net != NULL && device_is_a(dev, bi_net->devname)) {
1099 prop_data_t pd;
1100 pd = prop_data_create_data_nocopy(bi_net->mac_address, ETHER_ADDR_LEN);
1101 KASSERT(pd != NULL);
1102 if (prop_dictionary_set(device_properties(dev), "mac-address", pd) == false) {
1103 printf("WARNING: Unable to set mac-address property for %s\n", device_xname(dev));
1104 }
1105 prop_object_release(pd);
1106 bi_net = NULL;
1107 }
1108 }
1109 #ifndef MEMORY_DISK_IS_ROOT
1110 if (bi_rdev != NULL && device_class(dev) == DV_DISK
1111 && device_is_a(dev, bi_rdev->devname)
1112 && device_unit(dev) == bi_rdev->cookie) {
1113 booted_device = dev;
1114 booted_partition = bi_rdev->partition;
1115 rootfstype = ROOT_FSTYPE_ANY;
1116 if( bi_path != NULL ) {
1117 booted_kernel = bi_path->bootpath;
1118 }
1119 }
1120 #endif
1121 }
1122