Home | History | Annotate | Line # | Download | only in mini2440
mini2440_machdep.c revision 1.10
      1 /*-
      2  * Copyright (c) 2012 The NetBSD Foundation, Inc.
      3  * All rights reserved.
      4  *
      5  * This code is derived from software contributed to The NetBSD Foundation
      6  * by Paul Fleischer <paul (at) xpg.dk>
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     21  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27  * POSSIBILITY OF SUCH DAMAGE.
     28  */
     29 /* This file is based on arch/evbarm/smdk2xx0/smdk2410_machdep.c */
     30 /*
     31  * Copyright (c) 2002, 2003 Fujitsu Component Limited
     32  * Copyright (c) 2002, 2003, 2005 Genetec Corporation
     33  * All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. Neither the name of The Fujitsu Component Limited nor the name of
     44  *    Genetec corporation may not be used to endorse or promote products
     45  *    derived from this software without specific prior written permission.
     46  *
     47  * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
     48  * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     49  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     50  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     51  * DISCLAIMED.  IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
     52  * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     54  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
     55  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     56  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     57  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     58  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  */
     61 /*
     62  * Copyright (c) 2001,2002 ARM Ltd
     63  * All rights reserved.
     64  *
     65  * Redistribution and use in source and binary forms, with or without
     66  * modification, are permitted provided that the following conditions
     67  * are met:
     68  * 1. Redistributions of source code must retain the above copyright
     69  *    notice, this list of conditions and the following disclaimer.
     70  * 2. Redistributions in binary form must reproduce the above copyright
     71  *    notice, this list of conditions and the following disclaimer in the
     72  *    documentation and/or other materials provided with the distribution.
     73  * 3. The name of the company may not be used to endorse or promote
     74  *    products derived from this software without specific prior written
     75  *    permission.
     76  *
     77  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
     78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     79  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     80  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD
     81  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     82  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     83  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     84  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     85  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     86  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     87  * POSSIBILITY OF SUCH DAMAGE.
     88  *
     89  */
     90 
     91 /*
     92  * Copyright (c) 1997,1998 Mark Brinicombe.
     93  * Copyright (c) 1997,1998 Causality Limited.
     94  * All rights reserved.
     95  *
     96  * Redistribution and use in source and binary forms, with or without
     97  * modification, are permitted provided that the following conditions
     98  * are met:
     99  * 1. Redistributions of source code must retain the above copyright
    100  *    notice, this list of conditions and the following disclaimer.
    101  * 2. Redistributions in binary form must reproduce the above copyright
    102  *    notice, this list of conditions and the following disclaimer in the
    103  *    documentation and/or other materials provided with the distribution.
    104  * 3. All advertising materials mentioning features or use of this software
    105  *    must display the following acknowledgement:
    106  *	This product includes software developed by Mark Brinicombe
    107  *	for the NetBSD Project.
    108  * 4. The name of the company nor the name of the author may be used to
    109  *    endorse or promote products derived from this software without specific
    110  *    prior written permission.
    111  *
    112  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    113  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    114  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    115  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
    116  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    117  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    118  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    119  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    120  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    121  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    122  * SUCH DAMAGE.
    123  *
    124  * Machine dependant functions for kernel setup for integrator board
    125  *
    126  * Created      : 24/11/97
    127  */
    128 
    129 /*
    130  * Machine dependant functions for kernel setup for FriendlyARM MINI2440
    131  */
    132 
    133 #include <sys/cdefs.h>
    134 __KERNEL_RCSID(0, "$NetBSD: mini2440_machdep.c,v 1.10 2016/12/22 14:47:55 cherry Exp $");
    135 
    136 #include "opt_ddb.h"
    137 #include "opt_kgdb.h"
    138 #include "opt_pmap_debug.h"
    139 #include "opt_md.h"
    140 
    141 #include <sys/param.h>
    142 #include <sys/device.h>
    143 #include <sys/systm.h>
    144 #include <sys/kernel.h>
    145 #include <sys/exec.h>
    146 #include <sys/proc.h>
    147 #include <sys/msgbuf.h>
    148 #include <sys/reboot.h>
    149 #include <sys/termios.h>
    150 #include <sys/ksyms.h>
    151 #include <sys/mount.h>
    152 
    153 #include <net/if.h>
    154 #include <net/if_ether.h>
    155 #include <net/if_media.h>
    156 
    157 #include <uvm/uvm_extern.h>
    158 
    159 #include <dev/cons.h>
    160 #include <dev/md.h>
    161 
    162 #include <machine/db_machdep.h>
    163 #include <ddb/db_sym.h>
    164 #include <ddb/db_extern.h>
    165 #ifdef KGDB
    166 #include <sys/kgdb.h>
    167 #endif
    168 
    169 #include <sys/exec_elf.h>
    170 
    171 #include <sys/bus.h>
    172 #include <machine/cpu.h>
    173 #include <machine/frame.h>
    174 #include <machine/intr.h>
    175 #include <arm/undefined.h>
    176 
    177 #include <machine/autoconf.h>
    178 
    179 #include <arm/locore.h>
    180 #include <arm/arm32/machdep.h>
    181 
    182 #include <arm/s3c2xx0/s3c2440reg.h>
    183 #include <arm/s3c2xx0/s3c2440var.h>
    184 
    185 #include <arch/evbarm/mini2440/mini2440_bootinfo.h>
    186 
    187 #include "ksyms.h"
    188 
    189 #ifndef	SDRAM_START
    190 #define	SDRAM_START	S3C2440_SDRAM_START
    191 #endif
    192 #ifndef	SDRAM_SIZE
    193 #define	SDRAM_SIZE	(64*1024*1024) /* 64 Mb */
    194 #endif
    195 
    196 /*
    197  * Address to map I/O registers in early initialize stage.
    198  */
    199 #define MINI2440_IO_VBASE	0xfd000000
    200 
    201 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
    202 #define KERNEL_OFFSET		0x00200000
    203 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + KERNEL_OFFSET)
    204 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    205 
    206 /*
    207  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
    208  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
    209  */
    210 #define KERNEL_VM_SIZE		0x0C000000
    211 
    212 /* Declared extern elsewhere in the kernel */
    213 BootConfig bootconfig;		/* Boot config storage */
    214 char *boot_args = NULL;
    215 //char *boot_file = NULL;
    216 
    217 char bootinfo[BOOTINFO_MAXSIZE];
    218 struct btinfo_rootdevice 	*bi_rdev;
    219 struct btinfo_net		*bi_net;
    220 struct btinfo_bootpath		*bi_path;
    221 
    222 vaddr_t physical_start;
    223 vaddr_t physical_freestart;
    224 vaddr_t physical_freeend;
    225 vaddr_t physical_freeend_low;
    226 vaddr_t physical_end;
    227 u_int free_pages;
    228 vaddr_t pagetables_start;
    229 
    230 /*int debug_flags;*/
    231 #ifndef PMAP_STATIC_L1S
    232 int max_processes = 64;		/* Default number */
    233 #endif				/* !PMAP_STATIC_L1S */
    234 
    235 paddr_t msgbufphys;
    236 
    237 #ifdef PMAP_DEBUG
    238 extern int pmap_debug_level;
    239 #endif
    240 
    241 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
    242 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
    243 #define KERNEL_PT_KERNEL_NUM	3	/* L2 tables for mapping kernel VM */
    244 
    245 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
    246 
    247 #define KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    248 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    249 
    250 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    251 
    252 /* Prototypes */
    253 
    254 void consinit(void);
    255 void kgdb_port_init(void);
    256 static void mini2440_ksyms(struct btinfo_symtab *bi_symtab);
    257 static void *lookup_bootinfo(int type);
    258 static void mini2440_device_register(device_t dev, void *aux);
    259 
    260 
    261 #include "com.h"
    262 #if NCOM > 0
    263 #include <dev/ic/comreg.h>
    264 #include <dev/ic/comvar.h>
    265 #endif
    266 
    267 #include "sscom.h"
    268 #if NSSCOM > 0
    269 #include "opt_sscom.h"
    270 #include <arm/s3c2xx0/sscom_var.h>
    271 #endif
    272 
    273 /*
    274  * Define the default console speed for the board.  This is generally
    275  * what the firmware provided with the board defaults to.
    276  */
    277 #ifndef CONSPEED
    278 #define CONSPEED B115200	/* TTYDEF_SPEED */
    279 #endif
    280 #ifndef CONMODE
    281 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8)   /* 8N1 */
    282 #endif
    283 
    284 int comcnspeed = CONSPEED;
    285 int comcnmode = CONMODE;
    286 
    287 /*
    288  * void cpu_reboot(int howto, char *bootstr)
    289  *
    290  * Reboots the system
    291  *
    292  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    293  * then reset the CPU.
    294  */
    295 void
    296 cpu_reboot(int howto, char *bootstr)
    297 {
    298 #ifdef DIAGNOSTIC
    299 	/* info */
    300 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
    301 #endif
    302 
    303 	cpu_reset_address_paddr = vtophys((uintptr_t)s3c2440_softreset);
    304 
    305 	/*
    306 	 * If we are still cold then hit the air brakes
    307 	 * and crash to earth fast
    308 	 */
    309 	if (cold) {
    310 		doshutdownhooks();
    311 		printf("The operating system has halted.\n");
    312 		printf("Please press any key to reboot.\n\n");
    313 		cngetc();
    314 		printf("rebooting...\n");
    315 		cpu_reset();
    316 		/* NOTREACHED */
    317 	}
    318 	/* Disable console buffering */
    319 
    320 	/*
    321 	 * If RB_NOSYNC was not specified sync the discs.
    322 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    323 	 * unmount.  It looks like syslogd is getting woken up only to find
    324 	 * that it cannot page part of the binary in as the filesystem has
    325 	 * been unmounted.
    326 	 */
    327 	if (!(howto & RB_NOSYNC))
    328 		bootsync();
    329 
    330 	/* Say NO to interrupts */
    331 	splhigh();
    332 
    333 	/* Do a dump if requested. */
    334 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    335 		dumpsys();
    336 
    337 	/* Run any shutdown hooks */
    338 	doshutdownhooks();
    339 
    340 	/* Make sure IRQ's are disabled */
    341 	IRQdisable;
    342 
    343 	if (howto & RB_HALT) {
    344 		printf("The operating system has halted.\n");
    345 		printf("Please press any key to reboot.\n\n");
    346 		cngetc();
    347 	}
    348 	printf("rebooting...\n");
    349 	cpu_reset();
    350 	/* NOTREACHED */
    351 }
    352 
    353 /*
    354  * Static device mappings. These peripheral registers are mapped at
    355  * fixed virtual addresses very early in initarm() so that we can use
    356  * them while booting the kernel , and stay at the same address
    357  * throughout whole kernel's life time.
    358  *
    359  * We use this table twice; once with bootstrap page table, and once
    360  * with kernel's page table which we build up in initarm().
    361  *
    362  * Since we map these registers into the bootstrap page table using
    363  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
    364  * registers segment-aligned and segment-rounded in order to avoid
    365  * using the 2nd page tables.
    366  */
    367 
    368 #define	_A(a)	((a) & ~L1_S_OFFSET)
    369 #define	_S(s)	(((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
    370 
    371 #define	_V(n)	(MINI2440_IO_VBASE + (n) * L1_S_SIZE)
    372 
    373 #define	GPIO_VBASE	_V(0)
    374 #define	INTCTL_VBASE	_V(1)
    375 #define	CLKMAN_VBASE	_V(2)
    376 #define	UART_VBASE	_V(3)
    377 
    378 static const struct pmap_devmap mini2440_devmap[] = {
    379 	/* GPIO registers */
    380 	{
    381 		GPIO_VBASE,
    382 		_A(S3C2440_GPIO_BASE),
    383 		_S(S3C2440_GPIO_SIZE),
    384 		VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    385 	},
    386 	{
    387 		INTCTL_VBASE,
    388 		_A(S3C2440_INTCTL_BASE),
    389 		_S(S3C2440_INTCTL_SIZE),
    390 		VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    391 	},
    392 	{
    393 		CLKMAN_VBASE,
    394 		_A(S3C2440_CLKMAN_BASE),
    395 		_S(S3C24X0_CLKMAN_SIZE),
    396 		VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    397 	},
    398 	{	/* UART registers for UART0, 1, 2. */
    399 		UART_VBASE,
    400 		_A(S3C2440_UART0_BASE),
    401 		_S(S3C2440_UART_BASE(3) - S3C2440_UART0_BASE),
    402 		VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    403 	},
    404 
    405 	{ 0, 0, 0, 0 }
    406 };
    407 
    408 #undef	_A
    409 #undef	_S
    410 
    411 static inline	pd_entry_t *
    412 read_ttb(void)
    413 {
    414 	long ttb;
    415 
    416 	__asm volatile("mrc	p15, 0, %0, c2, c0, 0" : "=r"(ttb));
    417 
    418 
    419 	return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
    420 }
    421 
    422 
    423 #define	ioreg_write32(a,v)  	(*(volatile uint32_t *)(a)=(v))
    424 
    425 /*
    426  * u_int initarm(...)
    427  *
    428  * Initial entry point on startup. This gets called before main() is
    429  * entered.
    430  * It should be responsible for setting up everything that must be
    431  * in place when main is called.
    432  * This includes
    433  *   Taking a copy of the boot configuration structure.
    434  *   Initialising the physical console so characters can be printed.
    435  *   Setting up page tables for the kernel
    436  *   Relocating the kernel to the bottom of physical memory
    437  */
    438 
    439 u_int
    440 initarm(void *arg)
    441 {
    442 	int loop;
    443 	int loop1;
    444 	u_int l1pagetable;
    445 	extern int etext __asm("_etext");
    446 	extern int end __asm("_end");
    447 	uint32_t kerneldatasize;
    448 	struct btinfo_magic *bi_magic = arg;
    449 	struct btinfo_bootstring *bi_bootstring;
    450 	struct btinfo_symtab *bi_symtab;
    451 
    452 	boothowto = 0;
    453 
    454 	/* Copy bootinfo from boot loader into kernel memory where it remains.
    455 	 */
    456 	if (bi_magic != 0x0 && bi_magic->magic == BOOTINFO_MAGIC) {
    457 		memcpy(bootinfo, bi_magic, sizeof(bootinfo));
    458 	} else {
    459 		memset(bootinfo, 0, sizeof(bootinfo));
    460 	}
    461 
    462 	/* Extract boot_args from bootinfo */
    463 	bi_bootstring = lookup_bootinfo(BTINFO_BOOTSTRING);
    464 	if (bi_bootstring ) {
    465 		printf("Bootloader args are %s\n", bi_bootstring->bootstring);
    466 		boot_args = bi_bootstring->bootstring;
    467 		parse_mi_bootargs(boot_args);
    468 	}
    469 
    470 #define pdatb (*(volatile uint8_t *)(S3C2440_GPIO_BASE+GPIO_PBDAT))
    471 
    472 // 0x1E0 is the mask for GPB5, GPB6, GPB7, and GPB8
    473 #define __LED(x)  (pdatb = (pdatb & ~0x1e0) | (~(1<<(x+5)) & 0x1e0))
    474 
    475 	__LED(0);
    476 
    477 	/*
    478 	 * Heads up ... Setup the CPU / MMU / TLB functions
    479 	 */
    480 	if (set_cpufuncs())
    481 		panic("cpu not recognized!");
    482 
    483 	/*
    484 	 * Map I/O registers that are used in startup.  Now we are
    485 	 * still using page table prepared by bootloader.  Later we'll
    486 	 * map those registers at the same address in the kernel page
    487 	 * table.
    488 	 */
    489 	pmap_devmap_bootstrap((vaddr_t)read_ttb(), mini2440_devmap);
    490 
    491 #undef	pdatb
    492 #define pdatb (*(volatile uint8_t *)(GPIO_VBASE+GPIO_PBDAT))
    493 
    494 	/* Disable all peripheral interrupts */
    495 	ioreg_write32(INTCTL_VBASE + INTCTL_INTMSK, ~0);
    496 
    497 	__LED(1);
    498 
    499 	/* initialize some variables so that splfoo() doesn't
    500 	   touch illegal address.  */
    501 	s3c2xx0_intr_bootstrap(INTCTL_VBASE);
    502 
    503 	__LED(2);
    504 	consinit();
    505 	__LED(3);
    506 
    507 	/* Extract information from the bootloader configuration */
    508 	bi_rdev = lookup_bootinfo(BTINFO_ROOTDEVICE);
    509 	bi_net = lookup_bootinfo(BTINFO_NET);
    510 	bi_path = lookup_bootinfo(BTINFO_BOOTPATH);
    511 
    512 #ifdef VERBOSE_INIT_ARM
    513 	printf("consinit done\n");
    514 #endif
    515 
    516 #ifdef KGDB
    517 	kgdb_port_init();
    518 #endif
    519 
    520 #ifdef VERBOSE_INIT_ARM
    521 	/* Talk to the user */
    522 	printf("\nNetBSD/evbarm (MINI2440) booting ...\n");
    523 #endif
    524 	/*
    525 	 * Ok we have the following memory map
    526 	 *
    527 	 * Physical Address Range     Description
    528 	 * -----------------------    ----------------------------------
    529 	 * 0x30000000 - 0x33ffffff    SDRAM (64MB)
    530          *
    531          * Kernel is loaded by bootloader at 0x30200000
    532 	 *
    533 	 * The initarm() has the responsibility for creating the kernel
    534 	 * page tables.
    535 	 * It must also set up various memory pointers that are used
    536 	 * by pmap etc.
    537 	 */
    538 
    539 	/* Fake bootconfig structure for the benefit of pmap.c */
    540 	/* XXX must make the memory description h/w independent */
    541 	bootconfig.dramblocks = 1;
    542 	bootconfig.dram[0].address = SDRAM_START;
    543 	bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE;
    544 
    545 	/*
    546 	 * Set up the variables that define the availablilty of
    547 	 * physical memory.
    548          * We use the 2MB between the physical start and the kernel to
    549          * begin with. Allocating from 0x30200000 and downwards
    550 	 * If we get too close to the bottom of SDRAM, we
    551 	 * will panic.  We will update physical_freestart and
    552 	 * physical_freeend later to reflect what pmap_bootstrap()
    553 	 * wants to see.
    554 	 *
    555 	 * XXX pmap_bootstrap() needs an enema.
    556 	 */
    557 	physical_start = bootconfig.dram[0].address;
    558 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
    559 
    560 	physical_freestart = SDRAM_START;	/* XXX */
    561 	physical_freeend = SDRAM_START + KERNEL_OFFSET;
    562 
    563 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    564 
    565 #ifdef VERBOSE_INIT_ARM
    566 	/* Tell the user about the memory */
    567 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    568 	    physical_start, physical_end - 1);
    569 	printf("phys_end: 0x%08lx\n", physical_end);
    570 #endif
    571 
    572 	/*
    573 	 * XXX
    574 	 * Okay, the kernel starts 2MB in from the bottom of physical
    575 	 * memory.  We are going to allocate our bootstrap pages downwards
    576 	 * from there.
    577 	 *
    578 	 * We need to allocate some fixed page tables to get the kernel
    579 	 * going.  We allocate one page directory and a number of page
    580 	 * tables and store the physical addresses in the kernel_pt_table
    581 	 * array.
    582 	 *
    583 	 * The kernel page directory must be on a 16K boundary.  The page
    584 	 * tables must be on 4K boundaries.  What we do is allocate the
    585 	 * page directory on the first 16K boundary that we encounter, and
    586 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    587 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    588 	 * least one 16K aligned region.
    589 	 */
    590 
    591 #ifdef VERBOSE_INIT_ARM
    592 	printf("Allocating page tables\n");
    593 #endif
    594 
    595 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    596 
    597 #ifdef VERBOSE_INIT_ARM
    598 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x), freeend = 0x%08lx\n",
    599 	    physical_freestart, free_pages, free_pages, physical_freeend);
    600 #endif
    601 
    602 	/* Define a macro to simplify memory allocation */
    603 #define	valloc_pages(var, np)				\
    604 	alloc_pages((var).pv_pa, (np));			\
    605 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    606 
    607 #define alloc_pages(var, np)				\
    608 	physical_freeend -= ((np) * PAGE_SIZE);		\
    609 	if (physical_freeend < physical_freestart)	\
    610 		panic("initarm: out of memory");	\
    611 	(var) = physical_freeend;			\
    612 	free_pages -= (np);				\
    613 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    614 
    615 	loop1 = 0;
    616 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    617 		/* Are we 16KB aligned for an L1 ? */
    618 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
    619 		    && kernel_l1pt.pv_pa == 0) {
    620 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    621 		} else {
    622 			valloc_pages(kernel_pt_table[loop1],
    623 			    L2_TABLE_SIZE / PAGE_SIZE);
    624 			++loop1;
    625 		}
    626 	}
    627 
    628 	/* This should never be able to happen but better confirm that. */
    629 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
    630 		panic("initarm: Failed to align the kernel page directory\n");
    631 
    632 	/*
    633 	 * Allocate a page for the system page mapped to V0x00000000
    634 	 * This page will just contain the system vectors and can be
    635 	 * shared by all processes.
    636 	 */
    637 	alloc_pages(systempage.pv_pa, 1);
    638 
    639 	/* Allocate stacks for all modes */
    640 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    641 	valloc_pages(abtstack, ABT_STACK_SIZE);
    642 	valloc_pages(undstack, UND_STACK_SIZE);
    643 	valloc_pages(kernelstack, UPAGES);
    644 
    645 #ifdef VERBOSE_INIT_ARM
    646 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    647 	    irqstack.pv_va);
    648 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    649 	    abtstack.pv_va);
    650 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    651 	    undstack.pv_va);
    652 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    653 	    kernelstack.pv_va);
    654 	printf("Free memory in bootstrap region: %ld bytes\n", physical_freeend - physical_freestart);
    655 #endif
    656 
    657 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    658 
    659 	physical_freeend_low = physical_freeend;
    660 
    661 	/*
    662 	 * Ok we have allocated physical pages for the primary kernel
    663 	 * page tables
    664 	 */
    665 
    666 #ifdef VERBOSE_INIT_ARM
    667 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    668 #endif
    669 
    670 	/*
    671 	 * Now we start construction of the L1 page table
    672 	 * We start by mapping the L2 page tables into the L1.
    673 	 * This means that we can replace L1 mappings later on if necessary
    674 	 */
    675 	l1pagetable = kernel_l1pt.pv_pa;
    676 
    677 	/* Map the L2 pages tables in the L1 page table */
    678 	pmap_link_l2pt(l1pagetable, 0x00000000,
    679 	    &kernel_pt_table[KERNEL_PT_SYS]);
    680 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    681 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    682 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    683 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    684 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    685 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    686 
    687 	/* update the top of the kernel VM */
    688 	pmap_curmaxkvaddr =
    689 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    690 
    691 #ifdef VERBOSE_INIT_ARM
    692 	printf("Mapping kernel\n");
    693 #endif
    694 
    695 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    696 	{
    697 		/* Total size must include symbol table, if it exists.
    698 		   The size of the symbol table can be acquired from the ELF
    699 		   header, to which a pointer is passed in the boot info (ssym).
    700 		 */
    701 		size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE;
    702 		kerneldatasize = (uintptr_t)&end - KERNEL_TEXT_BASE;
    703 		u_int logical;
    704 
    705 		bi_symtab = lookup_bootinfo(BTINFO_SYMTAB);
    706 
    707 		if (bi_symtab) {
    708 			Elf_Ehdr *elfHeader;
    709 			Elf_Shdr *sectionHeader;
    710 			int nsection;
    711 			int sz = 0;
    712 
    713 			elfHeader = bi_symtab->ssym;
    714 
    715 #ifdef VERBOSE_INIT_ARM
    716 			printf("Symbol table information provided by bootloader\n");
    717 			printf("ELF header is at %p\n", elfHeader);
    718 #endif
    719 			sectionHeader = (Elf_Shdr*)((char*)(bi_symtab->ssym) +
    720 						     (elfHeader->e_shoff));
    721 			nsection = elfHeader->e_shnum;
    722 #ifdef VERBOSE_INIT_ARM
    723 			printf("Number of sections: %d\n", nsection);
    724 #endif
    725 			for(; nsection > 0; nsection--, sectionHeader++) {
    726 				if (sectionHeader->sh_offset > 0 &&
    727 				    (sectionHeader->sh_offset + sectionHeader->sh_size) > sz)
    728 					sz = sectionHeader->sh_offset + sectionHeader->sh_size;
    729 			}
    730 #ifdef VERBOSE_INIT_ARM
    731 			printf("Max size of sections: %d\n", sz);
    732 #endif
    733 			kerneldatasize += sz;
    734 		}
    735 
    736 #ifdef VERBOSE_INIT_ARM
    737 		printf("Textsize: %u, kerneldatasize: %u\n", (uint)textsize,
    738 		       (uint)kerneldatasize);
    739 		printf("&etext: 0x%x\n", (uint)&etext);
    740 		printf("&end: 0x%x\n", (uint)&end);
    741 		printf("KERNEL_TEXT_BASE: 0x%x\n", KERNEL_TEXT_BASE);
    742 #endif
    743 
    744 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    745 		kerneldatasize = (kerneldatasize + PGOFSET) & ~PGOFSET;
    746 
    747 		logical = KERNEL_OFFSET;	/* offset of kernel in RAM */
    748 
    749 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    750 					  physical_start + logical, textsize,
    751 					  VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    752 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    753 					  physical_start + logical, kerneldatasize - textsize,
    754 					  VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    755 	}
    756 
    757 #ifdef VERBOSE_INIT_ARM
    758 	printf("Constructing L2 page tables\n");
    759 #endif
    760 
    761 	/* Map the stack pages */
    762 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    763 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
    764 	    PTE_CACHE);
    765 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    766 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
    767 	    PTE_CACHE);
    768 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    769 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
    770 	    PTE_CACHE);
    771 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    772 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    773 
    774 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    775 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
    776 
    777 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    778 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    779 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    780 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    781 	}
    782 
    783 	/* Map the vector page. */
    784 #if 0
    785 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
    786 	 * cache-clean code there.  */
    787 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    788 	    VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
    789 #else
    790 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    791 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    792 #endif
    793 
    794 	/*
    795 	 * map integrated peripherals at same address in l1pagetable
    796 	 * so that we can continue to use console.
    797 	 */
    798 	pmap_devmap_bootstrap(l1pagetable, mini2440_devmap);
    799 
    800 	/*
    801 	 * Now we have the real page tables in place so we can switch to them.
    802 	 * Once this is done we will be running with the REAL kernel page
    803 	 * tables.
    804 	 */
    805 	/*
    806 	 * Update the physical_freestart/physical_freeend/free_pages
    807 	 * variables.
    808 	 */
    809 	physical_freestart = physical_start +
    810 	  (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize;
    811 	physical_freeend = physical_end;
    812 	free_pages =
    813 	  (physical_freeend - physical_freestart) / PAGE_SIZE;
    814 
    815 	/* Switch tables */
    816 #ifdef VERBOSE_INIT_ARM
    817 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    818 	    physical_freestart, free_pages, free_pages);
    819 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    820 #endif
    821 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    822 	cpu_setttb(kernel_l1pt.pv_pa, true);
    823 	cpu_tlb_flushID();
    824 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    825 
    826 	/*
    827 	 * Moved from cpu_startup() as data_abort_handler() references
    828 	 * this during uvm init
    829 	 */
    830 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
    831 
    832 #ifdef VERBOSE_INIT_ARM
    833 	printf("done!\n");
    834 #endif
    835 
    836 #ifdef VERBOSE_INIT_ARM
    837 	printf("bootstrap done.\n");
    838 #endif
    839 
    840 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
    841 
    842 	/*
    843 	 * Pages were allocated during the secondary bootstrap for the
    844 	 * stacks for different CPU modes.
    845 	 * We must now set the r13 registers in the different CPU modes to
    846 	 * point to these stacks.
    847 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    848 	 * of the stack memory.
    849 	 */
    850 #ifdef VERBOSE_INIT_ARM
    851 	printf("init subsystems: stacks ");
    852 #endif
    853 
    854 	set_stackptr(PSR_IRQ32_MODE,
    855 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    856 	set_stackptr(PSR_ABT32_MODE,
    857 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    858 	set_stackptr(PSR_UND32_MODE,
    859 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    860 
    861 	cpu_idcache_wbinv_all();
    862 
    863 	/*
    864 	 * Well we should set a data abort handler.
    865 	 * Once things get going this will change as we will need a proper
    866 	 * handler.
    867 	 * Until then we will use a handler that just panics but tells us
    868 	 * why.
    869 	 * Initialisation of the vectors will just panic on a data abort.
    870 	 * This just fills in a slightly better one.
    871 	 */
    872 #ifdef VERBOSE_INIT_ARM
    873 	printf("vectors ");
    874 #endif
    875 	data_abort_handler_address = (u_int)data_abort_handler;
    876 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    877 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    878 
    879 	/* Initialise the undefined instruction handlers */
    880 #ifdef VERBOSE_INIT_ARM
    881 	printf("undefined ");
    882 #endif
    883 	undefined_init();
    884 
    885 	/* Load memory into UVM. */
    886 #ifdef VERBOSE_INIT_ARM
    887 	printf("page ");
    888 #endif
    889 	uvm_md_init();
    890 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    891 	    atop(physical_freestart), atop(physical_freeend),
    892 	    VM_FREELIST_DEFAULT);
    893 	uvm_page_physload(atop(SDRAM_START), atop(physical_freeend_low),
    894 	    atop(SDRAM_START), atop(physical_freeend_low),
    895 	    VM_FREELIST_DEFAULT);
    896 
    897 
    898 	/* Boot strap pmap telling it where the kernel page table is */
    899 #ifdef VERBOSE_INIT_ARM
    900 	printf("pmap ");
    901 #endif
    902 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
    903 
    904 #ifdef VERBOSE_INIT_ARM
    905 	printf("done.\n");
    906 #endif
    907 
    908 #ifdef BOOTHOWTO
    909 	boothowto |= BOOTHOWTO;
    910 #endif
    911 
    912 #ifdef KGDB
    913 	if (boothowto & RB_KDB) {
    914 		kgdb_debug_init = 1;
    915 		kgdb_connect(1);
    916 	}
    917 #endif
    918 
    919 	mini2440_ksyms(bi_symtab);
    920 
    921 #ifdef DDB
    922 	/*db_machine_init();*/
    923 	if (boothowto & RB_KDB)
    924 		Debugger();
    925 #endif
    926 
    927 	evbarm_device_register = mini2440_device_register;
    928 
    929 	/* We return the new stack pointer address */
    930 	return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    931 }
    932 
    933 void
    934 consinit(void)
    935 {
    936 	static int consinit_done = 0;
    937 #if defined(SSCOM0CONSOLE) || defined(SSCOM1CONSOLE)
    938 	bus_space_tag_t iot = &s3c2xx0_bs_tag;
    939 #endif
    940 	int pclk;
    941 
    942 	if (consinit_done != 0)
    943 		return;
    944 
    945 	consinit_done = 1;
    946 
    947 	s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
    948 
    949 #if NSSCOM > 0
    950 #ifdef SSCOM0CONSOLE
    951 	if (0 == s3c2440_sscom_cnattach(iot, 0, comcnspeed,
    952 		pclk, comcnmode))
    953 		return;
    954 #endif
    955 #ifdef SSCOM1CONSOLE
    956 	if (0 == s3c2440_sscom_cnattach(iot, 1, comcnspeed,
    957 		pclk, comcnmode))
    958 		return;
    959 #endif
    960 #endif				/* NSSCOM */
    961 #if NCOM>0 && defined(CONCOMADDR)
    962 	if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
    963 		COM_FREQ, COM_TYPE_NORMAL, comcnmode))
    964 		panic("can't init serial console @%x", CONCOMADDR);
    965 	return;
    966 #endif
    967 
    968 	consinit_done = 0;
    969 }
    970 
    971 
    972 #ifdef KGDB
    973 
    974 #if (NSSCOM > 0)
    975 
    976 #ifdef KGDB_DEVNAME
    977 const char kgdb_devname[] = KGDB_DEVNAME;
    978 #else
    979 const char kgdb_devname[] = "";
    980 #endif
    981 
    982 #ifndef KGDB_DEVMODE
    983 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */
    984 #endif
    985 int kgdb_sscom_mode = KGDB_DEVMODE;
    986 
    987 #endif				/* NSSCOM */
    988 
    989 void
    990 kgdb_port_init(void)
    991 {
    992 #if (NSSCOM > 0)
    993 	int unit = -1;
    994 	int pclk;
    995 
    996 	if (strcmp(kgdb_devname, "sscom0") == 0)
    997 		unit = 0;
    998 	else if (strcmp(kgdb_devname, "sscom1") == 0)
    999 		unit = 1;
   1000 
   1001 	if (unit >= 0) {
   1002 		s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
   1003 
   1004 		s3c2440_sscom_kgdb_attach(&s3c2xx0_bs_tag,
   1005 		    unit, kgdb_rate, pclk, kgdb_sscom_mode);
   1006 	}
   1007 #endif
   1008 }
   1009 #endif
   1010 
   1011 
   1012 static struct arm32_dma_range mini2440_dma_ranges[1];
   1013 
   1014 bus_dma_tag_t
   1015 s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template)
   1016 {
   1017 	extern paddr_t physical_start, physical_end;
   1018 	struct arm32_bus_dma_tag *dmat;
   1019 
   1020 	mini2440_dma_ranges[0].dr_sysbase = physical_start;
   1021 	mini2440_dma_ranges[0].dr_busbase = physical_start;
   1022 	mini2440_dma_ranges[0].dr_len = physical_end - physical_start;
   1023 
   1024 #if 1
   1025 	dmat = dma_tag_template;
   1026 #else
   1027 	dmat = malloc(sizeof *dmat, M_DEVBUF, M_NOWAIT);
   1028 	if (dmat == NULL)
   1029 		return NULL;
   1030 	*dmat =  *dma_tag_template;
   1031 #endif
   1032 
   1033 	dmat->_ranges = mini2440_dma_ranges;
   1034 	dmat->_nranges = 1;
   1035 
   1036 	return dmat;
   1037 }
   1038 
   1039 void
   1040 mini2440_ksyms(struct btinfo_symtab *bi_symtab)
   1041 {
   1042 #if NKSYMS || defined(DDB) || defined(LKM)
   1043 	extern int end;
   1044 
   1045 #ifdef DDB
   1046 	db_machine_init();
   1047 #endif
   1048 	if (bi_symtab == NULL) {
   1049 		return;
   1050 	}
   1051 #ifdef VERBOSE_INIT_ARM
   1052 	printf("Got symbol table. nsym=%d, ssym=%p, esym=%p\n",
   1053 	       bi_symtab->nsym,
   1054 	       bi_symtab->ssym,
   1055 	       bi_symtab->esym);
   1056 #endif
   1057 
   1058 	ksyms_addsyms_elf(bi_symtab->nsym,
   1059 			  (int*)bi_symtab->ssym,
   1060 			  (int*)bi_symtab->esym);
   1061 #endif
   1062 }
   1063 
   1064 void *
   1065 lookup_bootinfo(int type)
   1066 {
   1067 	struct btinfo_common *bt;
   1068 	struct btinfo_common *help = (struct btinfo_common *)bootinfo;
   1069 
   1070 	if (help->next == 0)
   1071 		return (NULL);  /* bootinfo[] was not made */
   1072 	do {
   1073 		bt = help;
   1074 		if (bt->type == type)
   1075 			return (help);
   1076 		help = (struct btinfo_common *)((char*)help + bt->next);
   1077 	} while (bt->next &&
   1078 		 (size_t)help < (size_t)bootinfo + BOOTINFO_MAXSIZE);
   1079 
   1080 	return (NULL);
   1081 }
   1082 
   1083 
   1084 extern char *booted_kernel;
   1085 
   1086 static void
   1087 mini2440_device_register(device_t dev, void *aux) {
   1088 	if (device_class(dev) == DV_IFNET) {
   1089 #ifndef MEMORY_DISK_IS_ROOT
   1090 		if (bi_rdev != NULL && device_is_a(dev, bi_rdev->devname) ) {
   1091 			booted_device = dev;
   1092 			rootfstype = MOUNT_NFS;
   1093 			if( bi_path != NULL ) {
   1094 				booted_kernel = bi_path->bootpath;
   1095 			}
   1096 		}
   1097 #endif
   1098 		if (bi_net != NULL && device_is_a(dev, bi_net->devname)) {
   1099 			prop_data_t pd;
   1100 			pd = prop_data_create_data_nocopy(bi_net->mac_address, ETHER_ADDR_LEN);
   1101 			KASSERT(pd != NULL);
   1102 			if (prop_dictionary_set(device_properties(dev), "mac-address", pd) == false) {
   1103 				printf("WARNING: Unable to set mac-address property for %s\n", device_xname(dev));
   1104 			}
   1105 			prop_object_release(pd);
   1106 			bi_net = NULL;
   1107 		}
   1108 	}
   1109 #ifndef MEMORY_DISK_IS_ROOT
   1110 	if (bi_rdev != NULL && device_class(dev) == DV_DISK
   1111 	    && device_is_a(dev, bi_rdev->devname)
   1112 	    && device_unit(dev) == bi_rdev->cookie) {
   1113 		booted_device = dev;
   1114 		booted_partition = bi_rdev->partition;
   1115 		rootfstype = ROOT_FSTYPE_ANY;
   1116 		if( bi_path != NULL ) {
   1117 			booted_kernel = bi_path->bootpath;
   1118 		}
   1119 	}
   1120 #endif
   1121 }
   1122