mini2440_machdep.c revision 1.2 1 /*-
2 * Copyright (c) 2012 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Paul Fleischer <paul (at) xpg.dk>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29 /* This file is based on arch/evbarm/smdk2xx0/smdk2410_machdep.c */
30 /*
31 * Copyright (c) 2002, 2003 Fujitsu Component Limited
32 * Copyright (c) 2002, 2003, 2005 Genetec Corporation
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of The Fujitsu Component Limited nor the name of
44 * Genetec corporation may not be used to endorse or promote products
45 * derived from this software without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
48 * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
51 * DISCLAIMED. IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
52 * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
54 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
55 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
56 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
57 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
58 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 */
61 /*
62 * Copyright (c) 2001,2002 ARM Ltd
63 * All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. The name of the company may not be used to endorse or promote
74 * products derived from this software without specific prior written
75 * permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
79 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
80 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD
81 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
82 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
83 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
84 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
85 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
86 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
87 * POSSIBILITY OF SUCH DAMAGE.
88 *
89 */
90
91 /*
92 * Copyright (c) 1997,1998 Mark Brinicombe.
93 * Copyright (c) 1997,1998 Causality Limited.
94 * All rights reserved.
95 *
96 * Redistribution and use in source and binary forms, with or without
97 * modification, are permitted provided that the following conditions
98 * are met:
99 * 1. Redistributions of source code must retain the above copyright
100 * notice, this list of conditions and the following disclaimer.
101 * 2. Redistributions in binary form must reproduce the above copyright
102 * notice, this list of conditions and the following disclaimer in the
103 * documentation and/or other materials provided with the distribution.
104 * 3. All advertising materials mentioning features or use of this software
105 * must display the following acknowledgement:
106 * This product includes software developed by Mark Brinicombe
107 * for the NetBSD Project.
108 * 4. The name of the company nor the name of the author may be used to
109 * endorse or promote products derived from this software without specific
110 * prior written permission.
111 *
112 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
113 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
114 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
115 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
116 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
117 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
118 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
119 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
120 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
121 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
122 * SUCH DAMAGE.
123 *
124 * Machine dependant functions for kernel setup for integrator board
125 *
126 * Created : 24/11/97
127 */
128
129 /*
130 * Machine dependant functions for kernel setup for FriendlyARM MINI2440
131 */
132
133 #include <sys/cdefs.h>
134 __KERNEL_RCSID(0, "$NetBSD: mini2440_machdep.c,v 1.2 2012/02/03 00:33:08 nisimura Exp $");
135
136 #include "opt_ddb.h"
137 #include "opt_kgdb.h"
138 #include "opt_pmap_debug.h"
139 #include "opt_md.h"
140
141 #include <sys/param.h>
142 #include <sys/device.h>
143 #include <sys/systm.h>
144 #include <sys/kernel.h>
145 #include <sys/exec.h>
146 #include <sys/proc.h>
147 #include <sys/msgbuf.h>
148 #include <sys/reboot.h>
149 #include <sys/termios.h>
150 #include <sys/ksyms.h>
151 #include <sys/mount.h>
152
153 #include <net/if.h>
154 #include <net/if_ether.h>
155 #include <net/if_media.h>
156
157 #include <uvm/uvm_extern.h>
158
159 #include <dev/cons.h>
160 #include <dev/md.h>
161
162 #include <machine/db_machdep.h>
163 #include <ddb/db_sym.h>
164 #include <ddb/db_extern.h>
165 #ifdef KGDB
166 #include <sys/kgdb.h>
167 #endif
168
169 #include <sys/exec_elf.h>
170
171 #include <sys/bus.h>
172 #include <machine/cpu.h>
173 #include <machine/frame.h>
174 #include <machine/intr.h>
175 #include <arm/undefined.h>
176
177 #include <machine/autoconf.h>
178
179 #include <arm/arm32/machdep.h>
180
181 #include <arm/s3c2xx0/s3c2440reg.h>
182 #include <arm/s3c2xx0/s3c2440var.h>
183
184 #include <arch/evbarm/mini2440/mini2440_bootinfo.h>
185
186 #include "ksyms.h"
187
188 #ifndef SDRAM_START
189 #define SDRAM_START S3C2440_SDRAM_START
190 #endif
191 #ifndef SDRAM_SIZE
192 #define SDRAM_SIZE (64*1024*1024) /* 64 Mb */
193 #endif
194
195 /*
196 * Address to map I/O registers in early initialize stage.
197 */
198 #define MINI2440_IO_VBASE 0xfd000000
199
200 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
201 #define KERNEL_OFFSET 0x00200000
202 #define KERNEL_TEXT_BASE (KERNEL_BASE + KERNEL_OFFSET)
203 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
204
205 /*
206 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
207 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
208 */
209 #define KERNEL_VM_SIZE 0x0C000000
210
211 /*
212 * Address to call from cpu_reset() to reset the machine.
213 * This is machine architecture dependant as it varies depending
214 * on where the ROM appears when you turn the MMU off.
215 */
216 u_int cpu_reset_address = (u_int)0;
217
218 /* Define various stack sizes in pages */
219 #define IRQ_STACK_SIZE 1
220 #define ABT_STACK_SIZE 1
221 #define UND_STACK_SIZE 1
222
223 /* Declared extern elsewhere in the kernel */
224 BootConfig bootconfig; /* Boot config storage */
225 char *boot_args = NULL;
226 //char *boot_file = NULL;
227
228 char bootinfo[BOOTINFO_MAXSIZE];
229 struct btinfo_rootdevice *bi_rdev;
230 struct btinfo_net *bi_net;
231 struct btinfo_bootpath *bi_path;
232
233 vm_offset_t physical_start;
234 vm_offset_t physical_freestart;
235 vm_offset_t physical_freeend;
236 vm_offset_t physical_freeend_low;
237 vm_offset_t physical_end;
238 u_int free_pages;
239 vm_offset_t pagetables_start;
240 int physmem = 0;
241
242 /*int debug_flags;*/
243 #ifndef PMAP_STATIC_L1S
244 int max_processes = 64; /* Default number */
245 #endif /* !PMAP_STATIC_L1S */
246
247 /* Physical and virtual addresses for some global pages */
248 pv_addr_t irqstack;
249 pv_addr_t undstack;
250 pv_addr_t abtstack;
251 pv_addr_t kernelstack;
252
253 vm_offset_t msgbufphys;
254
255 extern u_int data_abort_handler_address;
256 extern u_int prefetch_abort_handler_address;
257 extern u_int undefined_handler_address;
258
259 #ifdef PMAP_DEBUG
260 extern int pmap_debug_level;
261 #endif
262
263 #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
264 #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
265 #define KERNEL_PT_KERNEL_NUM 3 /* L2 tables for mapping kernel VM */
266
267 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
268
269 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
270 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
271
272 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
273
274 struct user *proc0paddr;
275
276 /* Prototypes */
277
278 void consinit(void);
279 void kgdb_port_init(void);
280 static void mini2440_ksyms(struct btinfo_symtab *bi_symtab);
281 static void *lookup_bootinfo(int type);
282 static void mini2440_device_register(device_t dev, void *aux);
283
284
285 #include "com.h"
286 #if NCOM > 0
287 #include <dev/ic/comreg.h>
288 #include <dev/ic/comvar.h>
289 #endif
290
291 #include "sscom.h"
292 #if NSSCOM > 0
293 #include "opt_sscom.h"
294 #include <arm/s3c2xx0/sscom_var.h>
295 #endif
296
297 /*
298 * Define the default console speed for the board. This is generally
299 * what the firmware provided with the board defaults to.
300 */
301 #ifndef CONSPEED
302 #define CONSPEED B115200 /* TTYDEF_SPEED */
303 #endif
304 #ifndef CONMODE
305 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
306 #endif
307
308 int comcnspeed = CONSPEED;
309 int comcnmode = CONMODE;
310
311 /*
312 * void cpu_reboot(int howto, char *bootstr)
313 *
314 * Reboots the system
315 *
316 * Deal with any syncing, unmounting, dumping and shutdown hooks,
317 * then reset the CPU.
318 */
319 void
320 cpu_reboot(int howto, char *bootstr)
321 {
322 #ifdef DIAGNOSTIC
323 /* info */
324 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
325 #endif
326
327 cpu_reset_address = vtophys((u_int)s3c2440_softreset);
328
329 /*
330 * If we are still cold then hit the air brakes
331 * and crash to earth fast
332 */
333 if (cold) {
334 doshutdownhooks();
335 printf("The operating system has halted.\n");
336 printf("Please press any key to reboot.\n\n");
337 cngetc();
338 printf("rebooting...\n");
339 cpu_reset();
340 /* NOTREACHED */
341 }
342 /* Disable console buffering */
343
344 /*
345 * If RB_NOSYNC was not specified sync the discs.
346 * Note: Unless cold is set to 1 here, syslogd will die during the
347 * unmount. It looks like syslogd is getting woken up only to find
348 * that it cannot page part of the binary in as the filesystem has
349 * been unmounted.
350 */
351 if (!(howto & RB_NOSYNC))
352 bootsync();
353
354 /* Say NO to interrupts */
355 splhigh();
356
357 /* Do a dump if requested. */
358 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
359 dumpsys();
360
361 /* Run any shutdown hooks */
362 doshutdownhooks();
363
364 /* Make sure IRQ's are disabled */
365 IRQdisable;
366
367 if (howto & RB_HALT) {
368 printf("The operating system has halted.\n");
369 printf("Please press any key to reboot.\n\n");
370 cngetc();
371 }
372 printf("rebooting...\n");
373 cpu_reset();
374 /* NOTREACHED */
375 }
376
377 /*
378 * Static device mappings. These peripheral registers are mapped at
379 * fixed virtual addresses very early in initarm() so that we can use
380 * them while booting the kernel , and stay at the same address
381 * throughout whole kernel's life time.
382 *
383 * We use this table twice; once with bootstrap page table, and once
384 * with kernel's page table which we build up in initarm().
385 *
386 * Since we map these registers into the bootstrap page table using
387 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
388 * registers segment-aligned and segment-rounded in order to avoid
389 * using the 2nd page tables.
390 */
391
392 #define _A(a) ((a) & ~L1_S_OFFSET)
393 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
394
395 #define _V(n) (MINI2440_IO_VBASE + (n) * L1_S_SIZE)
396
397 #define GPIO_VBASE _V(0)
398 #define INTCTL_VBASE _V(1)
399 #define CLKMAN_VBASE _V(2)
400 #define UART_VBASE _V(3)
401
402 static const struct pmap_devmap mini2440_devmap[] = {
403 /* GPIO registers */
404 {
405 GPIO_VBASE,
406 _A(S3C2440_GPIO_BASE),
407 _S(S3C2440_GPIO_SIZE),
408 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
409 },
410 {
411 INTCTL_VBASE,
412 _A(S3C2440_INTCTL_BASE),
413 _S(S3C2440_INTCTL_SIZE),
414 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
415 },
416 {
417 CLKMAN_VBASE,
418 _A(S3C2440_CLKMAN_BASE),
419 _S(S3C24X0_CLKMAN_SIZE),
420 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
421 },
422 { /* UART registers for UART0, 1, 2. */
423 UART_VBASE,
424 _A(S3C2440_UART0_BASE),
425 _S(S3C2440_UART_BASE(3) - S3C2440_UART0_BASE),
426 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
427 },
428
429 { 0, 0, 0, 0 }
430 };
431
432 #undef _A
433 #undef _S
434
435 static inline pd_entry_t *
436 read_ttb(void)
437 {
438 long ttb;
439
440 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(ttb));
441
442
443 return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
444 }
445
446
447 #define ioreg_write32(a,v) (*(volatile uint32_t *)(a)=(v))
448
449 /*
450 * u_int initarm(...)
451 *
452 * Initial entry point on startup. This gets called before main() is
453 * entered.
454 * It should be responsible for setting up everything that must be
455 * in place when main is called.
456 * This includes
457 * Taking a copy of the boot configuration structure.
458 * Initialising the physical console so characters can be printed.
459 * Setting up page tables for the kernel
460 * Relocating the kernel to the bottom of physical memory
461 */
462
463 u_int
464 initarm(void *arg)
465 {
466 int loop;
467 int loop1;
468 u_int l1pagetable;
469 extern int etext __asm("_etext");
470 extern int end __asm("_end");
471 uint32_t kerneldatasize;
472 struct btinfo_magic *bi_magic = arg;
473 struct btinfo_bootstring *bi_bootstring;
474 struct btinfo_symtab *bi_symtab;
475
476 boothowto = 0;
477
478 /* Copy bootinfo from boot loader into kernel memory where it remains.
479 */
480 if (bi_magic != 0x0 && bi_magic->magic == BOOTINFO_MAGIC) {
481 memcpy(bootinfo, bi_magic, sizeof(bootinfo));
482 } else {
483 memset(bootinfo, 0, sizeof(bootinfo));
484 }
485
486 /* Extract boot_args from bootinfo */
487 bi_bootstring = lookup_bootinfo(BTINFO_BOOTSTRING);
488 if (bi_bootstring ) {
489 printf("Bootloader args are %s\n", bi_bootstring->bootstring);
490 boot_args = bi_bootstring->bootstring;
491 parse_mi_bootargs(boot_args);
492 }
493
494 #define pdatb (*(volatile uint8_t *)(S3C2440_GPIO_BASE+GPIO_PBDAT))
495
496 // 0x1E0 is the mask for GPB5, GPB6, GPB7, and GPB8
497 #define __LED(x) (pdatb = (pdatb & ~0x1e0) | (~(1<<(x+5)) & 0x1e0))
498
499 __LED(0);
500
501 /*
502 * Heads up ... Setup the CPU / MMU / TLB functions
503 */
504 if (set_cpufuncs())
505 panic("cpu not recognized!");
506
507 /*
508 * Map I/O registers that are used in startup. Now we are
509 * still using page table prepared by bootloader. Later we'll
510 * map those registers at the same address in the kernel page
511 * table.
512 */
513 pmap_devmap_bootstrap((vaddr_t)read_ttb(), mini2440_devmap);
514
515 #undef pdatb
516 #define pdatb (*(volatile uint8_t *)(GPIO_VBASE+GPIO_PBDAT))
517
518 /* Disable all peripheral interrupts */
519 ioreg_write32(INTCTL_VBASE + INTCTL_INTMSK, ~0);
520
521 __LED(1);
522
523 /* initialize some variables so that splfoo() doesn't
524 touch illegal address. */
525 s3c2xx0_intr_bootstrap(INTCTL_VBASE);
526
527 __LED(2);
528 consinit();
529 __LED(3);
530
531 /* Extract information from the bootloader configuration */
532 bi_rdev = lookup_bootinfo(BTINFO_ROOTDEVICE);
533 bi_net = lookup_bootinfo(BTINFO_NET);
534 bi_path = lookup_bootinfo(BTINFO_BOOTPATH);
535
536 #ifdef VERBOSE_INIT_ARM
537 printf("consinit done\n");
538 #endif
539
540 #ifdef KGDB
541 kgdb_port_init();
542 #endif
543
544 #ifdef VERBOSE_INIT_ARM
545 /* Talk to the user */
546 printf("\nNetBSD/evbarm (MINI2440) booting ...\n");
547 #endif
548 /*
549 * Ok we have the following memory map
550 *
551 * Physical Address Range Description
552 * ----------------------- ----------------------------------
553 * 0x30000000 - 0x33ffffff SDRAM (64MB)
554 *
555 * Kernel is loaded by bootloader at 0x30200000
556 *
557 * The initarm() has the responsibility for creating the kernel
558 * page tables.
559 * It must also set up various memory pointers that are used
560 * by pmap etc.
561 */
562
563 /* Fake bootconfig structure for the benefit of pmap.c */
564 /* XXX must make the memory description h/w independent */
565 bootconfig.dramblocks = 1;
566 bootconfig.dram[0].address = SDRAM_START;
567 bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE;
568
569 /*
570 * Set up the variables that define the availablilty of
571 * physical memory.
572 * We use the 2MB between the physical start and the kernel to
573 * begin with. Allocating from 0x30200000 and downwards
574 * If we get too close to the bottom of SDRAM, we
575 * will panic. We will update physical_freestart and
576 * physical_freeend later to reflect what pmap_bootstrap()
577 * wants to see.
578 *
579 * XXX pmap_bootstrap() needs an enema.
580 */
581 physical_start = bootconfig.dram[0].address;
582 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
583
584 physical_freestart = SDRAM_START; /* XXX */
585 physical_freeend = SDRAM_START + KERNEL_OFFSET;
586
587 physmem = (physical_end - physical_start) / PAGE_SIZE;
588
589 #ifdef VERBOSE_INIT_ARM
590 /* Tell the user about the memory */
591 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
592 physical_start, physical_end - 1);
593 printf("phys_end: 0x%08lx\n", physical_end);
594 #endif
595
596 /*
597 * XXX
598 * Okay, the kernel starts 2MB in from the bottom of physical
599 * memory. We are going to allocate our bootstrap pages downwards
600 * from there.
601 *
602 * We need to allocate some fixed page tables to get the kernel
603 * going. We allocate one page directory and a number of page
604 * tables and store the physical addresses in the kernel_pt_table
605 * array.
606 *
607 * The kernel page directory must be on a 16K boundary. The page
608 * tables must be on 4K boundaries. What we do is allocate the
609 * page directory on the first 16K boundary that we encounter, and
610 * the page tables on 4K boundaries otherwise. Since we allocate
611 * at least 3 L2 page tables, we are guaranteed to encounter at
612 * least one 16K aligned region.
613 */
614
615 #ifdef VERBOSE_INIT_ARM
616 printf("Allocating page tables\n");
617 #endif
618
619 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
620
621 #ifdef VERBOSE_INIT_ARM
622 printf("freestart = 0x%08lx, free_pages = %d (0x%08x), freeend = 0x%08lx\n",
623 physical_freestart, free_pages, free_pages, physical_freeend);
624 #endif
625
626 /* Define a macro to simplify memory allocation */
627 #define valloc_pages(var, np) \
628 alloc_pages((var).pv_pa, (np)); \
629 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
630
631 #define alloc_pages(var, np) \
632 physical_freeend -= ((np) * PAGE_SIZE); \
633 if (physical_freeend < physical_freestart) \
634 panic("initarm: out of memory"); \
635 (var) = physical_freeend; \
636 free_pages -= (np); \
637 memset((char *)(var), 0, ((np) * PAGE_SIZE));
638
639 loop1 = 0;
640 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
641 /* Are we 16KB aligned for an L1 ? */
642 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
643 && kernel_l1pt.pv_pa == 0) {
644 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
645 } else {
646 valloc_pages(kernel_pt_table[loop1],
647 L2_TABLE_SIZE / PAGE_SIZE);
648 ++loop1;
649 }
650 }
651
652 /* This should never be able to happen but better confirm that. */
653 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
654 panic("initarm: Failed to align the kernel page directory\n");
655
656 /*
657 * Allocate a page for the system page mapped to V0x00000000
658 * This page will just contain the system vectors and can be
659 * shared by all processes.
660 */
661 alloc_pages(systempage.pv_pa, 1);
662
663 /* Allocate stacks for all modes */
664 valloc_pages(irqstack, IRQ_STACK_SIZE);
665 valloc_pages(abtstack, ABT_STACK_SIZE);
666 valloc_pages(undstack, UND_STACK_SIZE);
667 valloc_pages(kernelstack, UPAGES);
668
669 #ifdef VERBOSE_INIT_ARM
670 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
671 irqstack.pv_va);
672 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
673 abtstack.pv_va);
674 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
675 undstack.pv_va);
676 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
677 kernelstack.pv_va);
678 printf("Free memory in bootstrap region: %ld bytes\n", physical_freeend - physical_freestart);
679 #endif
680
681 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
682
683 physical_freeend_low = physical_freeend;
684
685 /*
686 * Ok we have allocated physical pages for the primary kernel
687 * page tables
688 */
689
690 #ifdef VERBOSE_INIT_ARM
691 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
692 #endif
693
694 /*
695 * Now we start construction of the L1 page table
696 * We start by mapping the L2 page tables into the L1.
697 * This means that we can replace L1 mappings later on if necessary
698 */
699 l1pagetable = kernel_l1pt.pv_pa;
700
701 /* Map the L2 pages tables in the L1 page table */
702 pmap_link_l2pt(l1pagetable, 0x00000000,
703 &kernel_pt_table[KERNEL_PT_SYS]);
704 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
705 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
706 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
707 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
708 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
709 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
710
711 /* update the top of the kernel VM */
712 pmap_curmaxkvaddr =
713 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
714
715 #ifdef VERBOSE_INIT_ARM
716 printf("Mapping kernel\n");
717 #endif
718
719 /* Now we fill in the L2 pagetable for the kernel static code/data */
720 {
721 /* Total size must include symbol table, if it exists.
722 The size of the symbol table can be acquired from the ELF
723 header, to which a pointer is passed in the boot info (ssym).
724 */
725 size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE;
726 kerneldatasize = (uintptr_t)&end - KERNEL_TEXT_BASE;
727 u_int logical;
728
729 bi_symtab = lookup_bootinfo(BTINFO_SYMTAB);
730
731 if (bi_symtab) {
732 Elf_Ehdr *elfHeader;
733 Elf_Shdr *sectionHeader;
734 int nsection;
735 int sz = 0;
736
737 elfHeader = bi_symtab->ssym;
738
739 #ifdef VERBOSE_INIT_ARM
740 printf("Symbol table information provided by bootloader\n");
741 printf("ELF header is at %p\n", elfHeader);
742 #endif
743 sectionHeader = (Elf_Shdr*)((char*)(bi_symtab->ssym) +
744 (elfHeader->e_shoff));
745 nsection = elfHeader->e_shnum;
746 #ifdef VERBOSE_INIT_ARM
747 printf("Number of sections: %d\n", nsection);
748 #endif
749 for(; nsection > 0; nsection--, sectionHeader++) {
750 if (sectionHeader->sh_offset > 0 &&
751 (sectionHeader->sh_offset + sectionHeader->sh_size) > sz)
752 sz = sectionHeader->sh_offset + sectionHeader->sh_size;
753 }
754 #ifdef VERBOSE_INIT_ARM
755 printf("Max size of sections: %d\n", sz);
756 #endif
757 kerneldatasize += sz;
758 }
759
760 #ifdef VERBOSE_INIT_ARM
761 printf("Textsize: %u, kerneldatasize: %u\n", (uint)textsize,
762 (uint)kerneldatasize);
763 printf("&etext: 0x%x\n", (uint)&etext);
764 printf("&end: 0x%x\n", (uint)&end);
765 printf("KERNEL_TEXT_BASE: 0x%x\n", KERNEL_TEXT_BASE);
766 #endif
767
768 textsize = (textsize + PGOFSET) & ~PGOFSET;
769 kerneldatasize = (kerneldatasize + PGOFSET) & ~PGOFSET;
770
771 logical = KERNEL_OFFSET; /* offset of kernel in RAM */
772
773 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
774 physical_start + logical, textsize,
775 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
776 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
777 physical_start + logical, kerneldatasize - textsize,
778 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
779 }
780
781 #ifdef VERBOSE_INIT_ARM
782 printf("Constructing L2 page tables\n");
783 #endif
784
785 /* Map the stack pages */
786 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
787 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
788 PTE_CACHE);
789 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
790 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
791 PTE_CACHE);
792 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
793 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
794 PTE_CACHE);
795 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
796 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
797
798 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
799 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
800
801 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
802 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
803 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
804 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
805 }
806
807 /* Map the vector page. */
808 #if 0
809 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
810 * cache-clean code there. */
811 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
812 VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
813 #else
814 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
815 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
816 #endif
817
818 /*
819 * map integrated peripherals at same address in l1pagetable
820 * so that we can continue to use console.
821 */
822 pmap_devmap_bootstrap(l1pagetable, mini2440_devmap);
823
824 /*
825 * Now we have the real page tables in place so we can switch to them.
826 * Once this is done we will be running with the REAL kernel page
827 * tables.
828 */
829 /*
830 * Update the physical_freestart/physical_freeend/free_pages
831 * variables.
832 */
833 physical_freestart = physical_start +
834 (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize;
835 physical_freeend = physical_end;
836 free_pages =
837 (physical_freeend - physical_freestart) / PAGE_SIZE;
838
839 /* Switch tables */
840 #ifdef VERBOSE_INIT_ARM
841 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
842 physical_freestart, free_pages, free_pages);
843 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
844 #endif
845 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
846 cpu_setttb(kernel_l1pt.pv_pa);
847 cpu_tlb_flushID();
848 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
849
850 /*
851 * Moved from cpu_startup() as data_abort_handler() references
852 * this during uvm init
853 */
854 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
855
856 #ifdef VERBOSE_INIT_ARM
857 printf("done!\n");
858 #endif
859
860 #ifdef VERBOSE_INIT_ARM
861 printf("bootstrap done.\n");
862 #endif
863
864 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
865
866 /*
867 * Pages were allocated during the secondary bootstrap for the
868 * stacks for different CPU modes.
869 * We must now set the r13 registers in the different CPU modes to
870 * point to these stacks.
871 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
872 * of the stack memory.
873 */
874 #ifdef VERBOSE_INIT_ARM
875 printf("init subsystems: stacks ");
876 #endif
877
878 set_stackptr(PSR_IRQ32_MODE,
879 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
880 set_stackptr(PSR_ABT32_MODE,
881 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
882 set_stackptr(PSR_UND32_MODE,
883 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
884
885 cpu_idcache_wbinv_all();
886
887 /*
888 * Well we should set a data abort handler.
889 * Once things get going this will change as we will need a proper
890 * handler.
891 * Until then we will use a handler that just panics but tells us
892 * why.
893 * Initialisation of the vectors will just panic on a data abort.
894 * This just fills in a slightly better one.
895 */
896 #ifdef VERBOSE_INIT_ARM
897 printf("vectors ");
898 #endif
899 data_abort_handler_address = (u_int)data_abort_handler;
900 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
901 undefined_handler_address = (u_int)undefinedinstruction_bounce;
902
903 /* Initialise the undefined instruction handlers */
904 #ifdef VERBOSE_INIT_ARM
905 printf("undefined ");
906 #endif
907 undefined_init();
908
909 /* Load memory into UVM. */
910 #ifdef VERBOSE_INIT_ARM
911 printf("page ");
912 #endif
913 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
914 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
915 atop(physical_freestart), atop(physical_freeend),
916 VM_FREELIST_DEFAULT);
917 uvm_page_physload(atop(SDRAM_START), atop(physical_freeend_low),
918 atop(SDRAM_START), atop(physical_freeend_low),
919 VM_FREELIST_DEFAULT);
920
921
922 /* Boot strap pmap telling it where the kernel page table is */
923 #ifdef VERBOSE_INIT_ARM
924 printf("pmap ");
925 #endif
926 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
927
928 #ifdef VERBOSE_INIT_ARM
929 printf("done.\n");
930 #endif
931
932 #ifdef BOOTHOWTO
933 boothowto |= BOOTHOWTO;
934 #endif
935
936 #ifdef KGDB
937 if (boothowto & RB_KDB) {
938 kgdb_debug_init = 1;
939 kgdb_connect(1);
940 }
941 #endif
942
943 mini2440_ksyms(bi_symtab);
944
945 #ifdef DDB
946 /*db_machine_init();*/
947 if (boothowto & RB_KDB)
948 Debugger();
949 #endif
950
951 evbarm_device_register = mini2440_device_register;
952
953 /* We return the new stack pointer address */
954 return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
955 }
956
957 void
958 consinit(void)
959 {
960 static int consinit_done = 0;
961 #if defined(SSCOM0CONSOLE) || defined(SSCOM1CONSOLE)
962 bus_space_tag_t iot = &s3c2xx0_bs_tag;
963 #endif
964 int pclk;
965
966 if (consinit_done != 0)
967 return;
968
969 consinit_done = 1;
970
971 s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
972
973 #if NSSCOM > 0
974 #ifdef SSCOM0CONSOLE
975 if (0 == s3c2440_sscom_cnattach(iot, 0, comcnspeed,
976 pclk, comcnmode))
977 return;
978 #endif
979 #ifdef SSCOM1CONSOLE
980 if (0 == s3c2440_sscom_cnattach(iot, 1, comcnspeed,
981 pclk, comcnmode))
982 return;
983 #endif
984 #endif /* NSSCOM */
985 #if NCOM>0 && defined(CONCOMADDR)
986 if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
987 COM_FREQ, COM_TYPE_NORMAL, comcnmode))
988 panic("can't init serial console @%x", CONCOMADDR);
989 return;
990 #endif
991
992 consinit_done = 0;
993 }
994
995
996 #ifdef KGDB
997
998 #if (NSSCOM > 0)
999
1000 #ifdef KGDB_DEVNAME
1001 const char kgdb_devname[] = KGDB_DEVNAME;
1002 #else
1003 const char kgdb_devname[] = "";
1004 #endif
1005
1006 #ifndef KGDB_DEVMODE
1007 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */
1008 #endif
1009 int kgdb_sscom_mode = KGDB_DEVMODE;
1010
1011 #endif /* NSSCOM */
1012
1013 void
1014 kgdb_port_init(void)
1015 {
1016 #if (NSSCOM > 0)
1017 int unit = -1;
1018 int pclk;
1019
1020 if (strcmp(kgdb_devname, "sscom0") == 0)
1021 unit = 0;
1022 else if (strcmp(kgdb_devname, "sscom1") == 0)
1023 unit = 1;
1024
1025 if (unit >= 0) {
1026 s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
1027
1028 s3c2440_sscom_kgdb_attach(&s3c2xx0_bs_tag,
1029 unit, kgdb_rate, pclk, kgdb_sscom_mode);
1030 }
1031 #endif
1032 }
1033 #endif
1034
1035
1036 static struct arm32_dma_range mini2440_dma_ranges[1];
1037
1038 bus_dma_tag_t
1039 s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template)
1040 {
1041 extern paddr_t physical_start, physical_end;
1042 struct arm32_bus_dma_tag *dmat;
1043
1044 mini2440_dma_ranges[0].dr_sysbase = physical_start;
1045 mini2440_dma_ranges[0].dr_busbase = physical_start;
1046 mini2440_dma_ranges[0].dr_len = physical_end - physical_start;
1047
1048 #if 1
1049 dmat = dma_tag_template;
1050 #else
1051 dmat = malloc(sizeof *dmat, M_DEVBUF, M_NOWAIT);
1052 if (dmat == NULL)
1053 return NULL;
1054 *dmat = *dma_tag_template;
1055 #endif
1056
1057 dmat->_ranges = mini2440_dma_ranges;
1058 dmat->_nranges = 1;
1059
1060 return dmat;
1061 }
1062
1063 void
1064 mini2440_ksyms(struct btinfo_symtab *bi_symtab)
1065 {
1066 #if NKSYMS || defined(DDB) || defined(LKM)
1067 extern int end;
1068
1069 #ifdef DDB
1070 db_machine_init();
1071 #endif
1072 if (bi_symtab == NULL) {
1073 return;
1074 }
1075 #ifdef VERBOSE_INIT_ARM
1076 printf("Got symbol table. nsym=%d, ssym=%p, esym=%p\n",
1077 bi_symtab->nsym,
1078 bi_symtab->ssym,
1079 bi_symtab->esym);
1080 #endif
1081
1082 ksyms_addsyms_elf(bi_symtab->nsym,
1083 (int*)bi_symtab->ssym,
1084 (int*)bi_symtab->esym);
1085 #endif
1086 }
1087
1088 void *
1089 lookup_bootinfo(int type)
1090 {
1091 struct btinfo_common *bt;
1092 struct btinfo_common *help = (struct btinfo_common *)bootinfo;
1093
1094 if (help->next == 0)
1095 return (NULL); /* bootinfo[] was not made */
1096 do {
1097 bt = help;
1098 if (bt->type == type)
1099 return (help);
1100 help = (struct btinfo_common *)((char*)help + bt->next);
1101 } while (bt->next &&
1102 (size_t)help < (size_t)bootinfo + BOOTINFO_MAXSIZE);
1103
1104 return (NULL);
1105 }
1106
1107
1108 extern char *booted_kernel;
1109
1110 static void
1111 mini2440_device_register(device_t dev, void *aux) {
1112 if (device_class(dev) == DV_IFNET) {
1113 #ifndef MEMORY_DISK_IS_ROOT
1114 if (bi_rdev != NULL && device_is_a(dev, bi_rdev->devname) ) {
1115 booted_device = dev;
1116 rootfstype = MOUNT_NFS;
1117 if( bi_path != NULL ) {
1118 booted_kernel = bi_path->bootpath;
1119 }
1120 }
1121 #endif
1122 if (bi_net != NULL && device_is_a(dev, bi_net->devname)) {
1123 prop_data_t pd;
1124 pd = prop_data_create_data_nocopy(bi_net->mac_address, ETHER_ADDR_LEN);
1125 KASSERT(pd != NULL);
1126 if (prop_dictionary_set(device_properties(dev), "mac-address", pd) == false) {
1127 printf("WARNING: Unable to set mac-address property for %s\n", device_xname(dev));
1128 }
1129 prop_object_release(pd);
1130 bi_net = NULL;
1131 }
1132 }
1133 #ifndef MEMORY_DISK_IS_ROOT
1134 if (bi_rdev != NULL && device_class(dev) == DV_DISK
1135 && device_is_a(dev, bi_rdev->devname)
1136 && device_unit(dev) == bi_rdev->cookie) {
1137 booted_device = dev;
1138 booted_partition = bi_rdev->partition;
1139 rootfstype = ROOT_FSTYPE_ANY;
1140 if( bi_path != NULL ) {
1141 booted_kernel = bi_path->bootpath;
1142 }
1143 }
1144 #endif
1145 }
1146