mini2440_machdep.c revision 1.4 1 /*-
2 * Copyright (c) 2012 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Paul Fleischer <paul (at) xpg.dk>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29 /* This file is based on arch/evbarm/smdk2xx0/smdk2410_machdep.c */
30 /*
31 * Copyright (c) 2002, 2003 Fujitsu Component Limited
32 * Copyright (c) 2002, 2003, 2005 Genetec Corporation
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of The Fujitsu Component Limited nor the name of
44 * Genetec corporation may not be used to endorse or promote products
45 * derived from this software without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
48 * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
51 * DISCLAIMED. IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
52 * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
54 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
55 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
56 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
57 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
58 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 */
61 /*
62 * Copyright (c) 2001,2002 ARM Ltd
63 * All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. The name of the company may not be used to endorse or promote
74 * products derived from this software without specific prior written
75 * permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
79 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
80 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD
81 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
82 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
83 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
84 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
85 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
86 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
87 * POSSIBILITY OF SUCH DAMAGE.
88 *
89 */
90
91 /*
92 * Copyright (c) 1997,1998 Mark Brinicombe.
93 * Copyright (c) 1997,1998 Causality Limited.
94 * All rights reserved.
95 *
96 * Redistribution and use in source and binary forms, with or without
97 * modification, are permitted provided that the following conditions
98 * are met:
99 * 1. Redistributions of source code must retain the above copyright
100 * notice, this list of conditions and the following disclaimer.
101 * 2. Redistributions in binary form must reproduce the above copyright
102 * notice, this list of conditions and the following disclaimer in the
103 * documentation and/or other materials provided with the distribution.
104 * 3. All advertising materials mentioning features or use of this software
105 * must display the following acknowledgement:
106 * This product includes software developed by Mark Brinicombe
107 * for the NetBSD Project.
108 * 4. The name of the company nor the name of the author may be used to
109 * endorse or promote products derived from this software without specific
110 * prior written permission.
111 *
112 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
113 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
114 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
115 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
116 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
117 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
118 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
119 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
120 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
121 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
122 * SUCH DAMAGE.
123 *
124 * Machine dependant functions for kernel setup for integrator board
125 *
126 * Created : 24/11/97
127 */
128
129 /*
130 * Machine dependant functions for kernel setup for FriendlyARM MINI2440
131 */
132
133 #include <sys/cdefs.h>
134 __KERNEL_RCSID(0, "$NetBSD: mini2440_machdep.c,v 1.4 2012/07/29 00:07:09 matt Exp $");
135
136 #include "opt_ddb.h"
137 #include "opt_kgdb.h"
138 #include "opt_pmap_debug.h"
139 #include "opt_md.h"
140
141 #include <sys/param.h>
142 #include <sys/device.h>
143 #include <sys/systm.h>
144 #include <sys/kernel.h>
145 #include <sys/exec.h>
146 #include <sys/proc.h>
147 #include <sys/msgbuf.h>
148 #include <sys/reboot.h>
149 #include <sys/termios.h>
150 #include <sys/ksyms.h>
151 #include <sys/mount.h>
152
153 #include <net/if.h>
154 #include <net/if_ether.h>
155 #include <net/if_media.h>
156
157 #include <uvm/uvm_extern.h>
158
159 #include <dev/cons.h>
160 #include <dev/md.h>
161
162 #include <machine/db_machdep.h>
163 #include <ddb/db_sym.h>
164 #include <ddb/db_extern.h>
165 #ifdef KGDB
166 #include <sys/kgdb.h>
167 #endif
168
169 #include <sys/exec_elf.h>
170
171 #include <sys/bus.h>
172 #include <machine/cpu.h>
173 #include <machine/frame.h>
174 #include <machine/intr.h>
175 #include <arm/undefined.h>
176
177 #include <machine/autoconf.h>
178
179 #include <arm/arm32/machdep.h>
180
181 #include <arm/s3c2xx0/s3c2440reg.h>
182 #include <arm/s3c2xx0/s3c2440var.h>
183
184 #include <arch/evbarm/mini2440/mini2440_bootinfo.h>
185
186 #include "ksyms.h"
187
188 #ifndef SDRAM_START
189 #define SDRAM_START S3C2440_SDRAM_START
190 #endif
191 #ifndef SDRAM_SIZE
192 #define SDRAM_SIZE (64*1024*1024) /* 64 Mb */
193 #endif
194
195 /*
196 * Address to map I/O registers in early initialize stage.
197 */
198 #define MINI2440_IO_VBASE 0xfd000000
199
200 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
201 #define KERNEL_OFFSET 0x00200000
202 #define KERNEL_TEXT_BASE (KERNEL_BASE + KERNEL_OFFSET)
203 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
204
205 /*
206 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
207 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
208 */
209 #define KERNEL_VM_SIZE 0x0C000000
210
211 /*
212 * Address to call from cpu_reset() to reset the machine.
213 * This is machine architecture dependant as it varies depending
214 * on where the ROM appears when you turn the MMU off.
215 */
216 u_int cpu_reset_address = (u_int)0;
217
218 /* Define various stack sizes in pages */
219 #define IRQ_STACK_SIZE 1
220 #define ABT_STACK_SIZE 1
221 #define UND_STACK_SIZE 1
222
223 /* Declared extern elsewhere in the kernel */
224 BootConfig bootconfig; /* Boot config storage */
225 char *boot_args = NULL;
226 //char *boot_file = NULL;
227
228 char bootinfo[BOOTINFO_MAXSIZE];
229 struct btinfo_rootdevice *bi_rdev;
230 struct btinfo_net *bi_net;
231 struct btinfo_bootpath *bi_path;
232
233 vm_offset_t physical_start;
234 vm_offset_t physical_freestart;
235 vm_offset_t physical_freeend;
236 vm_offset_t physical_freeend_low;
237 vm_offset_t physical_end;
238 u_int free_pages;
239 vm_offset_t pagetables_start;
240
241 /*int debug_flags;*/
242 #ifndef PMAP_STATIC_L1S
243 int max_processes = 64; /* Default number */
244 #endif /* !PMAP_STATIC_L1S */
245
246 vm_offset_t msgbufphys;
247
248 #ifdef PMAP_DEBUG
249 extern int pmap_debug_level;
250 #endif
251
252 #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
253 #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
254 #define KERNEL_PT_KERNEL_NUM 3 /* L2 tables for mapping kernel VM */
255
256 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
257
258 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
259 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
260
261 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
262
263 struct user *proc0paddr;
264
265 /* Prototypes */
266
267 void consinit(void);
268 void kgdb_port_init(void);
269 static void mini2440_ksyms(struct btinfo_symtab *bi_symtab);
270 static void *lookup_bootinfo(int type);
271 static void mini2440_device_register(device_t dev, void *aux);
272
273
274 #include "com.h"
275 #if NCOM > 0
276 #include <dev/ic/comreg.h>
277 #include <dev/ic/comvar.h>
278 #endif
279
280 #include "sscom.h"
281 #if NSSCOM > 0
282 #include "opt_sscom.h"
283 #include <arm/s3c2xx0/sscom_var.h>
284 #endif
285
286 /*
287 * Define the default console speed for the board. This is generally
288 * what the firmware provided with the board defaults to.
289 */
290 #ifndef CONSPEED
291 #define CONSPEED B115200 /* TTYDEF_SPEED */
292 #endif
293 #ifndef CONMODE
294 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
295 #endif
296
297 int comcnspeed = CONSPEED;
298 int comcnmode = CONMODE;
299
300 /*
301 * void cpu_reboot(int howto, char *bootstr)
302 *
303 * Reboots the system
304 *
305 * Deal with any syncing, unmounting, dumping and shutdown hooks,
306 * then reset the CPU.
307 */
308 void
309 cpu_reboot(int howto, char *bootstr)
310 {
311 #ifdef DIAGNOSTIC
312 /* info */
313 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
314 #endif
315
316 cpu_reset_address = vtophys((u_int)s3c2440_softreset);
317
318 /*
319 * If we are still cold then hit the air brakes
320 * and crash to earth fast
321 */
322 if (cold) {
323 doshutdownhooks();
324 printf("The operating system has halted.\n");
325 printf("Please press any key to reboot.\n\n");
326 cngetc();
327 printf("rebooting...\n");
328 cpu_reset();
329 /* NOTREACHED */
330 }
331 /* Disable console buffering */
332
333 /*
334 * If RB_NOSYNC was not specified sync the discs.
335 * Note: Unless cold is set to 1 here, syslogd will die during the
336 * unmount. It looks like syslogd is getting woken up only to find
337 * that it cannot page part of the binary in as the filesystem has
338 * been unmounted.
339 */
340 if (!(howto & RB_NOSYNC))
341 bootsync();
342
343 /* Say NO to interrupts */
344 splhigh();
345
346 /* Do a dump if requested. */
347 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
348 dumpsys();
349
350 /* Run any shutdown hooks */
351 doshutdownhooks();
352
353 /* Make sure IRQ's are disabled */
354 IRQdisable;
355
356 if (howto & RB_HALT) {
357 printf("The operating system has halted.\n");
358 printf("Please press any key to reboot.\n\n");
359 cngetc();
360 }
361 printf("rebooting...\n");
362 cpu_reset();
363 /* NOTREACHED */
364 }
365
366 /*
367 * Static device mappings. These peripheral registers are mapped at
368 * fixed virtual addresses very early in initarm() so that we can use
369 * them while booting the kernel , and stay at the same address
370 * throughout whole kernel's life time.
371 *
372 * We use this table twice; once with bootstrap page table, and once
373 * with kernel's page table which we build up in initarm().
374 *
375 * Since we map these registers into the bootstrap page table using
376 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
377 * registers segment-aligned and segment-rounded in order to avoid
378 * using the 2nd page tables.
379 */
380
381 #define _A(a) ((a) & ~L1_S_OFFSET)
382 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
383
384 #define _V(n) (MINI2440_IO_VBASE + (n) * L1_S_SIZE)
385
386 #define GPIO_VBASE _V(0)
387 #define INTCTL_VBASE _V(1)
388 #define CLKMAN_VBASE _V(2)
389 #define UART_VBASE _V(3)
390
391 static const struct pmap_devmap mini2440_devmap[] = {
392 /* GPIO registers */
393 {
394 GPIO_VBASE,
395 _A(S3C2440_GPIO_BASE),
396 _S(S3C2440_GPIO_SIZE),
397 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
398 },
399 {
400 INTCTL_VBASE,
401 _A(S3C2440_INTCTL_BASE),
402 _S(S3C2440_INTCTL_SIZE),
403 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
404 },
405 {
406 CLKMAN_VBASE,
407 _A(S3C2440_CLKMAN_BASE),
408 _S(S3C24X0_CLKMAN_SIZE),
409 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
410 },
411 { /* UART registers for UART0, 1, 2. */
412 UART_VBASE,
413 _A(S3C2440_UART0_BASE),
414 _S(S3C2440_UART_BASE(3) - S3C2440_UART0_BASE),
415 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
416 },
417
418 { 0, 0, 0, 0 }
419 };
420
421 #undef _A
422 #undef _S
423
424 static inline pd_entry_t *
425 read_ttb(void)
426 {
427 long ttb;
428
429 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(ttb));
430
431
432 return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
433 }
434
435
436 #define ioreg_write32(a,v) (*(volatile uint32_t *)(a)=(v))
437
438 /*
439 * u_int initarm(...)
440 *
441 * Initial entry point on startup. This gets called before main() is
442 * entered.
443 * It should be responsible for setting up everything that must be
444 * in place when main is called.
445 * This includes
446 * Taking a copy of the boot configuration structure.
447 * Initialising the physical console so characters can be printed.
448 * Setting up page tables for the kernel
449 * Relocating the kernel to the bottom of physical memory
450 */
451
452 u_int
453 initarm(void *arg)
454 {
455 int loop;
456 int loop1;
457 u_int l1pagetable;
458 extern int etext __asm("_etext");
459 extern int end __asm("_end");
460 uint32_t kerneldatasize;
461 struct btinfo_magic *bi_magic = arg;
462 struct btinfo_bootstring *bi_bootstring;
463 struct btinfo_symtab *bi_symtab;
464
465 boothowto = 0;
466
467 /* Copy bootinfo from boot loader into kernel memory where it remains.
468 */
469 if (bi_magic != 0x0 && bi_magic->magic == BOOTINFO_MAGIC) {
470 memcpy(bootinfo, bi_magic, sizeof(bootinfo));
471 } else {
472 memset(bootinfo, 0, sizeof(bootinfo));
473 }
474
475 /* Extract boot_args from bootinfo */
476 bi_bootstring = lookup_bootinfo(BTINFO_BOOTSTRING);
477 if (bi_bootstring ) {
478 printf("Bootloader args are %s\n", bi_bootstring->bootstring);
479 boot_args = bi_bootstring->bootstring;
480 parse_mi_bootargs(boot_args);
481 }
482
483 #define pdatb (*(volatile uint8_t *)(S3C2440_GPIO_BASE+GPIO_PBDAT))
484
485 // 0x1E0 is the mask for GPB5, GPB6, GPB7, and GPB8
486 #define __LED(x) (pdatb = (pdatb & ~0x1e0) | (~(1<<(x+5)) & 0x1e0))
487
488 __LED(0);
489
490 /*
491 * Heads up ... Setup the CPU / MMU / TLB functions
492 */
493 if (set_cpufuncs())
494 panic("cpu not recognized!");
495
496 /*
497 * Map I/O registers that are used in startup. Now we are
498 * still using page table prepared by bootloader. Later we'll
499 * map those registers at the same address in the kernel page
500 * table.
501 */
502 pmap_devmap_bootstrap((vaddr_t)read_ttb(), mini2440_devmap);
503
504 #undef pdatb
505 #define pdatb (*(volatile uint8_t *)(GPIO_VBASE+GPIO_PBDAT))
506
507 /* Disable all peripheral interrupts */
508 ioreg_write32(INTCTL_VBASE + INTCTL_INTMSK, ~0);
509
510 __LED(1);
511
512 /* initialize some variables so that splfoo() doesn't
513 touch illegal address. */
514 s3c2xx0_intr_bootstrap(INTCTL_VBASE);
515
516 __LED(2);
517 consinit();
518 __LED(3);
519
520 /* Extract information from the bootloader configuration */
521 bi_rdev = lookup_bootinfo(BTINFO_ROOTDEVICE);
522 bi_net = lookup_bootinfo(BTINFO_NET);
523 bi_path = lookup_bootinfo(BTINFO_BOOTPATH);
524
525 #ifdef VERBOSE_INIT_ARM
526 printf("consinit done\n");
527 #endif
528
529 #ifdef KGDB
530 kgdb_port_init();
531 #endif
532
533 #ifdef VERBOSE_INIT_ARM
534 /* Talk to the user */
535 printf("\nNetBSD/evbarm (MINI2440) booting ...\n");
536 #endif
537 /*
538 * Ok we have the following memory map
539 *
540 * Physical Address Range Description
541 * ----------------------- ----------------------------------
542 * 0x30000000 - 0x33ffffff SDRAM (64MB)
543 *
544 * Kernel is loaded by bootloader at 0x30200000
545 *
546 * The initarm() has the responsibility for creating the kernel
547 * page tables.
548 * It must also set up various memory pointers that are used
549 * by pmap etc.
550 */
551
552 /* Fake bootconfig structure for the benefit of pmap.c */
553 /* XXX must make the memory description h/w independent */
554 bootconfig.dramblocks = 1;
555 bootconfig.dram[0].address = SDRAM_START;
556 bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE;
557
558 /*
559 * Set up the variables that define the availablilty of
560 * physical memory.
561 * We use the 2MB between the physical start and the kernel to
562 * begin with. Allocating from 0x30200000 and downwards
563 * If we get too close to the bottom of SDRAM, we
564 * will panic. We will update physical_freestart and
565 * physical_freeend later to reflect what pmap_bootstrap()
566 * wants to see.
567 *
568 * XXX pmap_bootstrap() needs an enema.
569 */
570 physical_start = bootconfig.dram[0].address;
571 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
572
573 physical_freestart = SDRAM_START; /* XXX */
574 physical_freeend = SDRAM_START + KERNEL_OFFSET;
575
576 physmem = (physical_end - physical_start) / PAGE_SIZE;
577
578 #ifdef VERBOSE_INIT_ARM
579 /* Tell the user about the memory */
580 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
581 physical_start, physical_end - 1);
582 printf("phys_end: 0x%08lx\n", physical_end);
583 #endif
584
585 /*
586 * XXX
587 * Okay, the kernel starts 2MB in from the bottom of physical
588 * memory. We are going to allocate our bootstrap pages downwards
589 * from there.
590 *
591 * We need to allocate some fixed page tables to get the kernel
592 * going. We allocate one page directory and a number of page
593 * tables and store the physical addresses in the kernel_pt_table
594 * array.
595 *
596 * The kernel page directory must be on a 16K boundary. The page
597 * tables must be on 4K boundaries. What we do is allocate the
598 * page directory on the first 16K boundary that we encounter, and
599 * the page tables on 4K boundaries otherwise. Since we allocate
600 * at least 3 L2 page tables, we are guaranteed to encounter at
601 * least one 16K aligned region.
602 */
603
604 #ifdef VERBOSE_INIT_ARM
605 printf("Allocating page tables\n");
606 #endif
607
608 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
609
610 #ifdef VERBOSE_INIT_ARM
611 printf("freestart = 0x%08lx, free_pages = %d (0x%08x), freeend = 0x%08lx\n",
612 physical_freestart, free_pages, free_pages, physical_freeend);
613 #endif
614
615 /* Define a macro to simplify memory allocation */
616 #define valloc_pages(var, np) \
617 alloc_pages((var).pv_pa, (np)); \
618 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
619
620 #define alloc_pages(var, np) \
621 physical_freeend -= ((np) * PAGE_SIZE); \
622 if (physical_freeend < physical_freestart) \
623 panic("initarm: out of memory"); \
624 (var) = physical_freeend; \
625 free_pages -= (np); \
626 memset((char *)(var), 0, ((np) * PAGE_SIZE));
627
628 loop1 = 0;
629 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
630 /* Are we 16KB aligned for an L1 ? */
631 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
632 && kernel_l1pt.pv_pa == 0) {
633 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
634 } else {
635 valloc_pages(kernel_pt_table[loop1],
636 L2_TABLE_SIZE / PAGE_SIZE);
637 ++loop1;
638 }
639 }
640
641 /* This should never be able to happen but better confirm that. */
642 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
643 panic("initarm: Failed to align the kernel page directory\n");
644
645 /*
646 * Allocate a page for the system page mapped to V0x00000000
647 * This page will just contain the system vectors and can be
648 * shared by all processes.
649 */
650 alloc_pages(systempage.pv_pa, 1);
651
652 /* Allocate stacks for all modes */
653 valloc_pages(irqstack, IRQ_STACK_SIZE);
654 valloc_pages(abtstack, ABT_STACK_SIZE);
655 valloc_pages(undstack, UND_STACK_SIZE);
656 valloc_pages(kernelstack, UPAGES);
657
658 #ifdef VERBOSE_INIT_ARM
659 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
660 irqstack.pv_va);
661 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
662 abtstack.pv_va);
663 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
664 undstack.pv_va);
665 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
666 kernelstack.pv_va);
667 printf("Free memory in bootstrap region: %ld bytes\n", physical_freeend - physical_freestart);
668 #endif
669
670 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
671
672 physical_freeend_low = physical_freeend;
673
674 /*
675 * Ok we have allocated physical pages for the primary kernel
676 * page tables
677 */
678
679 #ifdef VERBOSE_INIT_ARM
680 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
681 #endif
682
683 /*
684 * Now we start construction of the L1 page table
685 * We start by mapping the L2 page tables into the L1.
686 * This means that we can replace L1 mappings later on if necessary
687 */
688 l1pagetable = kernel_l1pt.pv_pa;
689
690 /* Map the L2 pages tables in the L1 page table */
691 pmap_link_l2pt(l1pagetable, 0x00000000,
692 &kernel_pt_table[KERNEL_PT_SYS]);
693 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
694 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
695 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
696 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
697 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
698 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
699
700 /* update the top of the kernel VM */
701 pmap_curmaxkvaddr =
702 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
703
704 #ifdef VERBOSE_INIT_ARM
705 printf("Mapping kernel\n");
706 #endif
707
708 /* Now we fill in the L2 pagetable for the kernel static code/data */
709 {
710 /* Total size must include symbol table, if it exists.
711 The size of the symbol table can be acquired from the ELF
712 header, to which a pointer is passed in the boot info (ssym).
713 */
714 size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE;
715 kerneldatasize = (uintptr_t)&end - KERNEL_TEXT_BASE;
716 u_int logical;
717
718 bi_symtab = lookup_bootinfo(BTINFO_SYMTAB);
719
720 if (bi_symtab) {
721 Elf_Ehdr *elfHeader;
722 Elf_Shdr *sectionHeader;
723 int nsection;
724 int sz = 0;
725
726 elfHeader = bi_symtab->ssym;
727
728 #ifdef VERBOSE_INIT_ARM
729 printf("Symbol table information provided by bootloader\n");
730 printf("ELF header is at %p\n", elfHeader);
731 #endif
732 sectionHeader = (Elf_Shdr*)((char*)(bi_symtab->ssym) +
733 (elfHeader->e_shoff));
734 nsection = elfHeader->e_shnum;
735 #ifdef VERBOSE_INIT_ARM
736 printf("Number of sections: %d\n", nsection);
737 #endif
738 for(; nsection > 0; nsection--, sectionHeader++) {
739 if (sectionHeader->sh_offset > 0 &&
740 (sectionHeader->sh_offset + sectionHeader->sh_size) > sz)
741 sz = sectionHeader->sh_offset + sectionHeader->sh_size;
742 }
743 #ifdef VERBOSE_INIT_ARM
744 printf("Max size of sections: %d\n", sz);
745 #endif
746 kerneldatasize += sz;
747 }
748
749 #ifdef VERBOSE_INIT_ARM
750 printf("Textsize: %u, kerneldatasize: %u\n", (uint)textsize,
751 (uint)kerneldatasize);
752 printf("&etext: 0x%x\n", (uint)&etext);
753 printf("&end: 0x%x\n", (uint)&end);
754 printf("KERNEL_TEXT_BASE: 0x%x\n", KERNEL_TEXT_BASE);
755 #endif
756
757 textsize = (textsize + PGOFSET) & ~PGOFSET;
758 kerneldatasize = (kerneldatasize + PGOFSET) & ~PGOFSET;
759
760 logical = KERNEL_OFFSET; /* offset of kernel in RAM */
761
762 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
763 physical_start + logical, textsize,
764 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
765 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
766 physical_start + logical, kerneldatasize - textsize,
767 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
768 }
769
770 #ifdef VERBOSE_INIT_ARM
771 printf("Constructing L2 page tables\n");
772 #endif
773
774 /* Map the stack pages */
775 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
776 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
777 PTE_CACHE);
778 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
779 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
780 PTE_CACHE);
781 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
782 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
783 PTE_CACHE);
784 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
785 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
786
787 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
788 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
789
790 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
791 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
792 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
793 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
794 }
795
796 /* Map the vector page. */
797 #if 0
798 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
799 * cache-clean code there. */
800 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
801 VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
802 #else
803 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
804 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
805 #endif
806
807 /*
808 * map integrated peripherals at same address in l1pagetable
809 * so that we can continue to use console.
810 */
811 pmap_devmap_bootstrap(l1pagetable, mini2440_devmap);
812
813 /*
814 * Now we have the real page tables in place so we can switch to them.
815 * Once this is done we will be running with the REAL kernel page
816 * tables.
817 */
818 /*
819 * Update the physical_freestart/physical_freeend/free_pages
820 * variables.
821 */
822 physical_freestart = physical_start +
823 (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize;
824 physical_freeend = physical_end;
825 free_pages =
826 (physical_freeend - physical_freestart) / PAGE_SIZE;
827
828 /* Switch tables */
829 #ifdef VERBOSE_INIT_ARM
830 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
831 physical_freestart, free_pages, free_pages);
832 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
833 #endif
834 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
835 cpu_setttb(kernel_l1pt.pv_pa);
836 cpu_tlb_flushID();
837 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
838
839 /*
840 * Moved from cpu_startup() as data_abort_handler() references
841 * this during uvm init
842 */
843 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
844
845 #ifdef VERBOSE_INIT_ARM
846 printf("done!\n");
847 #endif
848
849 #ifdef VERBOSE_INIT_ARM
850 printf("bootstrap done.\n");
851 #endif
852
853 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
854
855 /*
856 * Pages were allocated during the secondary bootstrap for the
857 * stacks for different CPU modes.
858 * We must now set the r13 registers in the different CPU modes to
859 * point to these stacks.
860 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
861 * of the stack memory.
862 */
863 #ifdef VERBOSE_INIT_ARM
864 printf("init subsystems: stacks ");
865 #endif
866
867 set_stackptr(PSR_IRQ32_MODE,
868 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
869 set_stackptr(PSR_ABT32_MODE,
870 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
871 set_stackptr(PSR_UND32_MODE,
872 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
873
874 cpu_idcache_wbinv_all();
875
876 /*
877 * Well we should set a data abort handler.
878 * Once things get going this will change as we will need a proper
879 * handler.
880 * Until then we will use a handler that just panics but tells us
881 * why.
882 * Initialisation of the vectors will just panic on a data abort.
883 * This just fills in a slightly better one.
884 */
885 #ifdef VERBOSE_INIT_ARM
886 printf("vectors ");
887 #endif
888 data_abort_handler_address = (u_int)data_abort_handler;
889 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
890 undefined_handler_address = (u_int)undefinedinstruction_bounce;
891
892 /* Initialise the undefined instruction handlers */
893 #ifdef VERBOSE_INIT_ARM
894 printf("undefined ");
895 #endif
896 undefined_init();
897
898 /* Load memory into UVM. */
899 #ifdef VERBOSE_INIT_ARM
900 printf("page ");
901 #endif
902 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
903 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
904 atop(physical_freestart), atop(physical_freeend),
905 VM_FREELIST_DEFAULT);
906 uvm_page_physload(atop(SDRAM_START), atop(physical_freeend_low),
907 atop(SDRAM_START), atop(physical_freeend_low),
908 VM_FREELIST_DEFAULT);
909
910
911 /* Boot strap pmap telling it where the kernel page table is */
912 #ifdef VERBOSE_INIT_ARM
913 printf("pmap ");
914 #endif
915 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
916
917 #ifdef VERBOSE_INIT_ARM
918 printf("done.\n");
919 #endif
920
921 #ifdef BOOTHOWTO
922 boothowto |= BOOTHOWTO;
923 #endif
924
925 #ifdef KGDB
926 if (boothowto & RB_KDB) {
927 kgdb_debug_init = 1;
928 kgdb_connect(1);
929 }
930 #endif
931
932 mini2440_ksyms(bi_symtab);
933
934 #ifdef DDB
935 /*db_machine_init();*/
936 if (boothowto & RB_KDB)
937 Debugger();
938 #endif
939
940 evbarm_device_register = mini2440_device_register;
941
942 /* We return the new stack pointer address */
943 return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
944 }
945
946 void
947 consinit(void)
948 {
949 static int consinit_done = 0;
950 #if defined(SSCOM0CONSOLE) || defined(SSCOM1CONSOLE)
951 bus_space_tag_t iot = &s3c2xx0_bs_tag;
952 #endif
953 int pclk;
954
955 if (consinit_done != 0)
956 return;
957
958 consinit_done = 1;
959
960 s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
961
962 #if NSSCOM > 0
963 #ifdef SSCOM0CONSOLE
964 if (0 == s3c2440_sscom_cnattach(iot, 0, comcnspeed,
965 pclk, comcnmode))
966 return;
967 #endif
968 #ifdef SSCOM1CONSOLE
969 if (0 == s3c2440_sscom_cnattach(iot, 1, comcnspeed,
970 pclk, comcnmode))
971 return;
972 #endif
973 #endif /* NSSCOM */
974 #if NCOM>0 && defined(CONCOMADDR)
975 if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
976 COM_FREQ, COM_TYPE_NORMAL, comcnmode))
977 panic("can't init serial console @%x", CONCOMADDR);
978 return;
979 #endif
980
981 consinit_done = 0;
982 }
983
984
985 #ifdef KGDB
986
987 #if (NSSCOM > 0)
988
989 #ifdef KGDB_DEVNAME
990 const char kgdb_devname[] = KGDB_DEVNAME;
991 #else
992 const char kgdb_devname[] = "";
993 #endif
994
995 #ifndef KGDB_DEVMODE
996 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */
997 #endif
998 int kgdb_sscom_mode = KGDB_DEVMODE;
999
1000 #endif /* NSSCOM */
1001
1002 void
1003 kgdb_port_init(void)
1004 {
1005 #if (NSSCOM > 0)
1006 int unit = -1;
1007 int pclk;
1008
1009 if (strcmp(kgdb_devname, "sscom0") == 0)
1010 unit = 0;
1011 else if (strcmp(kgdb_devname, "sscom1") == 0)
1012 unit = 1;
1013
1014 if (unit >= 0) {
1015 s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
1016
1017 s3c2440_sscom_kgdb_attach(&s3c2xx0_bs_tag,
1018 unit, kgdb_rate, pclk, kgdb_sscom_mode);
1019 }
1020 #endif
1021 }
1022 #endif
1023
1024
1025 static struct arm32_dma_range mini2440_dma_ranges[1];
1026
1027 bus_dma_tag_t
1028 s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template)
1029 {
1030 extern paddr_t physical_start, physical_end;
1031 struct arm32_bus_dma_tag *dmat;
1032
1033 mini2440_dma_ranges[0].dr_sysbase = physical_start;
1034 mini2440_dma_ranges[0].dr_busbase = physical_start;
1035 mini2440_dma_ranges[0].dr_len = physical_end - physical_start;
1036
1037 #if 1
1038 dmat = dma_tag_template;
1039 #else
1040 dmat = malloc(sizeof *dmat, M_DEVBUF, M_NOWAIT);
1041 if (dmat == NULL)
1042 return NULL;
1043 *dmat = *dma_tag_template;
1044 #endif
1045
1046 dmat->_ranges = mini2440_dma_ranges;
1047 dmat->_nranges = 1;
1048
1049 return dmat;
1050 }
1051
1052 void
1053 mini2440_ksyms(struct btinfo_symtab *bi_symtab)
1054 {
1055 #if NKSYMS || defined(DDB) || defined(LKM)
1056 extern int end;
1057
1058 #ifdef DDB
1059 db_machine_init();
1060 #endif
1061 if (bi_symtab == NULL) {
1062 return;
1063 }
1064 #ifdef VERBOSE_INIT_ARM
1065 printf("Got symbol table. nsym=%d, ssym=%p, esym=%p\n",
1066 bi_symtab->nsym,
1067 bi_symtab->ssym,
1068 bi_symtab->esym);
1069 #endif
1070
1071 ksyms_addsyms_elf(bi_symtab->nsym,
1072 (int*)bi_symtab->ssym,
1073 (int*)bi_symtab->esym);
1074 #endif
1075 }
1076
1077 void *
1078 lookup_bootinfo(int type)
1079 {
1080 struct btinfo_common *bt;
1081 struct btinfo_common *help = (struct btinfo_common *)bootinfo;
1082
1083 if (help->next == 0)
1084 return (NULL); /* bootinfo[] was not made */
1085 do {
1086 bt = help;
1087 if (bt->type == type)
1088 return (help);
1089 help = (struct btinfo_common *)((char*)help + bt->next);
1090 } while (bt->next &&
1091 (size_t)help < (size_t)bootinfo + BOOTINFO_MAXSIZE);
1092
1093 return (NULL);
1094 }
1095
1096
1097 extern char *booted_kernel;
1098
1099 static void
1100 mini2440_device_register(device_t dev, void *aux) {
1101 if (device_class(dev) == DV_IFNET) {
1102 #ifndef MEMORY_DISK_IS_ROOT
1103 if (bi_rdev != NULL && device_is_a(dev, bi_rdev->devname) ) {
1104 booted_device = dev;
1105 rootfstype = MOUNT_NFS;
1106 if( bi_path != NULL ) {
1107 booted_kernel = bi_path->bootpath;
1108 }
1109 }
1110 #endif
1111 if (bi_net != NULL && device_is_a(dev, bi_net->devname)) {
1112 prop_data_t pd;
1113 pd = prop_data_create_data_nocopy(bi_net->mac_address, ETHER_ADDR_LEN);
1114 KASSERT(pd != NULL);
1115 if (prop_dictionary_set(device_properties(dev), "mac-address", pd) == false) {
1116 printf("WARNING: Unable to set mac-address property for %s\n", device_xname(dev));
1117 }
1118 prop_object_release(pd);
1119 bi_net = NULL;
1120 }
1121 }
1122 #ifndef MEMORY_DISK_IS_ROOT
1123 if (bi_rdev != NULL && device_class(dev) == DV_DISK
1124 && device_is_a(dev, bi_rdev->devname)
1125 && device_unit(dev) == bi_rdev->cookie) {
1126 booted_device = dev;
1127 booted_partition = bi_rdev->partition;
1128 rootfstype = ROOT_FSTYPE_ANY;
1129 if( bi_path != NULL ) {
1130 booted_kernel = bi_path->bootpath;
1131 }
1132 }
1133 #endif
1134 }
1135