netwalker_machdep.c revision 1.5 1 1.5 dyoung /* $NetBSD: netwalker_machdep.c,v 1.5 2011/07/01 20:42:37 dyoung Exp $ */
2 1.1 bsh
3 1.1 bsh /*
4 1.1 bsh * Copyright (c) 2002, 2003, 2005, 2010 Genetec Corporation.
5 1.1 bsh * All rights reserved.
6 1.1 bsh * Written by Hiroyuki Bessho for Genetec Corporation.
7 1.1 bsh *
8 1.1 bsh * Redistribution and use in source and binary forms, with or without
9 1.1 bsh * modification, are permitted provided that the following conditions
10 1.1 bsh * are met:
11 1.1 bsh * 1. Redistributions of source code must retain the above copyright
12 1.1 bsh * notice, this list of conditions and the following disclaimer.
13 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 bsh * notice, this list of conditions and the following disclaimer in the
15 1.1 bsh * documentation and/or other materials provided with the distribution.
16 1.1 bsh *
17 1.1 bsh * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
18 1.1 bsh * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 1.1 bsh * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 1.1 bsh * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
21 1.1 bsh * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 1.1 bsh * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 1.1 bsh * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 1.1 bsh * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 1.1 bsh * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 1.1 bsh * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 1.1 bsh * POSSIBILITY OF SUCH DAMAGE.
28 1.1 bsh *
29 1.4 wiz * Machine dependent functions for kernel setup for Sharp Netwalker.
30 1.1 bsh * Based on iq80310_machhdep.c
31 1.1 bsh */
32 1.1 bsh /*
33 1.1 bsh * Copyright (c) 2001 Wasabi Systems, Inc.
34 1.1 bsh * All rights reserved.
35 1.1 bsh *
36 1.1 bsh * Written by Jason R. Thorpe for Wasabi Systems, Inc.
37 1.1 bsh *
38 1.1 bsh * Redistribution and use in source and binary forms, with or without
39 1.1 bsh * modification, are permitted provided that the following conditions
40 1.1 bsh * are met:
41 1.1 bsh * 1. Redistributions of source code must retain the above copyright
42 1.1 bsh * notice, this list of conditions and the following disclaimer.
43 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright
44 1.1 bsh * notice, this list of conditions and the following disclaimer in the
45 1.1 bsh * documentation and/or other materials provided with the distribution.
46 1.1 bsh * 3. All advertising materials mentioning features or use of this software
47 1.1 bsh * must display the following acknowledgement:
48 1.1 bsh * This product includes software developed for the NetBSD Project by
49 1.1 bsh * Wasabi Systems, Inc.
50 1.1 bsh * 4. The name of Wasabi Systems, Inc. may not be used to endorse
51 1.1 bsh * or promote products derived from this software without specific prior
52 1.1 bsh * written permission.
53 1.1 bsh *
54 1.1 bsh * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
55 1.1 bsh * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 1.1 bsh * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57 1.1 bsh * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
58 1.1 bsh * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 1.1 bsh * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 1.1 bsh * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 1.1 bsh * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 1.1 bsh * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 1.1 bsh * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64 1.1 bsh * POSSIBILITY OF SUCH DAMAGE.
65 1.1 bsh */
66 1.1 bsh
67 1.1 bsh /*
68 1.1 bsh * Copyright (c) 1997,1998 Mark Brinicombe.
69 1.1 bsh * Copyright (c) 1997,1998 Causality Limited.
70 1.1 bsh * All rights reserved.
71 1.1 bsh *
72 1.1 bsh * Redistribution and use in source and binary forms, with or without
73 1.1 bsh * modification, are permitted provided that the following conditions
74 1.1 bsh * are met:
75 1.1 bsh * 1. Redistributions of source code must retain the above copyright
76 1.1 bsh * notice, this list of conditions and the following disclaimer.
77 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright
78 1.1 bsh * notice, this list of conditions and the following disclaimer in the
79 1.1 bsh * documentation and/or other materials provided with the distribution.
80 1.1 bsh * 3. All advertising materials mentioning features or use of this software
81 1.1 bsh * must display the following acknowledgement:
82 1.1 bsh * This product includes software developed by Mark Brinicombe
83 1.1 bsh * for the NetBSD Project.
84 1.1 bsh * 4. The name of the company nor the name of the author may be used to
85 1.1 bsh * endorse or promote products derived from this software without specific
86 1.1 bsh * prior written permission.
87 1.1 bsh *
88 1.1 bsh * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
89 1.1 bsh * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
90 1.1 bsh * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91 1.1 bsh * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
92 1.1 bsh * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
93 1.1 bsh * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
94 1.1 bsh * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
95 1.1 bsh * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
96 1.1 bsh * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
97 1.1 bsh * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
98 1.1 bsh * SUCH DAMAGE.
99 1.1 bsh *
100 1.4 wiz * Machine dependent functions for kernel setup for Intel IQ80310 evaluation
101 1.1 bsh * boards using RedBoot firmware.
102 1.1 bsh */
103 1.1 bsh
104 1.1 bsh #include <sys/cdefs.h>
105 1.5 dyoung __KERNEL_RCSID(0, "$NetBSD: netwalker_machdep.c,v 1.5 2011/07/01 20:42:37 dyoung Exp $");
106 1.1 bsh
107 1.1 bsh #include "opt_ddb.h"
108 1.1 bsh #include "opt_kgdb.h"
109 1.1 bsh #include "opt_ipkdb.h"
110 1.1 bsh #include "opt_pmap_debug.h"
111 1.1 bsh #include "opt_md.h"
112 1.1 bsh #include "opt_com.h"
113 1.1 bsh #include "imxuart.h"
114 1.1 bsh #include "opt_imxuart.h"
115 1.1 bsh #include "opt_imx.h"
116 1.1 bsh
117 1.1 bsh #include <sys/param.h>
118 1.1 bsh #include <sys/device.h>
119 1.1 bsh #include <sys/systm.h>
120 1.1 bsh #include <sys/kernel.h>
121 1.1 bsh #include <sys/exec.h>
122 1.1 bsh #include <sys/proc.h>
123 1.1 bsh #include <sys/msgbuf.h>
124 1.1 bsh #include <sys/reboot.h>
125 1.1 bsh #include <sys/termios.h>
126 1.1 bsh #include <sys/ksyms.h>
127 1.1 bsh
128 1.1 bsh #include <uvm/uvm_extern.h>
129 1.1 bsh
130 1.1 bsh #include <sys/conf.h>
131 1.1 bsh #include <dev/cons.h>
132 1.1 bsh #include <dev/md.h>
133 1.1 bsh
134 1.1 bsh #include <machine/db_machdep.h>
135 1.1 bsh #include <ddb/db_sym.h>
136 1.1 bsh #include <ddb/db_extern.h>
137 1.1 bsh #ifdef KGDB
138 1.1 bsh #include <sys/kgdb.h>
139 1.1 bsh #endif
140 1.1 bsh
141 1.1 bsh #include <machine/bootconfig.h>
142 1.5 dyoung #include <sys/bus.h>
143 1.1 bsh #include <machine/cpu.h>
144 1.1 bsh #include <machine/frame.h>
145 1.1 bsh #include <arm/undefined.h>
146 1.1 bsh
147 1.1 bsh #include <arm/arm32/pte.h>
148 1.1 bsh #include <arm/arm32/machdep.h>
149 1.1 bsh
150 1.1 bsh #include <arm/imx/imx51reg.h>
151 1.1 bsh #include <arm/imx/imx51var.h>
152 1.1 bsh #include <arm/imx/imxgpioreg.h>
153 1.1 bsh #include <arm/imx/imxwdogreg.h>
154 1.1 bsh #include <arm/imx/imxuartreg.h>
155 1.1 bsh #include <arm/imx/imxuartvar.h>
156 1.1 bsh #include <arm/imx/imx51_iomuxreg.h>
157 1.1 bsh #include <evbarm/netwalker/netwalker_reg.h>
158 1.1 bsh
159 1.1 bsh /* Kernel text starts 1MB in from the bottom of the kernel address space. */
160 1.1 bsh #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00100000)
161 1.1 bsh #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
162 1.1 bsh
163 1.1 bsh /*
164 1.1 bsh * The range 0xc1000000 - 0xccffffff is available for kernel VM space
165 1.1 bsh * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
166 1.1 bsh */
167 1.1 bsh #define KERNEL_VM_SIZE 0x0C000000
168 1.1 bsh
169 1.1 bsh
170 1.1 bsh /*
171 1.1 bsh * Address to call from cpu_reset() to reset the machine.
172 1.4 wiz * This is machine architecture dependent as it varies depending
173 1.1 bsh * on where the ROM appears when you turn the MMU off.
174 1.1 bsh */
175 1.1 bsh
176 1.1 bsh u_int cpu_reset_address = 0;
177 1.1 bsh
178 1.1 bsh /* Define various stack sizes in pages */
179 1.1 bsh #define FIQ_STACK_SIZE 1
180 1.1 bsh #define IRQ_STACK_SIZE 1
181 1.1 bsh #define ABT_STACK_SIZE 1
182 1.1 bsh #ifdef IPKDB
183 1.1 bsh #define UND_STACK_SIZE 2
184 1.1 bsh #else
185 1.1 bsh #define UND_STACK_SIZE 1
186 1.1 bsh #endif
187 1.1 bsh
188 1.1 bsh BootConfig bootconfig; /* Boot config storage */
189 1.1 bsh char *boot_args = NULL;
190 1.1 bsh char *boot_file = NULL;
191 1.1 bsh
192 1.1 bsh vm_offset_t physical_start;
193 1.1 bsh vm_offset_t physical_freestart;
194 1.1 bsh vm_offset_t physical_freeend;
195 1.1 bsh vm_offset_t physical_end;
196 1.1 bsh u_int free_pages;
197 1.1 bsh vm_offset_t pagetables_start;
198 1.1 bsh
199 1.1 bsh /*int debug_flags;*/
200 1.1 bsh #ifndef PMAP_STATIC_L1S
201 1.1 bsh int max_processes = 64; /* Default number */
202 1.1 bsh #endif /* !PMAP_STATIC_L1S */
203 1.1 bsh
204 1.1 bsh /* Physical and virtual addresses for some global pages */
205 1.1 bsh pv_addr_t fiqstack;
206 1.1 bsh pv_addr_t irqstack;
207 1.1 bsh pv_addr_t undstack;
208 1.1 bsh pv_addr_t abtstack;
209 1.1 bsh pv_addr_t kernelstack;
210 1.1 bsh
211 1.1 bsh vm_offset_t msgbufphys;
212 1.1 bsh
213 1.1 bsh extern u_int data_abort_handler_address;
214 1.1 bsh extern u_int prefetch_abort_handler_address;
215 1.1 bsh extern u_int undefined_handler_address;
216 1.1 bsh extern char KERNEL_BASE_phys[];
217 1.1 bsh extern char KERNEL_BASE_virt[];
218 1.1 bsh extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[];
219 1.1 bsh extern char _end[];
220 1.1 bsh extern int cpu_do_powersave;
221 1.1 bsh
222 1.1 bsh #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
223 1.1 bsh #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
224 1.1 bsh #define KERNEL_PT_KERNEL_NUM 4
225 1.1 bsh #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
226 1.1 bsh /* Page tables for mapping kernel VM */
227 1.1 bsh #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
228 1.1 bsh #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
229 1.1 bsh
230 1.1 bsh pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
231 1.1 bsh
232 1.1 bsh /*
233 1.1 bsh * Macros to translate between physical and virtual for a subset of the
234 1.1 bsh * kernel address space. *Not* for general use.
235 1.1 bsh */
236 1.1 bsh #define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys)
237 1.1 bsh #define KERNEL_BASE_VIRT ((vaddr_t)&KERNEL_BASE_virt)
238 1.1 bsh #define KERN_VTOPHYS(va) \
239 1.1 bsh ((paddr_t)((vaddr_t)va - KERNEL_BASE_VIRT + KERNEL_BASE_PHYS))
240 1.1 bsh #define KERN_PHYSTOV(pa) \
241 1.1 bsh ((vaddr_t)((paddr_t)pa - KERNEL_BASE_PHYS + KERNEL_BASE_VIRT))
242 1.1 bsh
243 1.1 bsh
244 1.1 bsh /* Prototypes */
245 1.1 bsh
246 1.1 bsh void consinit(void);
247 1.1 bsh #if 0
248 1.1 bsh void process_kernel_args(char *);
249 1.1 bsh #endif
250 1.1 bsh
251 1.1 bsh #ifdef KGDB
252 1.1 bsh void kgdb_port_init(void);
253 1.1 bsh #endif
254 1.1 bsh void change_clock(uint32_t v);
255 1.1 bsh
256 1.1 bsh static void init_clocks(void);
257 1.1 bsh static void setup_ioports(void);
258 1.1 bsh #ifdef DEBUG_IOPORTS
259 1.1 bsh void dump_registers(void);
260 1.1 bsh #endif
261 1.1 bsh
262 1.1 bsh bs_protos(bs_notimpl);
263 1.1 bsh
264 1.1 bsh #ifndef CONSPEED
265 1.1 bsh #define CONSPEED B115200 /* What RedBoot uses */
266 1.1 bsh #endif
267 1.1 bsh #ifndef CONMODE
268 1.1 bsh #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
269 1.1 bsh #endif
270 1.1 bsh
271 1.1 bsh int comcnspeed = CONSPEED;
272 1.1 bsh int comcnmode = CONMODE;
273 1.1 bsh
274 1.1 bsh /*
275 1.1 bsh * void cpu_reboot(int howto, char *bootstr)
276 1.1 bsh *
277 1.1 bsh * Reboots the system
278 1.1 bsh *
279 1.1 bsh * Deal with any syncing, unmounting, dumping and shutdown hooks,
280 1.1 bsh * then reset the CPU.
281 1.1 bsh */
282 1.1 bsh void
283 1.1 bsh cpu_reboot(int howto, char *bootstr)
284 1.1 bsh {
285 1.1 bsh #ifdef DIAGNOSTIC
286 1.1 bsh /* info */
287 1.1 bsh printf("boot: howto=%08x curproc=%p\n", howto, curproc);
288 1.1 bsh #endif
289 1.1 bsh
290 1.1 bsh /*
291 1.1 bsh * If we are still cold then hit the air brakes
292 1.1 bsh * and crash to earth fast
293 1.1 bsh */
294 1.1 bsh if (cold) {
295 1.1 bsh doshutdownhooks();
296 1.1 bsh pmf_system_shutdown(boothowto);
297 1.1 bsh printf("The operating system has halted.\n");
298 1.1 bsh printf("Please press any key to reboot.\n\n");
299 1.1 bsh cngetc();
300 1.1 bsh printf("rebooting...\n");
301 1.1 bsh cpu_reset();
302 1.1 bsh /*NOTREACHED*/
303 1.1 bsh }
304 1.1 bsh
305 1.1 bsh /* Disable console buffering */
306 1.1 bsh /* cnpollc(1);*/
307 1.1 bsh
308 1.1 bsh /*
309 1.1 bsh * If RB_NOSYNC was not specified sync the discs.
310 1.1 bsh * Note: Unless cold is set to 1 here, syslogd will die during the
311 1.1 bsh * unmount. It looks like syslogd is getting woken up only to find
312 1.1 bsh * that it cannot page part of the binary in as the filesystem has
313 1.1 bsh * been unmounted.
314 1.1 bsh */
315 1.1 bsh if (!(howto & RB_NOSYNC))
316 1.1 bsh bootsync();
317 1.1 bsh
318 1.1 bsh /* Say NO to interrupts */
319 1.1 bsh splhigh();
320 1.1 bsh
321 1.1 bsh /* Do a dump if requested. */
322 1.1 bsh if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
323 1.1 bsh dumpsys();
324 1.1 bsh
325 1.1 bsh /* Run any shutdown hooks */
326 1.1 bsh doshutdownhooks();
327 1.1 bsh
328 1.1 bsh pmf_system_shutdown(boothowto);
329 1.1 bsh
330 1.1 bsh /* Make sure IRQ's are disabled */
331 1.1 bsh IRQdisable;
332 1.1 bsh
333 1.1 bsh if (howto & RB_HALT) {
334 1.1 bsh printf("The operating system has halted.\n");
335 1.1 bsh printf("Please press any key to reboot.\n\n");
336 1.1 bsh cngetc();
337 1.1 bsh }
338 1.1 bsh
339 1.1 bsh printf("rebooting...\n");
340 1.1 bsh cpu_reset();
341 1.1 bsh /*NOTREACHED*/
342 1.1 bsh }
343 1.1 bsh
344 1.1 bsh /*
345 1.1 bsh * Static device mappings. These peripheral registers are mapped at
346 1.1 bsh * fixed virtual addresses very early in netwalker_start() so that we
347 1.1 bsh * can use them while booting the kernel, and stay at the same address
348 1.1 bsh * throughout whole kernel's life time.
349 1.1 bsh *
350 1.1 bsh * We use this table twice; once with bootstrap page table, and once
351 1.1 bsh * with kernel's page table which we build up in initarm().
352 1.1 bsh */
353 1.1 bsh
354 1.1 bsh #define _A(a) ((a) & ~L1_S_OFFSET)
355 1.1 bsh #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
356 1.1 bsh
357 1.1 bsh static const struct pmap_devmap netwalker_devmap[] = {
358 1.1 bsh {
359 1.1 bsh /* for UART1, IOMUXC */
360 1.1 bsh NETWALKER_IO_VBASE0,
361 1.1 bsh _A(NETWALKER_IO_PBASE0),
362 1.1 bsh L1_S_SIZE * 4,
363 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE
364 1.1 bsh },
365 1.1 bsh {0, 0, 0, 0, 0 }
366 1.1 bsh };
367 1.1 bsh
368 1.1 bsh #ifndef MEMSTART
369 1.1 bsh #define MEMSTART 0x90000000
370 1.1 bsh #endif
371 1.1 bsh #ifndef MEMSIZE
372 1.1 bsh #define MEMSIZE 512
373 1.1 bsh #endif
374 1.1 bsh
375 1.1 bsh /*
376 1.1 bsh * u_int initarm(...)
377 1.1 bsh *
378 1.1 bsh * Initial entry point on startup. This gets called before main() is
379 1.1 bsh * entered.
380 1.1 bsh * It should be responsible for setting up everything that must be
381 1.1 bsh * in place when main is called.
382 1.1 bsh * This includes
383 1.1 bsh * Taking a copy of the boot configuration structure.
384 1.1 bsh * Initialising the physical console so characters can be printed.
385 1.1 bsh * Setting up page tables for the kernel
386 1.1 bsh * Relocating the kernel to the bottom of physical memory
387 1.1 bsh */
388 1.1 bsh u_int
389 1.1 bsh initarm(void *arg)
390 1.1 bsh {
391 1.1 bsh int loop;
392 1.1 bsh int loop1;
393 1.1 bsh vaddr_t l1pagetable;
394 1.1 bsh
395 1.1 bsh #ifdef RBFLAGS
396 1.1 bsh boothowto |= RBFLAGS;
397 1.1 bsh #endif
398 1.1 bsh
399 1.1 bsh disable_interrupts(I32_bit|F32_bit);
400 1.1 bsh /* XXX move to netwalker_start.S */
401 1.1 bsh
402 1.1 bsh /* Register devmap for devices we mapped in start */
403 1.1 bsh pmap_devmap_register(netwalker_devmap);
404 1.1 bsh
405 1.1 bsh setup_ioports();
406 1.1 bsh
407 1.1 bsh consinit();
408 1.1 bsh
409 1.1 bsh #ifdef DEBUG_IOPORTS
410 1.1 bsh dump_registers();
411 1.1 bsh #endif
412 1.1 bsh
413 1.1 bsh /*
414 1.1 bsh * Heads up ... Setup the CPU / MMU / TLB functions
415 1.1 bsh */
416 1.1 bsh if (set_cpufuncs())
417 1.1 bsh panic("cpu not recognized!");
418 1.1 bsh
419 1.1 bsh #ifdef NO_POWERSAVE
420 1.1 bsh cpu_do_powersave=0;
421 1.1 bsh #endif
422 1.1 bsh
423 1.1 bsh init_clocks();
424 1.1 bsh
425 1.1 bsh #ifdef KGDB
426 1.1 bsh kgdb_port_init();
427 1.1 bsh #endif
428 1.1 bsh
429 1.1 bsh /* Talk to the user */
430 1.1 bsh printf("\nNetBSD/evbarm (netwalker) booting ...\n");
431 1.1 bsh
432 1.1 bsh /*
433 1.1 bsh * Ok we have the following memory map
434 1.1 bsh *
435 1.1 bsh * Physical Address Range Description
436 1.1 bsh * ----------------------- ----------------------------------
437 1.1 bsh *
438 1.1 bsh * 0x90000000 - 0x97FFFFFF DDR SDRAM (128MByte)
439 1.1 bsh *
440 1.1 bsh * The initarm() has the responsibility for creating the kernel
441 1.1 bsh * page tables.
442 1.1 bsh * It must also set up various memory pointers that are used
443 1.1 bsh * by pmap etc.
444 1.1 bsh */
445 1.1 bsh
446 1.1 bsh #if 0
447 1.1 bsh /*
448 1.1 bsh * Examine the boot args string for options we need to know about
449 1.1 bsh * now.
450 1.1 bsh */
451 1.1 bsh process_kernel_args((char *)nwbootinfo.bt_args);
452 1.1 bsh #endif
453 1.1 bsh
454 1.1 bsh #ifdef VERBOSE_INIT_ARM
455 1.1 bsh printf("initarm: Configuring system ...\n");
456 1.1 bsh #endif
457 1.1 bsh /* Fake bootconfig structure for the benefit of pmap.c */
458 1.1 bsh /* XXX must make the memory description h/w independent */
459 1.1 bsh bootconfig.dramblocks = 1;
460 1.1 bsh bootconfig.dram[0].address = MEMSTART;
461 1.1 bsh bootconfig.dram[0].pages = (MEMSIZE * 1024 * 1024)/ PAGE_SIZE;
462 1.1 bsh
463 1.1 bsh /*
464 1.1 bsh * Set up the variables that define the availablilty of
465 1.1 bsh * physical memory. For now, we're going to set
466 1.1 bsh * physical_freestart to 0x80100000 (where the kernel
467 1.1 bsh * was loaded), and allocate the memory we need downwards.
468 1.1 bsh * If we get too close to the bottom of SDRAM, we
469 1.1 bsh * will panic. We will update physical_freestart and
470 1.1 bsh * physical_freeend later to reflect what pmap_bootstrap()
471 1.1 bsh * wants to see.
472 1.1 bsh *
473 1.1 bsh * XXX pmap_bootstrap() needs an enema.
474 1.1 bsh */
475 1.1 bsh physical_start = bootconfig.dram[0].address;
476 1.1 bsh physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
477 1.1 bsh
478 1.1 bsh physical_freestart = 0x90000000UL; /* top of loadaddres */
479 1.1 bsh physical_freeend = 0x90100000UL; /* base of kernel */
480 1.1 bsh
481 1.1 bsh physmem = (physical_end - physical_start) / PAGE_SIZE;
482 1.1 bsh
483 1.1 bsh #ifdef VERBOSE_INIT_ARM
484 1.1 bsh /* Tell the user about the memory */
485 1.1 bsh printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
486 1.1 bsh physical_start, physical_end - 1);
487 1.1 bsh #endif
488 1.1 bsh
489 1.1 bsh /*
490 1.1 bsh * Okay, the kernel starts 1MB in from the bottom of physical
491 1.1 bsh * memory. We are going to allocate our bootstrap pages downwards
492 1.1 bsh * from there.
493 1.1 bsh *
494 1.1 bsh * We need to allocate some fixed page tables to get the kernel
495 1.1 bsh * going. We allocate one page directory and a number of page
496 1.1 bsh * tables and store the physical addresses in the kernel_pt_table
497 1.1 bsh * array.
498 1.1 bsh *
499 1.1 bsh * The kernel page directory must be on a 16K boundary. The page
500 1.1 bsh * tables must be on 4K boundaries. What we do is allocate the
501 1.1 bsh * page directory on the first 16K boundary that we encounter, and
502 1.1 bsh * the page tables on 4K boundaries otherwise. Since we allocate
503 1.1 bsh * at least 3 L2 page tables, we are guaranteed to encounter at
504 1.1 bsh * least one 16K aligned region.
505 1.1 bsh */
506 1.1 bsh
507 1.1 bsh #ifdef VERBOSE_INIT_ARM
508 1.1 bsh printf("Allocating page tables\n");
509 1.1 bsh #endif
510 1.1 bsh
511 1.1 bsh free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
512 1.1 bsh
513 1.1 bsh #ifdef VERBOSE_INIT_ARM
514 1.1 bsh printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
515 1.1 bsh physical_freestart, free_pages, free_pages);
516 1.1 bsh #endif
517 1.1 bsh
518 1.1 bsh /* Define a macro to simplify memory allocation */
519 1.1 bsh #define valloc_pages(var, np) \
520 1.1 bsh alloc_pages((var).pv_pa, (np)); \
521 1.1 bsh (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
522 1.1 bsh
523 1.1 bsh #define alloc_pages(var, np) \
524 1.1 bsh physical_freeend -= ((np) * PAGE_SIZE); \
525 1.1 bsh if (physical_freeend < physical_freestart) \
526 1.1 bsh panic("initarm: out of memory"); \
527 1.1 bsh (var) = physical_freeend; \
528 1.1 bsh free_pages -= (np); \
529 1.1 bsh memset((char *)(var), 0, ((np) * PAGE_SIZE));
530 1.1 bsh
531 1.1 bsh loop1 = 0;
532 1.1 bsh for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
533 1.1 bsh /* Are we 16KB aligned for an L1 ? */
534 1.1 bsh if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
535 1.1 bsh && kernel_l1pt.pv_pa == 0) {
536 1.1 bsh valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
537 1.1 bsh } else {
538 1.1 bsh valloc_pages(kernel_pt_table[loop1],
539 1.1 bsh L2_TABLE_SIZE / PAGE_SIZE);
540 1.1 bsh ++loop1;
541 1.1 bsh }
542 1.1 bsh }
543 1.1 bsh
544 1.1 bsh /* This should never be able to happen but better confirm that. */
545 1.1 bsh if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
546 1.1 bsh panic("initarm: Failed to align the kernel page directory");
547 1.1 bsh
548 1.1 bsh /*
549 1.1 bsh * Allocate a page for the system page mapped to V0x00000000
550 1.1 bsh * This page will just contain the system vectors and can be
551 1.1 bsh * shared by all processes.
552 1.1 bsh */
553 1.1 bsh valloc_pages(systempage, 1);
554 1.1 bsh systempage.pv_va = ARM_VECTORS_HIGH;
555 1.1 bsh
556 1.1 bsh /* Allocate stacks for all modes */
557 1.1 bsh valloc_pages(fiqstack, FIQ_STACK_SIZE);
558 1.1 bsh valloc_pages(irqstack, IRQ_STACK_SIZE);
559 1.1 bsh valloc_pages(abtstack, ABT_STACK_SIZE);
560 1.1 bsh valloc_pages(undstack, UND_STACK_SIZE);
561 1.1 bsh valloc_pages(kernelstack, UPAGES);
562 1.1 bsh
563 1.1 bsh #ifdef VERBOSE_INIT_ARM
564 1.1 bsh printf("FIQ stack: p0x%08lx v0x%08lx\n", fiqstack.pv_pa,
565 1.1 bsh fiqstack.pv_va);
566 1.1 bsh printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
567 1.1 bsh irqstack.pv_va);
568 1.1 bsh printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
569 1.1 bsh abtstack.pv_va);
570 1.1 bsh printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
571 1.1 bsh undstack.pv_va);
572 1.1 bsh printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
573 1.1 bsh kernelstack.pv_va);
574 1.1 bsh #endif
575 1.1 bsh
576 1.1 bsh alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
577 1.1 bsh
578 1.1 bsh /*
579 1.1 bsh * Ok we have allocated physical pages for the primary kernel
580 1.1 bsh * page tables
581 1.1 bsh */
582 1.1 bsh
583 1.1 bsh #ifdef VERBOSE_INIT_ARM
584 1.1 bsh printf("Creating L1 page table at p0x%08lx v0x%08lx\n",
585 1.1 bsh kernel_l1pt.pv_pa, kernel_l1pt.pv_va);
586 1.1 bsh #endif
587 1.1 bsh
588 1.1 bsh /*
589 1.1 bsh * Now we start construction of the L1 page table
590 1.1 bsh * We start by mapping the L2 page tables into the L1.
591 1.1 bsh * This means that we can replace L1 mappings later on if necessary
592 1.1 bsh */
593 1.1 bsh l1pagetable = kernel_l1pt.pv_pa;
594 1.1 bsh
595 1.1 bsh /* Map the L2 pages tables in the L1 page table */
596 1.1 bsh pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
597 1.1 bsh &kernel_pt_table[KERNEL_PT_SYS]);
598 1.1 bsh for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
599 1.1 bsh pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
600 1.1 bsh &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
601 1.1 bsh for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
602 1.1 bsh pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
603 1.1 bsh &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
604 1.1 bsh
605 1.1 bsh /* update the top of the kernel VM */
606 1.1 bsh pmap_curmaxkvaddr =
607 1.1 bsh KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
608 1.1 bsh
609 1.1 bsh #ifdef VERBOSE_INIT_ARM
610 1.1 bsh printf("Mapping kernel\n");
611 1.1 bsh #endif
612 1.1 bsh
613 1.1 bsh /* Now we fill in the L2 pagetable for the kernel static code/data */
614 1.1 bsh #define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME)
615 1.1 bsh {
616 1.1 bsh size_t textsize = round_L_page((size_t)etext - KERNEL_TEXT_BASE);
617 1.1 bsh size_t totalsize = round_L_page((size_t)_end - KERNEL_TEXT_BASE);
618 1.1 bsh u_int logical;
619 1.1 bsh
620 1.1 bsh
621 1.1 bsh #ifdef VERBOSE_INIT_ARM
622 1.1 bsh printf("%s: etext %lx, _end %lx\n",
623 1.1 bsh __func__, (uintptr_t)etext, (uintptr_t)_end);
624 1.1 bsh printf("%s: textsize %#lx, totalsize %#lx\n",
625 1.1 bsh __func__, textsize, totalsize);
626 1.1 bsh #endif
627 1.1 bsh logical = 0x00100000; /* offset of kernel in RAM */
628 1.1 bsh
629 1.1 bsh /* Map text section read-only. */
630 1.1 bsh logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
631 1.1 bsh physical_start + logical, textsize,
632 1.1 bsh VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE);
633 1.1 bsh
634 1.1 bsh /* Map data and bss sections read-write. */
635 1.1 bsh logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
636 1.1 bsh physical_start + logical, totalsize - textsize,
637 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
638 1.1 bsh }
639 1.1 bsh
640 1.1 bsh #ifdef VERBOSE_INIT_ARM
641 1.1 bsh printf("Constructing L2 page tables\n");
642 1.1 bsh #endif
643 1.1 bsh
644 1.1 bsh /* Map the stack pages */
645 1.1 bsh pmap_map_chunk(l1pagetable, fiqstack.pv_va, fiqstack.pv_pa,
646 1.1 bsh FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
647 1.1 bsh pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
648 1.1 bsh IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
649 1.1 bsh pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
650 1.1 bsh ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
651 1.1 bsh pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
652 1.1 bsh UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
653 1.1 bsh pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
654 1.1 bsh UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
655 1.1 bsh
656 1.1 bsh pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
657 1.1 bsh L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
658 1.1 bsh
659 1.1 bsh for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
660 1.1 bsh pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
661 1.1 bsh kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
662 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
663 1.1 bsh }
664 1.1 bsh
665 1.1 bsh /* Map the vector page. */
666 1.1 bsh #if 0
667 1.1 bsh /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
668 1.1 bsh * cache-clean code there. */
669 1.1 bsh pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
670 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
671 1.1 bsh #else
672 1.1 bsh pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
673 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
674 1.1 bsh #endif
675 1.1 bsh
676 1.1 bsh /*
677 1.1 bsh * map integrated peripherals at same address in l1pagetable
678 1.1 bsh * so that we can continue to use console.
679 1.1 bsh */
680 1.1 bsh pmap_devmap_bootstrap(l1pagetable, netwalker_devmap);
681 1.1 bsh
682 1.1 bsh /*
683 1.1 bsh * Now we have the real page tables in place so we can switch to them.
684 1.1 bsh * Once this is done we will be running with the REAL kernel page
685 1.1 bsh * tables.
686 1.1 bsh */
687 1.1 bsh
688 1.1 bsh /*
689 1.1 bsh * Update the physical_freestart/physical_freeend/free_pages
690 1.1 bsh * variables.
691 1.1 bsh */
692 1.1 bsh physical_freestart = physical_start +
693 1.1 bsh (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE);
694 1.1 bsh physical_freeend = physical_end;
695 1.1 bsh free_pages =
696 1.1 bsh (physical_freeend - physical_freestart) / PAGE_SIZE;
697 1.1 bsh
698 1.1 bsh #ifdef VERBOSE_INIT_ARM
699 1.1 bsh /* Tell the user about where all the bits and pieces live. */
700 1.1 bsh printf("%22s Physical Virtual Num\n", " ");
701 1.1 bsh printf("%22s Starting Ending Starting Ending Pages\n", " ");
702 1.1 bsh
703 1.1 bsh static const char mem_fmt[] =
704 1.1 bsh "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n";
705 1.1 bsh static const char mem_fmt_nov[] =
706 1.1 bsh "%20s: 0x%08lx 0x%08lx %d\n";
707 1.1 bsh
708 1.1 bsh printf(mem_fmt, "SDRAM", physical_start, physical_end-1,
709 1.1 bsh KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1),
710 1.1 bsh physmem);
711 1.1 bsh printf(mem_fmt, "text section",
712 1.1 bsh (paddr_t)KERNEL_BASE_phys, KERN_VTOPHYS(etext-1),
713 1.1 bsh (vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1,
714 1.1 bsh (int)(round_L_page((size_t)etext - KERNEL_TEXT_BASE) / PAGE_SIZE));
715 1.1 bsh printf(mem_fmt, "data section",
716 1.1 bsh KERN_VTOPHYS(__data_start), KERN_VTOPHYS(_edata),
717 1.1 bsh (vaddr_t)__data_start, (vaddr_t)_edata,
718 1.1 bsh (int)((round_page((vaddr_t)_edata)
719 1.1 bsh - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
720 1.1 bsh printf(mem_fmt, "bss section",
721 1.1 bsh KERN_VTOPHYS(__bss_start), KERN_VTOPHYS(__bss_end__),
722 1.1 bsh (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
723 1.1 bsh (int)((round_page((vaddr_t)__bss_end__)
724 1.1 bsh - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
725 1.1 bsh printf(mem_fmt, "L1 page directory",
726 1.1 bsh kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
727 1.1 bsh kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
728 1.1 bsh L1_TABLE_SIZE / PAGE_SIZE);
729 1.1 bsh printf(mem_fmt, "Exception Vectors",
730 1.1 bsh systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
731 1.1 bsh systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
732 1.1 bsh 1);
733 1.1 bsh printf(mem_fmt, "FIQ stack",
734 1.1 bsh fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
735 1.1 bsh fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
736 1.1 bsh FIQ_STACK_SIZE);
737 1.1 bsh printf(mem_fmt, "IRQ stack",
738 1.1 bsh irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
739 1.1 bsh irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
740 1.1 bsh IRQ_STACK_SIZE);
741 1.1 bsh printf(mem_fmt, "ABT stack",
742 1.1 bsh abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
743 1.1 bsh abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
744 1.1 bsh ABT_STACK_SIZE);
745 1.1 bsh printf(mem_fmt, "UND stack",
746 1.1 bsh undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
747 1.1 bsh undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
748 1.1 bsh UND_STACK_SIZE);
749 1.1 bsh printf(mem_fmt, "SVC stack",
750 1.1 bsh kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
751 1.1 bsh kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
752 1.1 bsh UPAGES);
753 1.1 bsh printf(mem_fmt_nov, "Message Buffer",
754 1.1 bsh msgbufphys, msgbufphys + round_page(MSGBUFSIZE) - 1, round_page(MSGBUFSIZE) / PAGE_SIZE);
755 1.1 bsh printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1,
756 1.1 bsh KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1),
757 1.1 bsh free_pages);
758 1.1 bsh #endif
759 1.1 bsh
760 1.1 bsh /* Switch tables */
761 1.1 bsh #ifdef VERBOSE_INIT_ARM
762 1.1 bsh printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
763 1.1 bsh physical_freestart, free_pages, free_pages);
764 1.1 bsh printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
765 1.1 bsh #endif
766 1.1 bsh
767 1.1 bsh cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
768 1.1 bsh cpu_setttb(kernel_l1pt.pv_pa);
769 1.1 bsh cpu_tlb_flushID();
770 1.1 bsh cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
771 1.1 bsh
772 1.1 bsh /*
773 1.1 bsh * Moved from cpu_startup() as data_abort_handler() references
774 1.1 bsh * this during uvm init
775 1.1 bsh */
776 1.1 bsh uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
777 1.1 bsh
778 1.1 bsh #ifdef VERBOSE_INIT_ARM
779 1.1 bsh printf("bootstrap done.\n");
780 1.1 bsh #endif
781 1.1 bsh
782 1.1 bsh arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
783 1.1 bsh
784 1.1 bsh /*
785 1.1 bsh * Pages were allocated during the secondary bootstrap for the
786 1.1 bsh * stacks for different CPU modes.
787 1.1 bsh * We must now set the r13 registers in the different CPU modes to
788 1.1 bsh * point to these stacks.
789 1.1 bsh * Since the ARM stacks use STMFD etc. we must set r13 to the top end
790 1.1 bsh * of the stack memory.
791 1.1 bsh */
792 1.1 bsh #ifdef VERBOSE_INIT_ARM
793 1.1 bsh printf("init subsystems: stacks ");
794 1.1 bsh #endif
795 1.1 bsh set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE);
796 1.1 bsh set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
797 1.1 bsh set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
798 1.1 bsh set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
799 1.1 bsh
800 1.1 bsh /*
801 1.1 bsh * Well we should set a data abort handler.
802 1.1 bsh * Once things get going this will change as we will need a proper
803 1.1 bsh * handler.
804 1.1 bsh * Until then we will use a handler that just panics but tells us
805 1.1 bsh * why.
806 1.1 bsh * Initialisation of the vectors will just panic on a data abort.
807 1.1 bsh * This just fills in a slightly better one.
808 1.1 bsh */
809 1.1 bsh #ifdef VERBOSE_INIT_ARM
810 1.1 bsh printf("vectors ");
811 1.1 bsh #endif
812 1.1 bsh data_abort_handler_address = (u_int)data_abort_handler;
813 1.1 bsh prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
814 1.1 bsh undefined_handler_address = (u_int)undefinedinstruction_bounce;
815 1.1 bsh
816 1.1 bsh /* Initialise the undefined instruction handlers */
817 1.1 bsh #ifdef VERBOSE_INIT_ARM
818 1.1 bsh printf("undefined ");
819 1.1 bsh #endif
820 1.1 bsh undefined_init();
821 1.1 bsh
822 1.1 bsh /* Load memory into UVM. */
823 1.1 bsh #ifdef VERBOSE_INIT_ARM
824 1.1 bsh printf("page ");
825 1.1 bsh #endif
826 1.1 bsh uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
827 1.1 bsh uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
828 1.1 bsh atop(physical_freestart), atop(physical_freeend),
829 1.1 bsh VM_FREELIST_DEFAULT);
830 1.1 bsh
831 1.1 bsh /* Boot strap pmap telling it where the kernel page table is */
832 1.1 bsh #ifdef VERBOSE_INIT_ARM
833 1.1 bsh printf("pmap ");
834 1.1 bsh #endif
835 1.1 bsh pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
836 1.1 bsh
837 1.1 bsh #ifdef __HAVE_MEMORY_DISK__
838 1.1 bsh md_root_setconf(memory_disk, sizeof memory_disk);
839 1.1 bsh #endif
840 1.1 bsh
841 1.1 bsh #ifdef VERBOSE_INIT_ARM
842 1.1 bsh printf("done.\n");
843 1.1 bsh #endif
844 1.1 bsh
845 1.1 bsh /* disable power down counter in watch dog,
846 1.1 bsh This must be done within 16 seconds of start-up. */
847 1.1 bsh ioreg16_write(NETWALKER_WDOG_VBASE + IMX_WDOG_WMCR, 0);
848 1.1 bsh
849 1.1 bsh #ifdef IPKDB
850 1.1 bsh /* Initialise ipkdb */
851 1.1 bsh ipkdb_init();
852 1.1 bsh if (boothowto & RB_KDB)
853 1.1 bsh ipkdb_connect(0);
854 1.1 bsh #endif
855 1.1 bsh
856 1.1 bsh #ifdef KGDB
857 1.1 bsh if (boothowto & RB_KDB) {
858 1.1 bsh kgdb_debug_init = 1;
859 1.1 bsh kgdb_connect(1);
860 1.1 bsh }
861 1.1 bsh #endif
862 1.1 bsh
863 1.1 bsh #ifdef DDB
864 1.1 bsh #ifdef VERBOSE_INIT_ARM
865 1.1 bsh printf("ddb ");
866 1.1 bsh #endif
867 1.1 bsh db_machine_init();
868 1.1 bsh
869 1.1 bsh /* Firmware doesn't load symbols. */
870 1.1 bsh ddb_init(0, NULL, NULL);
871 1.1 bsh
872 1.1 bsh if (boothowto & RB_KDB)
873 1.1 bsh Debugger();
874 1.1 bsh #endif
875 1.1 bsh
876 1.1 bsh
877 1.1 bsh
878 1.1 bsh printf("initarm done.\n");
879 1.1 bsh
880 1.1 bsh /* We return the new stack pointer address */
881 1.1 bsh return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
882 1.1 bsh }
883 1.1 bsh
884 1.1 bsh #if 0
885 1.1 bsh void
886 1.1 bsh process_kernel_args(char *args)
887 1.1 bsh {
888 1.1 bsh
889 1.1 bsh boothowto = 0;
890 1.1 bsh
891 1.1 bsh /* Make a local copy of the bootargs */
892 1.1 bsh strncpy(bootargs, args, MAX_BOOT_STRING);
893 1.1 bsh
894 1.1 bsh args = bootargs;
895 1.1 bsh boot_file = bootargs;
896 1.1 bsh
897 1.1 bsh /* Skip the kernel image filename */
898 1.1 bsh while (*args != ' ' && *args != 0)
899 1.1 bsh ++args;
900 1.1 bsh
901 1.1 bsh if (*args != 0)
902 1.1 bsh *args++ = 0;
903 1.1 bsh
904 1.1 bsh while (*args == ' ')
905 1.1 bsh ++args;
906 1.1 bsh
907 1.1 bsh boot_args = args;
908 1.1 bsh
909 1.1 bsh printf("bootfile: %s\n", boot_file);
910 1.1 bsh printf("bootargs: %s\n", boot_args);
911 1.1 bsh
912 1.1 bsh parse_mi_bootargs(boot_args);
913 1.1 bsh }
914 1.1 bsh #endif
915 1.1 bsh
916 1.1 bsh static void
917 1.1 bsh init_clocks(void)
918 1.1 bsh {
919 1.1 bsh extern void cortexa8_pmc_ccnt_init(void);
920 1.1 bsh
921 1.1 bsh cortexa8_pmc_ccnt_init();
922 1.1 bsh }
923 1.1 bsh
924 1.1 bsh struct iomux_setup {
925 1.1 bsh size_t pad_ctl_reg;
926 1.1 bsh uint32_t pad_ctl_val;
927 1.1 bsh size_t mux_ctl_reg;
928 1.1 bsh uint32_t mux_ctl_val;
929 1.1 bsh };
930 1.1 bsh
931 1.1 bsh #define IOMUX_DATA(padname, mux, pad) \
932 1.1 bsh IOMUX_DATA2(__CONCAT(IOMUXC_SW_MUX_CTL_PAD_,padname), mux, \
933 1.1 bsh __CONCAT(IOMUXC_SW_PAD_CTL_PAD_,padname), pad)
934 1.1 bsh
935 1.1 bsh
936 1.1 bsh #define IOMUX_DATA2(muxreg, muxval, padreg, padval) \
937 1.1 bsh { \
938 1.1 bsh .pad_ctl_reg = (padreg), \
939 1.1 bsh .pad_ctl_val = (padval), \
940 1.1 bsh .mux_ctl_reg = (muxreg), \
941 1.1 bsh .mux_ctl_val = (muxval) \
942 1.1 bsh }
943 1.1 bsh
944 1.1 bsh
945 1.1 bsh const struct iomux_setup iomux_setup_data[] = {
946 1.1 bsh
947 1.1 bsh /* left buttons */
948 1.1 bsh IOMUX_DATA(EIM_EB2, IOMUX_CONFIG_ALT1,
949 1.3 bsh PAD_CTL_HYS),
950 1.1 bsh /* right buttons */
951 1.1 bsh IOMUX_DATA(EIM_EB3, IOMUX_CONFIG_ALT1,
952 1.3 bsh PAD_CTL_HYS),
953 1.1 bsh
954 1.1 bsh /* UART1 */
955 1.1 bsh #if 1
956 1.1 bsh IOMUX_DATA(UART1_RXD, IOMUX_CONFIG_ALT0,
957 1.3 bsh PAD_CTL_DSE_HIGH | PAD_CTL_SRE),
958 1.1 bsh #else
959 1.1 bsh IOMUX_DATA(UART1_RXD, IOMUX_CONFIG_ALT3, /* gpio4[28] */
960 1.3 bsh PAD_CTL_DSE_HIGH | PAD_CTL_SRE),
961 1.1 bsh #endif
962 1.1 bsh IOMUX_DATA(UART1_TXD, IOMUX_CONFIG_ALT0,
963 1.3 bsh PAD_CTL_DSE_HIGH | PAD_CTL_SRE),
964 1.1 bsh IOMUX_DATA(UART1_RTS, IOMUX_CONFIG_ALT0,
965 1.1 bsh PAD_CTL_DSE_HIGH),
966 1.1 bsh IOMUX_DATA(UART1_CTS, IOMUX_CONFIG_ALT0,
967 1.1 bsh PAD_CTL_DSE_HIGH),
968 1.1 bsh };
969 1.1 bsh
970 1.1 bsh static void
971 1.1 bsh setup_ioports(void)
972 1.1 bsh {
973 1.1 bsh int i;
974 1.1 bsh const struct iomux_setup *p;
975 1.1 bsh
976 1.1 bsh #if 0 /* These are all done already by Netwalker's bootloader. */
977 1.1 bsh /* set IO multiplexor for UART1 */
978 1.1 bsh uint32_t reg;
979 1.1 bsh uint32_t addr;
980 1.1 bsh
981 1.1 bsh /* input */
982 1.1 bsh addr = NETWALKER_IOMUXC_VBASE + MUX_IN_UART1_IPP_UART_RXD_MUX;
983 1.1 bsh reg = INPUT_DAISY_0;
984 1.1 bsh ioreg_write(addr, reg);
985 1.1 bsh addr = NETWALKER_IOMUXC_VBASE + MUX_IN_UART1_IPP_UART_RTS_B;
986 1.1 bsh reg = INPUT_DAISY_0;
987 1.1 bsh ioreg_write(addr, reg);
988 1.1 bsh #endif
989 1.1 bsh
990 1.1 bsh for (i=0; i < __arraycount(iomux_setup_data); ++i) {
991 1.1 bsh p = iomux_setup_data + i;
992 1.1 bsh
993 1.1 bsh ioreg_write(NETWALKER_IOMUXC_VBASE +
994 1.1 bsh p->pad_ctl_reg,
995 1.1 bsh p->pad_ctl_val);
996 1.1 bsh ioreg_write(NETWALKER_IOMUXC_VBASE +
997 1.1 bsh p->mux_ctl_reg,
998 1.1 bsh p->mux_ctl_val);
999 1.1 bsh }
1000 1.1 bsh
1001 1.1 bsh
1002 1.1 bsh #if 0 /* already done by bootloader */
1003 1.1 bsh /* GPIO2[22,23]: input (left/right button)
1004 1.1 bsh GPIO2[21]: input (power button) */
1005 1.1 bsh ioreg_write(NETWALKER_GPIO_VBASE(2) + GPIO_DIR,
1006 1.1 bsh ~__BITS(21,23) &
1007 1.1 bsh ioreg_read(NETWALKER_GPIO_VBASE(2) + GPIO_DIR));
1008 1.1 bsh #endif
1009 1.1 bsh
1010 1.1 bsh #if 0 /* already done by bootloader */
1011 1.1 bsh /* GPIO4[12]: input (cover switch) */
1012 1.1 bsh ioreg_write(NETWALKER_GPIO_VBASE(4) + GPIO_DIR,
1013 1.1 bsh ~__BIT(12) &
1014 1.1 bsh ioreg_read(NETWALKER_GPIO_VBASE(4) + GPIO_DIR));
1015 1.1 bsh #endif
1016 1.1 bsh }
1017 1.1 bsh
1018 1.1 bsh
1019 1.1 bsh #ifdef CONSDEVNAME
1020 1.1 bsh const char consdevname[] = CONSDEVNAME;
1021 1.1 bsh
1022 1.1 bsh #ifndef CONMODE
1023 1.1 bsh #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
1024 1.1 bsh #endif
1025 1.1 bsh #ifndef CONSPEED
1026 1.1 bsh #define CONSPEED 115200
1027 1.1 bsh #endif
1028 1.1 bsh
1029 1.1 bsh int consmode = CONMODE;
1030 1.1 bsh int consrate = CONSPEED;
1031 1.1 bsh
1032 1.1 bsh #endif /* CONSDEVNAME */
1033 1.1 bsh
1034 1.1 bsh #ifndef IMXUART_FREQ
1035 1.1 bsh #define IMXUART_FREQ 66355200
1036 1.1 bsh #endif
1037 1.1 bsh
1038 1.1 bsh void
1039 1.1 bsh consinit(void)
1040 1.1 bsh {
1041 1.1 bsh static int consinit_called = 0;
1042 1.1 bsh
1043 1.1 bsh if (consinit_called)
1044 1.1 bsh return;
1045 1.1 bsh
1046 1.1 bsh consinit_called = 1;
1047 1.1 bsh
1048 1.1 bsh #ifdef CONSDEVNAME
1049 1.1 bsh
1050 1.1 bsh #if NIMXUART > 0
1051 1.1 bsh imxuart_set_frequency(IMXUART_FREQ, 2);
1052 1.1 bsh #endif
1053 1.1 bsh
1054 1.1 bsh #if (NIMXUART > 0) && defined(IMXUARTCONSOLE)
1055 1.1 bsh if (strcmp(consdevname, "imxuart") == 0) {
1056 1.1 bsh paddr_t consaddr;
1057 1.1 bsh #ifdef CONADDR
1058 1.1 bsh consaddr = CONADDR;
1059 1.1 bsh #else
1060 1.1 bsh consaddr = IMX51_UART1_BASE;
1061 1.1 bsh #endif
1062 1.1 bsh imxuart_cons_attach(&imx_bs_tag, consaddr, consrate, consmode);
1063 1.1 bsh return;
1064 1.1 bsh }
1065 1.1 bsh #endif
1066 1.1 bsh
1067 1.1 bsh #endif
1068 1.1 bsh
1069 1.1 bsh #if (NWSDISPLAY > 0) && defined(IMXLCDCONSOLE)
1070 1.1 bsh {
1071 1.1 bsh extern void netwalker_cnattach(void);
1072 1.1 bsh netwalker_cnattach();
1073 1.1 bsh }
1074 1.1 bsh #endif
1075 1.1 bsh }
1076 1.1 bsh
1077 1.1 bsh #ifdef KGDB
1078 1.1 bsh #ifndef KGDB_DEVNAME
1079 1.1 bsh #define KGDB_DEVNAME "imxuart"
1080 1.1 bsh #endif
1081 1.1 bsh #ifndef KGDB_DEVMODE
1082 1.1 bsh #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
1083 1.1 bsh #endif
1084 1.1 bsh
1085 1.1 bsh const char kgdb_devname[20] = KGDB_DEVNAME;
1086 1.1 bsh int kgdb_mode = KGDB_DEVMODE;
1087 1.1 bsh int kgdb_addr = KGDB_DEVADDR;
1088 1.1 bsh extern int kgdb_rate; /* defined in kgdb_stub.c */
1089 1.1 bsh
1090 1.1 bsh void
1091 1.1 bsh kgdb_port_init(void)
1092 1.1 bsh {
1093 1.1 bsh #if (NIMXUART > 0)
1094 1.1 bsh if (strcmp(kgdb_devname, "imxuart") == 0) {
1095 1.1 bsh imxuart_kgdb_attach(&imx_bs_tag, kgdb_addr,
1096 1.1 bsh kgdb_rate, kgdb_mode);
1097 1.1 bsh return;
1098 1.1 bsh }
1099 1.1 bsh
1100 1.1 bsh #endif
1101 1.1 bsh }
1102 1.1 bsh #endif
1103 1.1 bsh
1104 1.1 bsh
1105 1.1 bsh #ifdef DEBUG_IOPORTS
1106 1.1 bsh static void dump_sub(paddr_t addr, size_t size)
1107 1.1 bsh {
1108 1.1 bsh paddr_t end = addr + size;
1109 1.1 bsh
1110 1.1 bsh for (; addr < end; addr += 4) {
1111 1.1 bsh if (addr % 16 == 0)
1112 1.1 bsh printf("%08x: ", (u_int)addr);
1113 1.1 bsh printf("%08x ", ioreg_read(addr));
1114 1.1 bsh
1115 1.1 bsh if (addr % 16 == 12)
1116 1.1 bsh printf("\n");
1117 1.1 bsh }
1118 1.1 bsh printf("\n");
1119 1.1 bsh }
1120 1.1 bsh
1121 1.1 bsh void
1122 1.1 bsh dump_registers(void)
1123 1.1 bsh {
1124 1.1 bsh paddr_t pa;
1125 1.1 bsh int i;
1126 1.1 bsh
1127 1.1 bsh dump_sub(IOMUXC_BASE, IOMUXC_USBOH3_IPP_IND_UH3_STP_SELECT_INPUT + 4);
1128 1.1 bsh
1129 1.1 bsh for (i = 1; i <= 4; ++i) {
1130 1.1 bsh dump_sub(GPIO_BASE(i), GPIO_SIZE);
1131 1.1 bsh }
1132 1.1 bsh
1133 1.1 bsh printf("\nwatchdog: ");
1134 1.1 bsh for (pa = WDOG1_BASE; pa <= WDOG1_BASE + IMX_WDOG_WMCR;
1135 1.1 bsh pa += 2) {
1136 1.1 bsh printf("%04x ", *(volatile uint16_t *)pa);
1137 1.1 bsh }
1138 1.1 bsh printf("\n");
1139 1.1 bsh
1140 1.3 bsh printf("\nCCM\n");
1141 1.3 bsh dump_sub(CCM_BASE, CCM_SIZE);
1142 1.3 bsh
1143 1.1 bsh #if 0
1144 1.1 bsh /* disable power down counter in watch dog,
1145 1.1 bsh This must be done within 16 seconds of start-up. */
1146 1.1 bsh ioreg16_write(NETWALKER_WDOG_VBASE + IMX_WDOG_WMCR, 0);
1147 1.1 bsh
1148 1.1 bsh /* read left/right buttons */
1149 1.1 bsh for (;;) {
1150 1.1 bsh uint32_t reg;
1151 1.1 bsh
1152 1.1 bsh reg = ioreg_read(GPIO_BASE(2) + GPIO_DR);
1153 1.1 bsh printf("\r%08x", reg);
1154 1.1 bsh reg = ioreg_read(GPIO_BASE(4) + GPIO_DR);
1155 1.1 bsh printf(" %08x", reg);
1156 1.1 bsh
1157 1.1 bsh #if 0
1158 1.1 bsh ioreg16_write(WDOG1_BASE + IMX_WDOG_WSR, WSR_MAGIC1);
1159 1.1 bsh ioreg16_write(WDOG1_BASE + IMX_WDOG_WSR, WSR_MAGIC2);
1160 1.1 bsh #endif
1161 1.1 bsh
1162 1.1 bsh }
1163 1.1 bsh #endif
1164 1.1 bsh
1165 1.1 bsh }
1166 1.1 bsh #endif
1167 1.3 bsh
1168 1.3 bsh
1169 1.3 bsh #if 0
1170 1.3 bsh #include <arm/imx/imxgpiovar.h>
1171 1.3 bsh
1172 1.3 bsh void gpio_test(void)
1173 1.3 bsh void
1174 1.3 bsh gpio_test(void)
1175 1.3 bsh {
1176 1.3 bsh int left, right;
1177 1.3 bsh
1178 1.3 bsh gpio_set_direction(GPIO_NO(2, 22), GPIO_DIR_IN);
1179 1.3 bsh gpio_set_direction(GPIO_NO(2, 23), GPIO_DIR_IN);
1180 1.3 bsh
1181 1.3 bsh for (;;) {
1182 1.3 bsh left = gpio_data_read(GPIO_NO(2, 22));
1183 1.3 bsh right = gpio_data_read(GPIO_NO(2, 23));
1184 1.3 bsh
1185 1.3 bsh printf("\r%s %s",
1186 1.3 bsh left ? "off" : "ON ",
1187 1.3 bsh right ? "off" : "ON ");
1188 1.3 bsh }
1189 1.3 bsh }
1190 1.3 bsh #endif
1191