Home | History | Annotate | Line # | Download | only in smdk2xx0
smdk2410_machdep.c revision 1.10
      1 /*	$NetBSD: smdk2410_machdep.c,v 1.10 2004/12/12 21:03:06 abs Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2002, 2003 Fujitsu Component Limited
      5  * Copyright (c) 2002, 2003 Genetec Corporation
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of The Fujitsu Component Limited nor the name of
     17  *    Genetec corporation may not be used to endorse or promote products
     18  *    derived from this software without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
     21  * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     22  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     23  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     24  * DISCLAIMED.  IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
     25  * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     27  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
     28  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     29  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 /*
     35  * Copyright (c) 2001,2002 ARM Ltd
     36  * All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. The name of the company may not be used to endorse or promote
     47  *    products derived from this software without specific prior written
     48  *    permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     52  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     53  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD
     54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     60  * POSSIBILITY OF SUCH DAMAGE.
     61  *
     62  */
     63 
     64 /*
     65  * Copyright (c) 1997,1998 Mark Brinicombe.
     66  * Copyright (c) 1997,1998 Causality Limited.
     67  * All rights reserved.
     68  *
     69  * Redistribution and use in source and binary forms, with or without
     70  * modification, are permitted provided that the following conditions
     71  * are met:
     72  * 1. Redistributions of source code must retain the above copyright
     73  *    notice, this list of conditions and the following disclaimer.
     74  * 2. Redistributions in binary form must reproduce the above copyright
     75  *    notice, this list of conditions and the following disclaimer in the
     76  *    documentation and/or other materials provided with the distribution.
     77  * 3. All advertising materials mentioning features or use of this software
     78  *    must display the following acknowledgement:
     79  *	This product includes software developed by Mark Brinicombe
     80  *	for the NetBSD Project.
     81  * 4. The name of the company nor the name of the author may be used to
     82  *    endorse or promote products derived from this software without specific
     83  *    prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     86  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     87  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     88  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     89  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     90  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     91  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  * Machine dependant functions for kernel setup for integrator board
     98  *
     99  * Created      : 24/11/97
    100  */
    101 
    102 /*
    103  * Machine dependant functions for kernel setup for Samsung SMDK2410
    104  * derived from integrator_machdep.c
    105  */
    106 
    107 #include <sys/cdefs.h>
    108 __KERNEL_RCSID(0, "$NetBSD: smdk2410_machdep.c,v 1.10 2004/12/12 21:03:06 abs Exp $");
    109 
    110 #include "opt_ddb.h"
    111 #include "opt_kgdb.h"
    112 #include "opt_ipkdb.h"
    113 #include "opt_pmap_debug.h"
    114 #include "opt_md.h"
    115 
    116 #include <sys/param.h>
    117 #include <sys/device.h>
    118 #include <sys/systm.h>
    119 #include <sys/kernel.h>
    120 #include <sys/exec.h>
    121 #include <sys/proc.h>
    122 #include <sys/msgbuf.h>
    123 #include <sys/reboot.h>
    124 #include <sys/termios.h>
    125 #include <sys/ksyms.h>
    126 
    127 #include <uvm/uvm_extern.h>
    128 
    129 #include <dev/cons.h>
    130 #include <dev/md.h>
    131 
    132 #include <machine/db_machdep.h>
    133 #include <ddb/db_sym.h>
    134 #include <ddb/db_extern.h>
    135 #ifdef KGDB
    136 #include <sys/kgdb.h>
    137 #endif
    138 
    139 #include <machine/bootconfig.h>
    140 #include <machine/bus.h>
    141 #include <machine/cpu.h>
    142 #include <machine/frame.h>
    143 #include <machine/intr.h>
    144 #include <arm/undefined.h>
    145 
    146 #include <arm/arm32/machdep.h>
    147 
    148 #include <arm/s3c2xx0/s3c2410reg.h>
    149 #include <arm/s3c2xx0/s3c2410var.h>
    150 
    151 #include "ksyms.h"
    152 
    153 #ifndef	SDRAM_START
    154 #define	SDRAM_START	S3C2410_SDRAM_START
    155 #endif
    156 #ifndef	SDRAM_SIZE
    157 #define	SDRAM_SIZE	(32*1024*1024)
    158 #endif
    159 
    160 /*
    161  * Address to map I/O registers in early initialize stage.
    162  */
    163 #define SMDK2410_VBASE_FREE	0xfd000000
    164 
    165 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
    166 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
    167 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    168 
    169 /*
    170  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
    171  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
    172  */
    173 #define KERNEL_VM_SIZE		0x0C000000
    174 
    175 /* Memory disk support */
    176 #if defined(MEMORY_DISK_DYNAMIC) && defined(MEMORY_DISK_ROOT_ADDR)
    177 #define DO_MEMORY_DISK
    178 /* We have memory disk image outside of the kernel on ROM. */
    179 #ifdef MEMORY_DISK_ROOT_ROM
    180 /* map the image directory and use read-only */
    181 #else
    182 /* copy the image to RAM */
    183 #endif
    184 #endif
    185 
    186 
    187 /*
    188  * Address to call from cpu_reset() to reset the machine.
    189  * This is machine architecture dependant as it varies depending
    190  * on where the ROM appears when you turn the MMU off.
    191  */
    192 u_int cpu_reset_address = (u_int)0;
    193 
    194 /* Define various stack sizes in pages */
    195 #define IRQ_STACK_SIZE	1
    196 #define ABT_STACK_SIZE	1
    197 #ifdef IPKDB
    198 #define UND_STACK_SIZE	2
    199 #else
    200 #define UND_STACK_SIZE	1
    201 #endif
    202 
    203 BootConfig bootconfig;		/* Boot config storage */
    204 char *boot_args = NULL;
    205 char *boot_file = NULL;
    206 
    207 vm_offset_t physical_start;
    208 vm_offset_t physical_freestart;
    209 vm_offset_t physical_freeend;
    210 vm_offset_t physical_end;
    211 u_int free_pages;
    212 vm_offset_t pagetables_start;
    213 int physmem = 0;
    214 
    215 /*int debug_flags;*/
    216 #ifndef PMAP_STATIC_L1S
    217 int max_processes = 64;		/* Default number */
    218 #endif				/* !PMAP_STATIC_L1S */
    219 
    220 /* Physical and virtual addresses for some global pages */
    221 pv_addr_t systempage;
    222 pv_addr_t irqstack;
    223 pv_addr_t undstack;
    224 pv_addr_t abtstack;
    225 pv_addr_t kernelstack;
    226 
    227 vm_offset_t msgbufphys;
    228 
    229 extern u_int data_abort_handler_address;
    230 extern u_int prefetch_abort_handler_address;
    231 extern u_int undefined_handler_address;
    232 
    233 #ifdef PMAP_DEBUG
    234 extern int pmap_debug_level;
    235 #endif
    236 
    237 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
    238 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
    239 #define	KERNEL_PT_KERNEL_NUM	2	/* L2 tables for mapping kernel VM */
    240 
    241 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
    242 
    243 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    244 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    245 
    246 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    247 
    248 struct user *proc0paddr;
    249 
    250 /* Prototypes */
    251 
    252 void consinit(void);
    253 void kgdb_port_init(void);
    254 
    255 static int
    256 bootstrap_bs_map(void *t, bus_addr_t bpa, bus_size_t size,
    257     int cacheable, bus_space_handle_t * bshp);
    258 static void copy_io_area_map(pd_entry_t * new_pd);
    259 extern int	s3c24x0_calc_fclk(unsigned int pllcon);
    260 
    261 /* A load of console goo. */
    262 #include "vga.h"
    263 #if NVGA > 0
    264 #include <dev/ic/mc6845reg.h>
    265 #include <dev/ic/pcdisplayvar.h>
    266 #include <dev/ic/vgareg.h>
    267 #include <dev/ic/vgavar.h>
    268 #endif
    269 
    270 #include "com.h"
    271 #if NCOM > 0
    272 #include <dev/ic/comreg.h>
    273 #include <dev/ic/comvar.h>
    274 #endif
    275 
    276 #include "sscom.h"
    277 #if NSSCOM > 0
    278 #include "opt_sscom.h"
    279 #include <arm/s3c2xx0/sscom_var.h>
    280 #endif
    281 
    282 /*
    283  * Define the default console speed for the board.  This is generally
    284  * what the firmware provided with the board defaults to.
    285  */
    286 #ifndef CONSPEED
    287 #define CONSPEED B115200	/* TTYDEF_SPEED */
    288 #endif
    289 #ifndef CONMODE
    290 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8)   /* 8N1 */
    291 #endif
    292 
    293 int comcnspeed = CONSPEED;
    294 int comcnmode = CONMODE;
    295 
    296 struct bus_space bootstrap_bs_tag;
    297 
    298 /*
    299  * void cpu_reboot(int howto, char *bootstr)
    300  *
    301  * Reboots the system
    302  *
    303  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    304  * then reset the CPU.
    305  */
    306 void
    307 cpu_reboot(int howto, char *bootstr)
    308 {
    309 #ifdef DIAGNOSTIC
    310 	/* info */
    311 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
    312 #endif
    313 
    314 	cpu_reset_address = vtophys((u_int)s3c2410_softreset);
    315 
    316 	/*
    317 	 * If we are still cold then hit the air brakes
    318 	 * and crash to earth fast
    319 	 */
    320 	if (cold) {
    321 		doshutdownhooks();
    322 		printf("The operating system has halted.\n");
    323 		printf("Please press any key to reboot.\n\n");
    324 		cngetc();
    325 		printf("rebooting...\n");
    326 		cpu_reset();
    327 		/* NOTREACHED */
    328 	}
    329 	/* Disable console buffering */
    330 
    331 	/*
    332 	 * If RB_NOSYNC was not specified sync the discs.
    333 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    334 	 * unmount.  It looks like syslogd is getting woken up only to find
    335 	 * that it cannot page part of the binary in as the filesystem has
    336 	 * been unmounted.
    337 	 */
    338 	if (!(howto & RB_NOSYNC))
    339 		bootsync();
    340 
    341 	/* Say NO to interrupts */
    342 	splhigh();
    343 
    344 	/* Do a dump if requested. */
    345 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    346 		dumpsys();
    347 
    348 	/* Run any shutdown hooks */
    349 	doshutdownhooks();
    350 
    351 	/* Make sure IRQ's are disabled */
    352 	IRQdisable;
    353 
    354 	if (howto & RB_HALT) {
    355 		printf("The operating system has halted.\n");
    356 		printf("Please press any key to reboot.\n\n");
    357 		cngetc();
    358 	}
    359 	printf("rebooting...\n");
    360 	cpu_reset();
    361 	/* NOTREACHED */
    362 }
    363 
    364 #define ioreg_write8(a,v)  (*(volatile uint8_t *)(a)=(v))
    365 #define	ioreg_read32(a)  	(*(volatile uint32_t *)(a))
    366 #define	ioreg_write32(a,v)  	(*(volatile uint32_t *)(a)=(v))
    367 
    368 /*
    369  * u_int initarm(...)
    370  *
    371  * Initial entry point on startup. This gets called before main() is
    372  * entered.
    373  * It should be responsible for setting up everything that must be
    374  * in place when main is called.
    375  * This includes
    376  *   Taking a copy of the boot configuration structure.
    377  *   Initialising the physical console so characters can be printed.
    378  *   Setting up page tables for the kernel
    379  *   Relocating the kernel to the bottom of physical memory
    380  */
    381 
    382 u_int
    383 initarm(void *arg)
    384 {
    385 	int loop;
    386 	int loop1;
    387 	u_int l1pagetable;
    388 	extern int etext asm("_etext");
    389 	extern int end asm("_end");
    390 	pv_addr_t kernel_l1pt;
    391 	struct s3c24x0_softc temp_softc;	/* used to initialize IO regs */
    392 	int progress_counter = 0;
    393 
    394 #ifdef DO_MEMORY_DISK
    395 	vm_offset_t md_root_start;
    396 #define MD_ROOT_SIZE (MEMORY_DISK_ROOT_SIZE * DEV_BSIZE)
    397 #endif
    398 
    399 #define gpio_read8(reg) bus_space_read_1(temp_softc.sc_sx.sc_iot,  \
    400 					 temp_softc.sc_sx.sc_gpio_ioh, (reg))
    401 
    402 #define LEDSTEP()  __LED(progress_counter++)
    403 
    404 #define pdatf (*(volatile uint8_t *)(S3C2410_GPIO_BASE+GPIO_PFDAT))
    405 #define __LED(x)  (pdatf = (pdatf & ~0xf0) | (~(x) & 0xf0))
    406 
    407 	LEDSTEP();
    408 
    409 	/* CS8900A on CS3 and CL-PD7610 need nBE1 signal. make sure
    410 	 * memory controller is set correctly.  (USB download firmware
    411 	 * doesn't do this right) Also, we use WAIT signal for them.
    412 	 */
    413 	ioreg_write32(S3C2410_MEMCTL_BASE + MEMCTL_BWSCON,
    414 	    (BWSCON_ST|BWSCON_WS) << BWSCON_BANK_SHIFT(2) |
    415 	    (BWSCON_ST|BWSCON_WS) << BWSCON_BANK_SHIFT(3) |
    416 	    ioreg_read32(S3C2410_MEMCTL_BASE + MEMCTL_BWSCON));
    417 	/* tweak access timing for CS8900A */
    418 	ioreg_write32(S3C2410_MEMCTL_BASE + MEMCTL_BANKCON(3),
    419 	    (0<<BANKCON_TACS_SHIFT)|(1<<BANKCON_TCOS_SHIFT)|
    420 	    (7<<BANKCON_TACC_SHIFT)|(0<<BANKCON_TOCH_SHIFT)|
    421 	    (0<<BANKCON_TCAH_SHIFT));
    422 
    423 	/*
    424 	 * Heads up ... Setup the CPU / MMU / TLB functions
    425 	 */
    426 	if (set_cpufuncs())
    427 		panic("cpu not recognized!");
    428 
    429 	LEDSTEP();
    430 
    431 	/*
    432 	 * prepare fake bus space tag
    433 	 */
    434 	bootstrap_bs_tag = s3c2xx0_bs_tag;
    435 	bootstrap_bs_tag.bs_map = bootstrap_bs_map;
    436 	s3c2xx0_softc = &temp_softc.sc_sx;
    437 	s3c2xx0_softc->sc_iot = &bootstrap_bs_tag;
    438 
    439 	bootstrap_bs_map(&bootstrap_bs_tag, S3C2410_GPIO_BASE,
    440 	    S3C2410_GPIO_SIZE, 0, &temp_softc.sc_sx.sc_gpio_ioh);
    441 	bootstrap_bs_map(&bootstrap_bs_tag, S3C2410_INTCTL_BASE,
    442 	    S3C2410_INTCTL_SIZE, 0, &temp_softc.sc_sx.sc_intctl_ioh);
    443 	bootstrap_bs_map(&bootstrap_bs_tag, S3C2410_CLKMAN_BASE,
    444 	    S3C24X0_CLKMAN_SIZE, 0, &temp_softc.sc_sx.sc_clkman_ioh);
    445 
    446 #undef __LED
    447 #define __LED(x) 								\
    448 	bus_space_write_1(&bootstrap_bs_tag, temp_softc.sc_sx.sc_gpio_ioh,	\
    449 	    GPIO_PFDAT, (~((x)<<4) & 0xf0) |					\
    450 	    (gpio_read8(GPIO_PFDAT) & ~0xf0))
    451 
    452 	LEDSTEP();
    453 
    454 	/* Disable all peripheral interrupts */
    455 	bus_space_write_4(&bootstrap_bs_tag, temp_softc.sc_sx.sc_intctl_ioh,
    456 	    INTCTL_INTMSK, ~0);
    457 	/* initialize some variables so that splfoo() doesn't
    458 	   touch illegal address.  */
    459 	s3c2xx0_intr_bootstrap((vaddr_t)bus_space_vaddr(&bootstrap_bs_tag,
    460 	    temp_softc.sc_sx.sc_intctl_ioh));
    461 
    462 	s3c24x0_clock_freq(s3c2xx0_softc);
    463 
    464 	consinit();
    465 #ifdef VERBOSE_INIT_ARM
    466 	printf("consinit done\n");
    467 #endif
    468 
    469 #ifdef KGDB
    470 	LEDSTEP();
    471 	kgdb_port_init();
    472 #endif
    473 	LEDSTEP();
    474 
    475 #ifdef VERBOSE_INIT_ARM
    476 	/* Talk to the user */
    477 	printf("\nNetBSD/evbarm (SMDK2410) booting ...\n");
    478 #endif
    479 	/*
    480 	 * Ok we have the following memory map
    481 	 *
    482 	 * Physical Address Range     Description
    483 	 * -----------------------    ----------------------------------
    484 	 * 0x00000000 - 0x00ffffff    Intel flash Memory   (16MB)
    485 	 * 0x02000000 - 0x020fffff    AMD flash Memory   (1MB)
    486 	 * or 			       (depend on DIPSW setting)
    487 	 * 0x00000000 - 0x000fffff    AMD flash Memory   (1MB)
    488 	 * 0x02000000 - 0x02ffffff    Intel flash Memory   (16MB)
    489 	 *
    490 	 * 0x30000000 - 0x31ffffff    SDRAM (32MB)
    491 	 *
    492 	 * The initarm() has the responsibility for creating the kernel
    493 	 * page tables.
    494 	 * It must also set up various memory pointers that are used
    495 	 * by pmap etc.
    496 	 */
    497 
    498 	/* Fake bootconfig structure for the benefit of pmap.c */
    499 	/* XXX must make the memory description h/w independent */
    500 	bootconfig.dramblocks = 1;
    501 	bootconfig.dram[0].address = SDRAM_START;
    502 	bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE;
    503 
    504 	/*
    505 	 * Set up the variables that define the availablilty of
    506 	 * physical memory.  For now, we're going to set
    507 	 * physical_freestart to 0x08200000 (where the kernel
    508 	 * was loaded), and allocate the memory we need downwards.
    509 	 * If we get too close to the bottom of SDRAM, we
    510 	 * will panic.  We will update physical_freestart and
    511 	 * physical_freeend later to reflect what pmap_bootstrap()
    512 	 * wants to see.
    513 	 *
    514 	 * XXX pmap_bootstrap() needs an enema.
    515 	 */
    516 	physical_start = bootconfig.dram[0].address;
    517 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
    518 
    519 #ifdef DO_MEMORY_DISK
    520 #ifdef MEMORY_DISK_ROOT_ROM
    521 	md_root_start = MEMORY_DISK_ROOT_ADDR;
    522 	boothowto |= RB_RDONLY;
    523 #else
    524 	/* Reserve physmem for ram disk */
    525 	md_root_start = ((physical_end - MD_ROOT_SIZE) & ~(L1_S_SIZE-1));
    526 	printf("Reserve %ld bytes for memory disk\n",
    527 	    physical_end - md_root_start);
    528 	/* copy fs contents */
    529 	memcpy((void *)md_root_start, (void *)MEMORY_DISK_ROOT_ADDR,
    530 	    MD_ROOT_SIZE);
    531 	physical_end = md_root_start;
    532 #endif
    533 #endif
    534 
    535 	physical_freestart = SDRAM_START;	/* XXX */
    536 	physical_freeend = SDRAM_START + 0x00200000;
    537 
    538 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    539 
    540 #ifdef VERBOSE_INIT_ARM
    541 	/* Tell the user about the memory */
    542 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    543 	    physical_start, physical_end - 1);
    544 #endif
    545 
    546 	/*
    547 	 * XXX
    548 	 * Okay, the kernel starts 2MB in from the bottom of physical
    549 	 * memory.  We are going to allocate our bootstrap pages downwards
    550 	 * from there.
    551 	 *
    552 	 * We need to allocate some fixed page tables to get the kernel
    553 	 * going.  We allocate one page directory and a number of page
    554 	 * tables and store the physical addresses in the kernel_pt_table
    555 	 * array.
    556 	 *
    557 	 * The kernel page directory must be on a 16K boundary.  The page
    558 	 * tables must be on 4K boundaries.  What we do is allocate the
    559 	 * page directory on the first 16K boundary that we encounter, and
    560 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    561 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    562 	 * least one 16K aligned region.
    563 	 */
    564 
    565 #ifdef VERBOSE_INIT_ARM
    566 	printf("Allocating page tables\n");
    567 #endif
    568 
    569 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    570 
    571 #ifdef VERBOSE_INIT_ARM
    572 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    573 	    physical_freestart, free_pages, free_pages);
    574 #endif
    575 
    576 	/* Define a macro to simplify memory allocation */
    577 #define	valloc_pages(var, np)				\
    578 	alloc_pages((var).pv_pa, (np));			\
    579 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    580 
    581 #define alloc_pages(var, np)				\
    582 	physical_freeend -= ((np) * PAGE_SIZE);		\
    583 	if (physical_freeend < physical_freestart)	\
    584 		panic("initarm: out of memory");	\
    585 	(var) = physical_freeend;			\
    586 	free_pages -= (np);				\
    587 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    588 
    589 	loop1 = 0;
    590 	kernel_l1pt.pv_pa = 0;
    591 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    592 		/* Are we 16KB aligned for an L1 ? */
    593 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
    594 		    && kernel_l1pt.pv_pa == 0) {
    595 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    596 		} else {
    597 			valloc_pages(kernel_pt_table[loop1],
    598 			    L2_TABLE_SIZE / PAGE_SIZE);
    599 			++loop1;
    600 		}
    601 	}
    602 
    603 	/* This should never be able to happen but better confirm that. */
    604 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
    605 		panic("initarm: Failed to align the kernel page directory\n");
    606 
    607 	/*
    608 	 * Allocate a page for the system page mapped to V0x00000000
    609 	 * This page will just contain the system vectors and can be
    610 	 * shared by all processes.
    611 	 */
    612 	alloc_pages(systempage.pv_pa, 1);
    613 
    614 	/* Allocate stacks for all modes */
    615 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    616 	valloc_pages(abtstack, ABT_STACK_SIZE);
    617 	valloc_pages(undstack, UND_STACK_SIZE);
    618 	valloc_pages(kernelstack, UPAGES);
    619 
    620 #ifdef VERBOSE_INIT_ARM
    621 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    622 	    irqstack.pv_va);
    623 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    624 	    abtstack.pv_va);
    625 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    626 	    undstack.pv_va);
    627 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    628 	    kernelstack.pv_va);
    629 #endif
    630 
    631 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    632 
    633 	LEDSTEP();
    634 
    635 	/*
    636 	 * Ok we have allocated physical pages for the primary kernel
    637 	 * page tables
    638 	 */
    639 
    640 #ifdef VERBOSE_INIT_ARM
    641 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    642 #endif
    643 
    644 	/*
    645 	 * Now we start construction of the L1 page table
    646 	 * We start by mapping the L2 page tables into the L1.
    647 	 * This means that we can replace L1 mappings later on if necessary
    648 	 */
    649 	l1pagetable = kernel_l1pt.pv_pa;
    650 
    651 	/* Map the L2 pages tables in the L1 page table */
    652 	pmap_link_l2pt(l1pagetable, 0x00000000,
    653 	    &kernel_pt_table[KERNEL_PT_SYS]);
    654 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    655 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    656 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    657 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    658 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    659 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    660 
    661 	/* update the top of the kernel VM */
    662 	pmap_curmaxkvaddr =
    663 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    664 
    665 #ifdef VERBOSE_INIT_ARM
    666 	printf("Mapping kernel\n");
    667 #endif
    668 
    669 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    670 	{
    671 		size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE;
    672 		size_t totalsize = (uintptr_t)&end - KERNEL_TEXT_BASE;
    673 		u_int logical;
    674 
    675 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    676 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    677 
    678 		logical = 0x00200000;	/* offset of kernel in RAM */
    679 
    680 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    681 		    physical_start + logical, textsize,
    682 		    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    683 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    684 		    physical_start + logical, totalsize - textsize,
    685 		    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    686 	}
    687 
    688 #ifdef VERBOSE_INIT_ARM
    689 	printf("Constructing L2 page tables\n");
    690 #endif
    691 
    692 	/* Map the stack pages */
    693 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    694 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
    695 	    PTE_CACHE);
    696 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    697 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
    698 	    PTE_CACHE);
    699 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    700 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
    701 	    PTE_CACHE);
    702 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    703 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    704 
    705 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    706 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
    707 
    708 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    709 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    710 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    711 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    712 	}
    713 
    714 	/* Map the vector page. */
    715 #if 1
    716 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
    717 	 * cache-clean code there.  */
    718 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    719 	    VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
    720 #else
    721 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    722 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    723 #endif
    724 
    725 #ifdef MEMORY_DISK_DYNAMIC
    726 	/* map MD root image */
    727 	bootstrap_bs_map(&bootstrap_bs_tag, md_root_start, MD_ROOT_SIZE,
    728 			 BUS_SPACE_MAP_CACHEABLE | BUS_SPACE_MAP_LINEAR,
    729 			 (bus_space_handle_t *)&md_root_start);
    730 
    731 	md_root_setconf((void *)md_root_start, MD_ROOT_SIZE);
    732 #endif /* MEMORY_DISK_DYNAMIC */
    733 	/*
    734 	 * map integrated peripherals at same address in l1pagetable
    735 	 * so that we can continue to use console.
    736 	 */
    737 	copy_io_area_map((pd_entry_t *)l1pagetable);
    738 
    739 	/*
    740 	 * Now we have the real page tables in place so we can switch to them.
    741 	 * Once this is done we will be running with the REAL kernel page
    742 	 * tables.
    743 	 */
    744 
    745 	/*
    746 	 * Update the physical_freestart/physical_freeend/free_pages
    747 	 * variables.
    748 	 */
    749 	{
    750 		physical_freestart = physical_start +
    751 		    (((((uintptr_t)&end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE);
    752 		physical_freeend = physical_end;
    753 		free_pages =
    754 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
    755 	}
    756 
    757 	/* Switch tables */
    758 #ifdef VERBOSE_INIT_ARM
    759 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    760 	    physical_freestart, free_pages, free_pages);
    761 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    762 #endif
    763 	LEDSTEP();
    764 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    765 	setttb(kernel_l1pt.pv_pa);
    766 	cpu_tlb_flushID();
    767 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    768 
    769 	/*
    770 	 * Moved from cpu_startup() as data_abort_handler() references
    771 	 * this during uvm init
    772 	 */
    773 	proc0paddr = (struct user *)kernelstack.pv_va;
    774 	lwp0.l_addr = proc0paddr;
    775 
    776 #ifdef VERBOSE_INIT_ARM
    777 	printf("done!\n");
    778 #endif
    779 
    780 	LEDSTEP();
    781 #ifdef VERBOSE_INIT_ARM
    782 	printf("bootstrap done.\n");
    783 #endif
    784 
    785 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
    786 
    787 	/*
    788 	 * Pages were allocated during the secondary bootstrap for the
    789 	 * stacks for different CPU modes.
    790 	 * We must now set the r13 registers in the different CPU modes to
    791 	 * point to these stacks.
    792 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    793 	 * of the stack memory.
    794 	 */
    795 #ifdef VERBOSE_INIT_ARM
    796 	printf("init subsystems: stacks ");
    797 #endif
    798 
    799 	set_stackptr(PSR_IRQ32_MODE,
    800 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    801 	set_stackptr(PSR_ABT32_MODE,
    802 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    803 	set_stackptr(PSR_UND32_MODE,
    804 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    805 
    806 	LEDSTEP();
    807 
    808 	/*
    809 	 * Well we should set a data abort handler.
    810 	 * Once things get going this will change as we will need a proper
    811 	 * handler.
    812 	 * Until then we will use a handler that just panics but tells us
    813 	 * why.
    814 	 * Initialisation of the vectors will just panic on a data abort.
    815 	 * This just fills in a slightly better one.
    816 	 */
    817 #ifdef VERBOSE_INIT_ARM
    818 	printf("vectors ");
    819 #endif
    820 	data_abort_handler_address = (u_int)data_abort_handler;
    821 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    822 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    823 
    824 	/* Initialise the undefined instruction handlers */
    825 #ifdef VERBOSE_INIT_ARM
    826 	printf("undefined ");
    827 #endif
    828 	undefined_init();
    829 
    830 	LEDSTEP();
    831 
    832 	/* Load memory into UVM. */
    833 #ifdef VERBOSE_INIT_ARM
    834 	printf("page ");
    835 #endif
    836 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
    837 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    838 	    atop(physical_freestart), atop(physical_freeend),
    839 	    VM_FREELIST_DEFAULT);
    840 
    841 	LEDSTEP();
    842 	/* Boot strap pmap telling it where the kernel page table is */
    843 #ifdef VERBOSE_INIT_ARM
    844 	printf("pmap ");
    845 #endif
    846 	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
    847 	    KERNEL_VM_BASE + KERNEL_VM_SIZE);
    848 
    849 	LEDSTEP();
    850 
    851 	/* Setup the IRQ system */
    852 #ifdef VERBOSE_INIT_ARM
    853 	printf("irq ");
    854 #endif
    855 	/* XXX irq_init(); */
    856 
    857 #ifdef VERBOSE_INIT_ARM
    858 	printf("done.\n");
    859 #endif
    860 
    861 #ifdef BOOTHOWTO
    862 	boothowto |= BOOTHOWTO;
    863 #endif
    864 	{
    865 		uint8_t  gpio = ~gpio_read8(GPIO_PFDAT);
    866 
    867 		if (gpio & (1<<0)) /* SW1 (EINT0) */
    868 			boothowto ^= RB_SINGLE;
    869 		if (gpio & (1<<2)) /* SW2 (EINT2) */
    870 			boothowto ^= RB_KDB;
    871 #ifdef VERBOSE_INIT_ARM
    872 		printf( "sw: %x boothowto: %x\n", gpio, boothowto );
    873 #endif
    874 	}
    875 
    876 #ifdef IPKDB
    877 	/* Initialise ipkdb */
    878 	ipkdb_init();
    879 	if (boothowto & RB_KDB)
    880 		ipkdb_connect(0);
    881 #endif
    882 
    883 #ifdef KGDB
    884 	if (boothowto & RB_KDB) {
    885 		kgdb_debug_init = 1;
    886 		kgdb_connect(1);
    887 	}
    888 #endif
    889 
    890 #if NKSYMS || defined(DDB) || defined(LKM)
    891 	/* Firmware doesn't load symbols. */
    892 	ksyms_init(0, NULL, NULL);
    893 #endif
    894 
    895 #ifdef DDB
    896 	db_machine_init();
    897 	if (boothowto & RB_KDB)
    898 		Debugger();
    899 #endif
    900 
    901 	/* We return the new stack pointer address */
    902 	return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    903 }
    904 
    905 void
    906 consinit(void)
    907 {
    908 	static int consinit_done = 0;
    909 	bus_space_tag_t iot = s3c2xx0_softc->sc_iot;
    910 	int pclk = s3c2xx0_softc->sc_pclk;
    911 
    912 	if (consinit_done != 0)
    913 		return;
    914 
    915 	consinit_done = 1;
    916 
    917 #if NSSCOM > 0
    918 #ifdef SSCOM0CONSOLE
    919 	if (0 == s3c2410_sscom_cnattach(iot, 0, comcnspeed,
    920 		pclk, comcnmode))
    921 		return;
    922 #endif
    923 #ifdef SSCOM1CONSOLE
    924 	if (0 == s3c2410_sscom_cnattach(iot, 1, comcnspeed,
    925 		pclk, comcnmode))
    926 		return;
    927 #endif
    928 #endif				/* NSSCOM */
    929 #if NCOM>0 && defined(CONCOMADDR)
    930 	if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
    931 		COM_FREQ, COM_TYPE_NORMAL, comcnmode))
    932 		panic("can't init serial console @%x", CONCOMADDR);
    933 	return;
    934 #endif
    935 
    936 	consinit_done = 0;
    937 }
    938 
    939 
    940 #ifdef KGDB
    941 
    942 #if (NSSCOM > 0)
    943 
    944 #ifdef KGDB_DEVNAME
    945 const char kgdb_devname[] = KGDB_DEVNAME;
    946 #else
    947 const char kgdb_devname[] = "";
    948 #endif
    949 
    950 #ifndef KGDB_DEVMODE
    951 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */
    952 #endif
    953 int kgdb_sscom_mode = KGDB_DEVMODE;
    954 
    955 #endif				/* NSSCOM */
    956 
    957 void
    958 kgdb_port_init(void)
    959 {
    960 #if (NSSCOM > 0)
    961 	int unit = -1;
    962 	int pclk = s3c2xx0_softc->sc_pclk;
    963 
    964 	if (strcmp(kgdb_devname, "sscom0") == 0)
    965 		unit = 0;
    966 	else if (strcmp(kgdb_devname, "sscom1") == 0)
    967 		unit = 1;
    968 
    969 	if (unit >= 0) {
    970 		s3c2410_sscom_kgdb_attach(s3c2xx0_softc->sc_iot,
    971 		    unit, kgdb_rate, pclk, kgdb_sscom_mode);
    972 	}
    973 #endif
    974 }
    975 #endif
    976 
    977 static __inline
    978        pd_entry_t *
    979 read_ttb(void)
    980 {
    981 	long ttb;
    982 
    983 	__asm __volatile("mrc	p15, 0, %0, c2, c0, 0" : "=r"(ttb));
    984 
    985 
    986 	return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
    987 }
    988 
    989 
    990 static __inline void
    991 writeback_dcache_line(vaddr_t va)
    992 {
    993 	/* writeback Dcache line */
    994 	/* we can't use cpu_dcache_wb_range() here, because cpufuncs for ARM9
    995 	 * assume write-through cache, and always flush Dcache instead of
    996 	 * cleaning it. Since Boot loader maps page table with write-back
    997 	 * cached, we really need to clean Dcache. */
    998 	asm("mcr	p15, 0, %0, c7, c10, 1"
    999 	    : :	"r"(va));
   1000 }
   1001 
   1002 static __inline void
   1003 clean_dcache_line(vaddr_t va)
   1004 {
   1005 	/* writeback and invalidate Dcache line */
   1006 	asm("mcr	p15, 0, %0, c7, c14, 1"
   1007 	    : : "r"(va));
   1008 }
   1009 
   1010 static vaddr_t section_free = SMDK2410_VBASE_FREE;
   1011 
   1012 /*
   1013  * simple memory mapping function used in early bootstrap stage
   1014  * before pmap is initialized.
   1015  * This assumes only peripheral registers to map. they are mapped to
   1016  * fixed address with section mapping.
   1017  */
   1018 static int
   1019 bootstrap_bs_map(void *t, bus_addr_t bpa, bus_size_t size,
   1020     int flag, bus_space_handle_t * bshp)
   1021 {
   1022 	long offset;
   1023 	int modified = 0;
   1024 	pd_entry_t *pagedir = read_ttb();
   1025 	/* This assumes PA==VA for page directory */
   1026 
   1027 	if (0) {
   1028 	} else {
   1029 		vaddr_t va;
   1030 		bus_addr_t pa;
   1031 		int cacheable = flag & BUS_SPACE_MAP_CACHEABLE;
   1032 
   1033 
   1034 		size = (size + L1_S_OFFSET) & ~L1_S_OFFSET;
   1035 		pa = bpa & ~L1_S_OFFSET;
   1036 		offset = bpa - pa;
   1037 
   1038 		va = section_free;
   1039 		while (size) {
   1040 			pmap_map_section((vaddr_t)pagedir, va,
   1041 			    pa, VM_PROT_READ | VM_PROT_WRITE,
   1042 			    cacheable ? PTE_CACHE : PTE_NOCACHE);
   1043 			writeback_dcache_line((vaddr_t)& pagedir[va >> L1_S_SHIFT]);
   1044 			va += L1_S_SIZE;
   1045 			pa += L1_S_SIZE;
   1046 			size -= L1_S_SIZE;
   1047 		}
   1048 
   1049 		*bshp = (bus_space_handle_t)(section_free + offset);
   1050 		section_free = va;
   1051 	}
   1052 
   1053 
   1054 	if (modified) {
   1055 
   1056 		cpu_drain_writebuf();
   1057 		cpu_tlb_flushD();
   1058 	}
   1059 	return (0);
   1060 }
   1061 
   1062 static void
   1063 copy_io_area_map(pd_entry_t * new_pd)
   1064 {
   1065 	pd_entry_t *cur_pd = read_ttb();
   1066 	int sec;
   1067 
   1068 	for (sec = SMDK2410_VBASE_FREE >> L1_S_SHIFT;
   1069 	    sec < (section_free >> L1_S_SHIFT); ++sec) {
   1070 		new_pd[sec] = cur_pd[sec];
   1071 		writeback_dcache_line((vaddr_t)&new_pd[sec]);
   1072 	}
   1073 	cpu_drain_writebuf();
   1074 }
   1075 
   1076 
   1077 static struct arm32_dma_range smdk2410_dma_ranges[1];
   1078 
   1079 bus_dma_tag_t
   1080 s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template)
   1081 {
   1082 	extern paddr_t physical_start, physical_end;
   1083 	struct arm32_bus_dma_tag *dmat;
   1084 
   1085 	smdk2410_dma_ranges[0].dr_sysbase = physical_start;
   1086 	smdk2410_dma_ranges[0].dr_busbase = physical_start;
   1087 	smdk2410_dma_ranges[0].dr_len = physical_end - physical_start;
   1088 
   1089 #if 1
   1090 	dmat = dma_tag_template;
   1091 #else
   1092 	dmat = malloc(sizeof *dmat, M_DEVBUF, M_NOWAIT);
   1093 	if (dmat == NULL)
   1094 		return NULL;
   1095 	*dmat =  *dma_tag_template;
   1096 #endif
   1097 
   1098 	dmat->_ranges = smdk2410_dma_ranges;
   1099 	dmat->_nranges = 1;
   1100 
   1101 	return dmat;
   1102 }
   1103