Home | History | Annotate | Line # | Download | only in smdk2xx0
smdk2410_machdep.c revision 1.12
      1 /*	$NetBSD: smdk2410_machdep.c,v 1.12 2005/03/16 05:02:12 bsh Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2002, 2003 Fujitsu Component Limited
      5  * Copyright (c) 2002, 2003, 2005 Genetec Corporation
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of The Fujitsu Component Limited nor the name of
     17  *    Genetec corporation may not be used to endorse or promote products
     18  *    derived from this software without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
     21  * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     22  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     23  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     24  * DISCLAIMED.  IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
     25  * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     27  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
     28  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     29  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 /*
     35  * Copyright (c) 2001,2002 ARM Ltd
     36  * All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. The name of the company may not be used to endorse or promote
     47  *    products derived from this software without specific prior written
     48  *    permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     52  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     53  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD
     54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     60  * POSSIBILITY OF SUCH DAMAGE.
     61  *
     62  */
     63 
     64 /*
     65  * Copyright (c) 1997,1998 Mark Brinicombe.
     66  * Copyright (c) 1997,1998 Causality Limited.
     67  * All rights reserved.
     68  *
     69  * Redistribution and use in source and binary forms, with or without
     70  * modification, are permitted provided that the following conditions
     71  * are met:
     72  * 1. Redistributions of source code must retain the above copyright
     73  *    notice, this list of conditions and the following disclaimer.
     74  * 2. Redistributions in binary form must reproduce the above copyright
     75  *    notice, this list of conditions and the following disclaimer in the
     76  *    documentation and/or other materials provided with the distribution.
     77  * 3. All advertising materials mentioning features or use of this software
     78  *    must display the following acknowledgement:
     79  *	This product includes software developed by Mark Brinicombe
     80  *	for the NetBSD Project.
     81  * 4. The name of the company nor the name of the author may be used to
     82  *    endorse or promote products derived from this software without specific
     83  *    prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     86  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     87  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     88  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     89  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     90  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     91  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  * Machine dependant functions for kernel setup for integrator board
     98  *
     99  * Created      : 24/11/97
    100  */
    101 
    102 /*
    103  * Machine dependant functions for kernel setup for Samsung SMDK2410
    104  * derived from integrator_machdep.c
    105  */
    106 
    107 #include <sys/cdefs.h>
    108 __KERNEL_RCSID(0, "$NetBSD: smdk2410_machdep.c,v 1.12 2005/03/16 05:02:12 bsh Exp $");
    109 
    110 #include "opt_ddb.h"
    111 #include "opt_kgdb.h"
    112 #include "opt_ipkdb.h"
    113 #include "opt_pmap_debug.h"
    114 #include "opt_md.h"
    115 
    116 #include <sys/param.h>
    117 #include <sys/device.h>
    118 #include <sys/systm.h>
    119 #include <sys/kernel.h>
    120 #include <sys/exec.h>
    121 #include <sys/proc.h>
    122 #include <sys/msgbuf.h>
    123 #include <sys/reboot.h>
    124 #include <sys/termios.h>
    125 #include <sys/ksyms.h>
    126 
    127 #include <uvm/uvm_extern.h>
    128 
    129 #include <dev/cons.h>
    130 #include <dev/md.h>
    131 
    132 #include <machine/db_machdep.h>
    133 #include <ddb/db_sym.h>
    134 #include <ddb/db_extern.h>
    135 #ifdef KGDB
    136 #include <sys/kgdb.h>
    137 #endif
    138 
    139 #include <machine/bootconfig.h>
    140 #include <machine/bus.h>
    141 #include <machine/cpu.h>
    142 #include <machine/frame.h>
    143 #include <machine/intr.h>
    144 #include <arm/undefined.h>
    145 
    146 #include <arm/arm32/machdep.h>
    147 
    148 #include <arm/s3c2xx0/s3c2410reg.h>
    149 #include <arm/s3c2xx0/s3c2410var.h>
    150 
    151 #include "ksyms.h"
    152 
    153 #ifndef	SDRAM_START
    154 #define	SDRAM_START	S3C2410_SDRAM_START
    155 #endif
    156 #ifndef	SDRAM_SIZE
    157 #define	SDRAM_SIZE	(32*1024*1024)
    158 #endif
    159 
    160 /*
    161  * Address to map I/O registers in early initialize stage.
    162  */
    163 #define SMDK2410_IO_VBASE	0xfd000000
    164 
    165 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
    166 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
    167 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    168 
    169 /*
    170  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
    171  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
    172  */
    173 #define KERNEL_VM_SIZE		0x0C000000
    174 
    175 /* Memory disk support */
    176 #if defined(MEMORY_DISK_DYNAMIC) && defined(MEMORY_DISK_ROOT_ADDR)
    177 #define DO_MEMORY_DISK
    178 /* We have memory disk image outside of the kernel on ROM. */
    179 #ifdef MEMORY_DISK_ROOT_ROM
    180 /* map the image directory and use read-only */
    181 #else
    182 /* copy the image to RAM */
    183 #endif
    184 #endif
    185 
    186 
    187 /*
    188  * Address to call from cpu_reset() to reset the machine.
    189  * This is machine architecture dependant as it varies depending
    190  * on where the ROM appears when you turn the MMU off.
    191  */
    192 u_int cpu_reset_address = (u_int)0;
    193 
    194 /* Define various stack sizes in pages */
    195 #define IRQ_STACK_SIZE	1
    196 #define ABT_STACK_SIZE	1
    197 #ifdef IPKDB
    198 #define UND_STACK_SIZE	2
    199 #else
    200 #define UND_STACK_SIZE	1
    201 #endif
    202 
    203 BootConfig bootconfig;		/* Boot config storage */
    204 char *boot_args = NULL;
    205 char *boot_file = NULL;
    206 
    207 vm_offset_t physical_start;
    208 vm_offset_t physical_freestart;
    209 vm_offset_t physical_freeend;
    210 vm_offset_t physical_end;
    211 u_int free_pages;
    212 vm_offset_t pagetables_start;
    213 int physmem = 0;
    214 
    215 /*int debug_flags;*/
    216 #ifndef PMAP_STATIC_L1S
    217 int max_processes = 64;		/* Default number */
    218 #endif				/* !PMAP_STATIC_L1S */
    219 
    220 /* Physical and virtual addresses for some global pages */
    221 pv_addr_t systempage;
    222 pv_addr_t irqstack;
    223 pv_addr_t undstack;
    224 pv_addr_t abtstack;
    225 pv_addr_t kernelstack;
    226 
    227 vm_offset_t msgbufphys;
    228 
    229 extern u_int data_abort_handler_address;
    230 extern u_int prefetch_abort_handler_address;
    231 extern u_int undefined_handler_address;
    232 
    233 #ifdef PMAP_DEBUG
    234 extern int pmap_debug_level;
    235 #endif
    236 
    237 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
    238 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
    239 #define	KERNEL_PT_KERNEL_NUM	2	/* L2 tables for mapping kernel VM */
    240 
    241 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
    242 
    243 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    244 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    245 
    246 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    247 
    248 struct user *proc0paddr;
    249 
    250 /* Prototypes */
    251 
    252 void consinit(void);
    253 void kgdb_port_init(void);
    254 
    255 
    256 #include "com.h"
    257 #if NCOM > 0
    258 #include <dev/ic/comreg.h>
    259 #include <dev/ic/comvar.h>
    260 #endif
    261 
    262 #include "sscom.h"
    263 #if NSSCOM > 0
    264 #include "opt_sscom.h"
    265 #include <arm/s3c2xx0/sscom_var.h>
    266 #endif
    267 
    268 /*
    269  * Define the default console speed for the board.  This is generally
    270  * what the firmware provided with the board defaults to.
    271  */
    272 #ifndef CONSPEED
    273 #define CONSPEED B115200	/* TTYDEF_SPEED */
    274 #endif
    275 #ifndef CONMODE
    276 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8)   /* 8N1 */
    277 #endif
    278 
    279 int comcnspeed = CONSPEED;
    280 int comcnmode = CONMODE;
    281 
    282 
    283 /*
    284  * void cpu_reboot(int howto, char *bootstr)
    285  *
    286  * Reboots the system
    287  *
    288  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    289  * then reset the CPU.
    290  */
    291 void
    292 cpu_reboot(int howto, char *bootstr)
    293 {
    294 #ifdef DIAGNOSTIC
    295 	/* info */
    296 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
    297 #endif
    298 
    299 	cpu_reset_address = vtophys((u_int)s3c2410_softreset);
    300 
    301 	/*
    302 	 * If we are still cold then hit the air brakes
    303 	 * and crash to earth fast
    304 	 */
    305 	if (cold) {
    306 		doshutdownhooks();
    307 		printf("The operating system has halted.\n");
    308 		printf("Please press any key to reboot.\n\n");
    309 		cngetc();
    310 		printf("rebooting...\n");
    311 		cpu_reset();
    312 		/* NOTREACHED */
    313 	}
    314 	/* Disable console buffering */
    315 
    316 	/*
    317 	 * If RB_NOSYNC was not specified sync the discs.
    318 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    319 	 * unmount.  It looks like syslogd is getting woken up only to find
    320 	 * that it cannot page part of the binary in as the filesystem has
    321 	 * been unmounted.
    322 	 */
    323 	if (!(howto & RB_NOSYNC))
    324 		bootsync();
    325 
    326 	/* Say NO to interrupts */
    327 	splhigh();
    328 
    329 	/* Do a dump if requested. */
    330 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    331 		dumpsys();
    332 
    333 	/* Run any shutdown hooks */
    334 	doshutdownhooks();
    335 
    336 	/* Make sure IRQ's are disabled */
    337 	IRQdisable;
    338 
    339 	if (howto & RB_HALT) {
    340 		printf("The operating system has halted.\n");
    341 		printf("Please press any key to reboot.\n\n");
    342 		cngetc();
    343 	}
    344 	printf("rebooting...\n");
    345 	cpu_reset();
    346 	/* NOTREACHED */
    347 }
    348 
    349 /*
    350  * Static device mappings. These peripheral registers are mapped at
    351  * fixed virtual addresses very early in initarm() so that we can use
    352  * them while booting the kernel , and stay at the same address
    353  * throughout whole kernel's life time.
    354  *
    355  * We use this table twice; once with bootstrap page table, and once
    356  * with kernel's page table which we build up in initarm().
    357  *
    358  * Since we map these registers into the bootstrap page table using
    359  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
    360  * registers segment-aligned and segment-rounded in order to avoid
    361  * using the 2nd page tables.
    362  */
    363 
    364 #define	_A(a)	((a) & ~L1_S_OFFSET)
    365 #define	_S(s)	(((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
    366 
    367 #define	_V(n)	(SMDK2410_IO_VBASE + (n) * L1_S_SIZE)
    368 
    369 #define	GPIO_VBASE	_V(0)
    370 #define	INTCTL_VBASE	_V(1)
    371 #define	CLKMAN_VBASE	_V(2)
    372 #define	UART_VBASE	_V(3)
    373 #ifdef	MEMORY_DISK_DYNAMIC
    374 #define	MEMORY_DISK_VADDR	_V(4)
    375 #endif
    376 
    377 static const struct pmap_devmap smdk2410_devmap[] = {
    378 	/* GPIO registers */
    379 	{
    380 		GPIO_VBASE,
    381 		_A(S3C2410_GPIO_BASE),
    382 		_S(S3C2410_GPIO_SIZE),
    383 		VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    384 	},
    385 	{
    386 		INTCTL_VBASE,
    387 		_A(S3C2410_INTCTL_BASE),
    388 		_S(S3C2410_INTCTL_SIZE),
    389 		VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    390 	},
    391 	{
    392 		CLKMAN_VBASE,
    393 		_A(S3C2410_CLKMAN_BASE),
    394 		_S(S3C24X0_CLKMAN_SIZE),
    395 		VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    396 	},
    397 	{	/* UART registers for UART0, 1, 2. */
    398 		UART_VBASE,
    399 		_A(S3C2410_UART0_BASE),
    400 		_S(S3C2410_UART_BASE(3) - S3C2410_UART0_BASE),
    401 		VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    402 	},
    403 
    404 	{ 0, 0, 0, 0 }
    405 };
    406 
    407 #undef	_A
    408 #undef	_S
    409 
    410 static __inline	pd_entry_t *
    411 read_ttb(void)
    412 {
    413 	long ttb;
    414 
    415 	__asm __volatile("mrc	p15, 0, %0, c2, c0, 0" : "=r"(ttb));
    416 
    417 
    418 	return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
    419 }
    420 
    421 
    422 #define	ioreg_read8(a)  	(*(volatile uint8_t *)(a))
    423 #define	ioreg_write8(a,v)	(*(volatile uint8_t *)(a)=(v))
    424 #define	ioreg_read32(a)  	(*(volatile uint32_t *)(a))
    425 #define	ioreg_write32(a,v)  	(*(volatile uint32_t *)(a)=(v))
    426 
    427 /*
    428  * u_int initarm(...)
    429  *
    430  * Initial entry point on startup. This gets called before main() is
    431  * entered.
    432  * It should be responsible for setting up everything that must be
    433  * in place when main is called.
    434  * This includes
    435  *   Taking a copy of the boot configuration structure.
    436  *   Initialising the physical console so characters can be printed.
    437  *   Setting up page tables for the kernel
    438  *   Relocating the kernel to the bottom of physical memory
    439  */
    440 
    441 u_int
    442 initarm(void *arg)
    443 {
    444 	int loop;
    445 	int loop1;
    446 	u_int l1pagetable;
    447 	extern int etext asm("_etext");
    448 	extern int end asm("_end");
    449 	pv_addr_t kernel_l1pt;
    450 	int progress_counter = 0;
    451 
    452 #ifdef DO_MEMORY_DISK
    453 	vm_offset_t md_root_start;
    454 #define MD_ROOT_SIZE (MEMORY_DISK_ROOT_SIZE * DEV_BSIZE)
    455 #endif
    456 
    457 #define gpio_read8(reg) ioreg_read8(GPIO_VBASE + (reg))
    458 
    459 #define LEDSTEP()  __LED(progress_counter++)
    460 
    461 #define pdatf (*(volatile uint8_t *)(S3C2410_GPIO_BASE+GPIO_PFDAT))
    462 #define __LED(x)  (pdatf = (pdatf & ~0xf0) | (~(x) & 0xf0))
    463 
    464 	LEDSTEP();
    465 
    466 	/* CS8900A on CS3 and CL-PD7610 need nBE1 signal. make sure
    467 	 * memory controller is set correctly.  (USB download firmware
    468 	 * doesn't do this right) Also, we use WAIT signal for them.
    469 	 */
    470 	ioreg_write32(S3C2410_MEMCTL_BASE + MEMCTL_BWSCON,
    471 	    (BWSCON_ST|BWSCON_WS) << BWSCON_BANK_SHIFT(2) |
    472 	    (BWSCON_ST|BWSCON_WS) << BWSCON_BANK_SHIFT(3) |
    473 	    ioreg_read32(S3C2410_MEMCTL_BASE + MEMCTL_BWSCON));
    474 	/* tweak access timing for CS8900A */
    475 	ioreg_write32(S3C2410_MEMCTL_BASE + MEMCTL_BANKCON(3),
    476 	    (0<<BANKCON_TACS_SHIFT)|(1<<BANKCON_TCOS_SHIFT)|
    477 	    (7<<BANKCON_TACC_SHIFT)|(0<<BANKCON_TOCH_SHIFT)|
    478 	    (0<<BANKCON_TCAH_SHIFT));
    479 
    480 	/*
    481 	 * Heads up ... Setup the CPU / MMU / TLB functions
    482 	 */
    483 	if (set_cpufuncs())
    484 		panic("cpu not recognized!");
    485 
    486 	LEDSTEP();
    487 
    488 	/*
    489 	 * Map I/O registers that are used in startup.  Now we are
    490 	 * still using page table prepared by bootloader.  Later we'll
    491 	 * map those registers at the same address in the kernel page
    492 	 * table.
    493 	 */
    494 	pmap_devmap_bootstrap((vaddr_t)read_ttb(), smdk2410_devmap);
    495 
    496 #undef	pdatf
    497 #define pdatf (*(volatile uint8_t *)(GPIO_VBASE+GPIO_PFDAT))
    498 
    499 
    500 	LEDSTEP();
    501 
    502 	/* Disable all peripheral interrupts */
    503 	ioreg_write32(INTCTL_VBASE + INTCTL_INTMSK, ~0);
    504 
    505 	/* initialize some variables so that splfoo() doesn't
    506 	   touch illegal address.  */
    507 	s3c2xx0_intr_bootstrap(INTCTL_VBASE);
    508 
    509 	consinit();
    510 #ifdef VERBOSE_INIT_ARM
    511 	printf("consinit done\n");
    512 #endif
    513 
    514 #ifdef KGDB
    515 	LEDSTEP();
    516 	kgdb_port_init();
    517 #endif
    518 	LEDSTEP();
    519 
    520 #ifdef VERBOSE_INIT_ARM
    521 	/* Talk to the user */
    522 	printf("\nNetBSD/evbarm (SMDK2410) booting ...\n");
    523 #endif
    524 	/*
    525 	 * Ok we have the following memory map
    526 	 *
    527 	 * Physical Address Range     Description
    528 	 * -----------------------    ----------------------------------
    529 	 * 0x00000000 - 0x00ffffff    Intel flash Memory   (16MB)
    530 	 * 0x02000000 - 0x020fffff    AMD flash Memory   (1MB)
    531 	 * or 			       (depend on DIPSW setting)
    532 	 * 0x00000000 - 0x000fffff    AMD flash Memory   (1MB)
    533 	 * 0x02000000 - 0x02ffffff    Intel flash Memory   (16MB)
    534 	 *
    535 	 * 0x30000000 - 0x31ffffff    SDRAM (32MB)
    536 	 *
    537 	 * The initarm() has the responsibility for creating the kernel
    538 	 * page tables.
    539 	 * It must also set up various memory pointers that are used
    540 	 * by pmap etc.
    541 	 */
    542 
    543 	/* Fake bootconfig structure for the benefit of pmap.c */
    544 	/* XXX must make the memory description h/w independent */
    545 	bootconfig.dramblocks = 1;
    546 	bootconfig.dram[0].address = SDRAM_START;
    547 	bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE;
    548 
    549 	/*
    550 	 * Set up the variables that define the availablilty of
    551 	 * physical memory.  For now, we're going to set
    552 	 * physical_freestart to 0x08200000 (where the kernel
    553 	 * was loaded), and allocate the memory we need downwards.
    554 	 * If we get too close to the bottom of SDRAM, we
    555 	 * will panic.  We will update physical_freestart and
    556 	 * physical_freeend later to reflect what pmap_bootstrap()
    557 	 * wants to see.
    558 	 *
    559 	 * XXX pmap_bootstrap() needs an enema.
    560 	 */
    561 	physical_start = bootconfig.dram[0].address;
    562 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
    563 
    564 #ifdef DO_MEMORY_DISK
    565 #ifdef MEMORY_DISK_ROOT_ROM
    566 	md_root_start = MEMORY_DISK_ROOT_ADDR;
    567 	boothowto |= RB_RDONLY;
    568 #else
    569 	/* Reserve physmem for ram disk */
    570 	md_root_start = ((physical_end - MD_ROOT_SIZE) & ~(L1_S_SIZE-1));
    571 	printf("Reserve %ld bytes for memory disk\n",
    572 	    physical_end - md_root_start);
    573 	/* copy fs contents */
    574 	memcpy((void *)md_root_start, (void *)MEMORY_DISK_ROOT_ADDR,
    575 	    MD_ROOT_SIZE);
    576 	physical_end = md_root_start;
    577 #endif
    578 #endif
    579 
    580 	physical_freestart = SDRAM_START;	/* XXX */
    581 	physical_freeend = SDRAM_START + 0x00200000;
    582 
    583 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    584 
    585 #ifdef VERBOSE_INIT_ARM
    586 	/* Tell the user about the memory */
    587 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    588 	    physical_start, physical_end - 1);
    589 #endif
    590 
    591 	/*
    592 	 * XXX
    593 	 * Okay, the kernel starts 2MB in from the bottom of physical
    594 	 * memory.  We are going to allocate our bootstrap pages downwards
    595 	 * from there.
    596 	 *
    597 	 * We need to allocate some fixed page tables to get the kernel
    598 	 * going.  We allocate one page directory and a number of page
    599 	 * tables and store the physical addresses in the kernel_pt_table
    600 	 * array.
    601 	 *
    602 	 * The kernel page directory must be on a 16K boundary.  The page
    603 	 * tables must be on 4K boundaries.  What we do is allocate the
    604 	 * page directory on the first 16K boundary that we encounter, and
    605 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    606 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    607 	 * least one 16K aligned region.
    608 	 */
    609 
    610 #ifdef VERBOSE_INIT_ARM
    611 	printf("Allocating page tables\n");
    612 #endif
    613 
    614 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    615 
    616 #ifdef VERBOSE_INIT_ARM
    617 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    618 	    physical_freestart, free_pages, free_pages);
    619 #endif
    620 
    621 	/* Define a macro to simplify memory allocation */
    622 #define	valloc_pages(var, np)				\
    623 	alloc_pages((var).pv_pa, (np));			\
    624 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    625 
    626 #define alloc_pages(var, np)				\
    627 	physical_freeend -= ((np) * PAGE_SIZE);		\
    628 	if (physical_freeend < physical_freestart)	\
    629 		panic("initarm: out of memory");	\
    630 	(var) = physical_freeend;			\
    631 	free_pages -= (np);				\
    632 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    633 
    634 	loop1 = 0;
    635 	kernel_l1pt.pv_pa = 0;
    636 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    637 		/* Are we 16KB aligned for an L1 ? */
    638 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
    639 		    && kernel_l1pt.pv_pa == 0) {
    640 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    641 		} else {
    642 			valloc_pages(kernel_pt_table[loop1],
    643 			    L2_TABLE_SIZE / PAGE_SIZE);
    644 			++loop1;
    645 		}
    646 	}
    647 
    648 	/* This should never be able to happen but better confirm that. */
    649 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
    650 		panic("initarm: Failed to align the kernel page directory\n");
    651 
    652 	/*
    653 	 * Allocate a page for the system page mapped to V0x00000000
    654 	 * This page will just contain the system vectors and can be
    655 	 * shared by all processes.
    656 	 */
    657 	alloc_pages(systempage.pv_pa, 1);
    658 
    659 	/* Allocate stacks for all modes */
    660 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    661 	valloc_pages(abtstack, ABT_STACK_SIZE);
    662 	valloc_pages(undstack, UND_STACK_SIZE);
    663 	valloc_pages(kernelstack, UPAGES);
    664 
    665 #ifdef VERBOSE_INIT_ARM
    666 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    667 	    irqstack.pv_va);
    668 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    669 	    abtstack.pv_va);
    670 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    671 	    undstack.pv_va);
    672 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    673 	    kernelstack.pv_va);
    674 #endif
    675 
    676 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    677 
    678 	LEDSTEP();
    679 
    680 	/*
    681 	 * Ok we have allocated physical pages for the primary kernel
    682 	 * page tables
    683 	 */
    684 
    685 #ifdef VERBOSE_INIT_ARM
    686 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    687 #endif
    688 
    689 	/*
    690 	 * Now we start construction of the L1 page table
    691 	 * We start by mapping the L2 page tables into the L1.
    692 	 * This means that we can replace L1 mappings later on if necessary
    693 	 */
    694 	l1pagetable = kernel_l1pt.pv_pa;
    695 
    696 	/* Map the L2 pages tables in the L1 page table */
    697 	pmap_link_l2pt(l1pagetable, 0x00000000,
    698 	    &kernel_pt_table[KERNEL_PT_SYS]);
    699 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    700 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    701 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    702 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    703 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    704 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    705 
    706 	/* update the top of the kernel VM */
    707 	pmap_curmaxkvaddr =
    708 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    709 
    710 #ifdef VERBOSE_INIT_ARM
    711 	printf("Mapping kernel\n");
    712 #endif
    713 
    714 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    715 	{
    716 		size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE;
    717 		size_t totalsize = (uintptr_t)&end - KERNEL_TEXT_BASE;
    718 		u_int logical;
    719 
    720 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    721 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    722 
    723 		logical = 0x00200000;	/* offset of kernel in RAM */
    724 
    725 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    726 		    physical_start + logical, textsize,
    727 		    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    728 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    729 		    physical_start + logical, totalsize - textsize,
    730 		    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    731 	}
    732 
    733 #ifdef VERBOSE_INIT_ARM
    734 	printf("Constructing L2 page tables\n");
    735 #endif
    736 
    737 	/* Map the stack pages */
    738 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    739 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
    740 	    PTE_CACHE);
    741 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    742 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
    743 	    PTE_CACHE);
    744 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    745 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
    746 	    PTE_CACHE);
    747 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    748 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    749 
    750 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    751 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
    752 
    753 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    754 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    755 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    756 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    757 	}
    758 
    759 	/* Map the vector page. */
    760 #if 1
    761 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
    762 	 * cache-clean code there.  */
    763 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    764 	    VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
    765 #else
    766 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    767 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    768 #endif
    769 
    770 #ifdef MEMORY_DISK_DYNAMIC
    771 	/* map MD root image */
    772 	pmap_map_chunk(l1pagetable, MEMORY_DISK_VADDR, md_root_start,
    773 	    MD_ROOT_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    774 
    775 	md_root_setconf((void *)md_root_start, MD_ROOT_SIZE);
    776 #endif /* MEMORY_DISK_DYNAMIC */
    777 	/*
    778 	 * map integrated peripherals at same address in l1pagetable
    779 	 * so that we can continue to use console.
    780 	 */
    781 	pmap_devmap_bootstrap(l1pagetable, smdk2410_devmap);
    782 
    783 	/*
    784 	 * Now we have the real page tables in place so we can switch to them.
    785 	 * Once this is done we will be running with the REAL kernel page
    786 	 * tables.
    787 	 */
    788 
    789 	/*
    790 	 * Update the physical_freestart/physical_freeend/free_pages
    791 	 * variables.
    792 	 */
    793 	{
    794 		physical_freestart = physical_start +
    795 		    (((((uintptr_t)&end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE);
    796 		physical_freeend = physical_end;
    797 		free_pages =
    798 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
    799 	}
    800 
    801 	/* Switch tables */
    802 #ifdef VERBOSE_INIT_ARM
    803 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    804 	    physical_freestart, free_pages, free_pages);
    805 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    806 #endif
    807 	LEDSTEP();
    808 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    809 	setttb(kernel_l1pt.pv_pa);
    810 	cpu_tlb_flushID();
    811 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    812 
    813 	/*
    814 	 * Moved from cpu_startup() as data_abort_handler() references
    815 	 * this during uvm init
    816 	 */
    817 	proc0paddr = (struct user *)kernelstack.pv_va;
    818 	lwp0.l_addr = proc0paddr;
    819 
    820 #ifdef VERBOSE_INIT_ARM
    821 	printf("done!\n");
    822 #endif
    823 
    824 	LEDSTEP();
    825 #ifdef VERBOSE_INIT_ARM
    826 	printf("bootstrap done.\n");
    827 #endif
    828 
    829 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
    830 
    831 	/*
    832 	 * Pages were allocated during the secondary bootstrap for the
    833 	 * stacks for different CPU modes.
    834 	 * We must now set the r13 registers in the different CPU modes to
    835 	 * point to these stacks.
    836 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    837 	 * of the stack memory.
    838 	 */
    839 #ifdef VERBOSE_INIT_ARM
    840 	printf("init subsystems: stacks ");
    841 #endif
    842 
    843 	set_stackptr(PSR_IRQ32_MODE,
    844 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    845 	set_stackptr(PSR_ABT32_MODE,
    846 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    847 	set_stackptr(PSR_UND32_MODE,
    848 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    849 
    850 	LEDSTEP();
    851 
    852 	/*
    853 	 * Well we should set a data abort handler.
    854 	 * Once things get going this will change as we will need a proper
    855 	 * handler.
    856 	 * Until then we will use a handler that just panics but tells us
    857 	 * why.
    858 	 * Initialisation of the vectors will just panic on a data abort.
    859 	 * This just fills in a slightly better one.
    860 	 */
    861 #ifdef VERBOSE_INIT_ARM
    862 	printf("vectors ");
    863 #endif
    864 	data_abort_handler_address = (u_int)data_abort_handler;
    865 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    866 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    867 
    868 	/* Initialise the undefined instruction handlers */
    869 #ifdef VERBOSE_INIT_ARM
    870 	printf("undefined ");
    871 #endif
    872 	undefined_init();
    873 
    874 	LEDSTEP();
    875 
    876 	/* Load memory into UVM. */
    877 #ifdef VERBOSE_INIT_ARM
    878 	printf("page ");
    879 #endif
    880 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
    881 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    882 	    atop(physical_freestart), atop(physical_freeend),
    883 	    VM_FREELIST_DEFAULT);
    884 
    885 	LEDSTEP();
    886 	/* Boot strap pmap telling it where the kernel page table is */
    887 #ifdef VERBOSE_INIT_ARM
    888 	printf("pmap ");
    889 #endif
    890 	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
    891 	    KERNEL_VM_BASE + KERNEL_VM_SIZE);
    892 
    893 	LEDSTEP();
    894 
    895 	/* Setup the IRQ system */
    896 #ifdef VERBOSE_INIT_ARM
    897 	printf("irq ");
    898 #endif
    899 	/* XXX irq_init(); */
    900 
    901 #ifdef VERBOSE_INIT_ARM
    902 	printf("done.\n");
    903 #endif
    904 
    905 #ifdef BOOTHOWTO
    906 	boothowto |= BOOTHOWTO;
    907 #endif
    908 	{
    909 		uint8_t  gpio = ~gpio_read8(GPIO_PFDAT);
    910 
    911 		if (gpio & (1<<0)) /* SW1 (EINT0) */
    912 			boothowto ^= RB_SINGLE;
    913 		if (gpio & (1<<2)) /* SW2 (EINT2) */
    914 			boothowto ^= RB_KDB;
    915 #ifdef VERBOSE_INIT_ARM
    916 		printf( "sw: %x boothowto: %x\n", gpio, boothowto );
    917 #endif
    918 	}
    919 
    920 #ifdef IPKDB
    921 	/* Initialise ipkdb */
    922 	ipkdb_init();
    923 	if (boothowto & RB_KDB)
    924 		ipkdb_connect(0);
    925 #endif
    926 
    927 #ifdef KGDB
    928 	if (boothowto & RB_KDB) {
    929 		kgdb_debug_init = 1;
    930 		kgdb_connect(1);
    931 	}
    932 #endif
    933 
    934 #if NKSYMS || defined(DDB) || defined(LKM)
    935 	/* Firmware doesn't load symbols. */
    936 	ksyms_init(0, NULL, NULL);
    937 #endif
    938 
    939 #ifdef DDB
    940 	db_machine_init();
    941 	if (boothowto & RB_KDB)
    942 		Debugger();
    943 #endif
    944 
    945 	/* We return the new stack pointer address */
    946 	return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    947 }
    948 
    949 void
    950 consinit(void)
    951 {
    952 	static int consinit_done = 0;
    953 	bus_space_tag_t iot = &s3c2xx0_bs_tag;
    954 	int pclk;
    955 
    956 	if (consinit_done != 0)
    957 		return;
    958 
    959 	consinit_done = 1;
    960 
    961 	s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
    962 
    963 #if NSSCOM > 0
    964 #ifdef SSCOM0CONSOLE
    965 	if (0 == s3c2410_sscom_cnattach(iot, 0, comcnspeed,
    966 		pclk, comcnmode))
    967 		return;
    968 #endif
    969 #ifdef SSCOM1CONSOLE
    970 	if (0 == s3c2410_sscom_cnattach(iot, 1, comcnspeed,
    971 		pclk, comcnmode))
    972 		return;
    973 #endif
    974 #endif				/* NSSCOM */
    975 #if NCOM>0 && defined(CONCOMADDR)
    976 	if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
    977 		COM_FREQ, COM_TYPE_NORMAL, comcnmode))
    978 		panic("can't init serial console @%x", CONCOMADDR);
    979 	return;
    980 #endif
    981 
    982 	consinit_done = 0;
    983 }
    984 
    985 
    986 #ifdef KGDB
    987 
    988 #if (NSSCOM > 0)
    989 
    990 #ifdef KGDB_DEVNAME
    991 const char kgdb_devname[] = KGDB_DEVNAME;
    992 #else
    993 const char kgdb_devname[] = "";
    994 #endif
    995 
    996 #ifndef KGDB_DEVMODE
    997 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */
    998 #endif
    999 int kgdb_sscom_mode = KGDB_DEVMODE;
   1000 
   1001 #endif				/* NSSCOM */
   1002 
   1003 void
   1004 kgdb_port_init(void)
   1005 {
   1006 #if (NSSCOM > 0)
   1007 	int unit = -1;
   1008 	int pclk;
   1009 
   1010 	if (strcmp(kgdb_devname, "sscom0") == 0)
   1011 		unit = 0;
   1012 	else if (strcmp(kgdb_devname, "sscom1") == 0)
   1013 		unit = 1;
   1014 
   1015 	if (unit >= 0) {
   1016 		s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
   1017 
   1018 		s3c2410_sscom_kgdb_attach(&s3c2xx0_bs_tag,
   1019 		    unit, kgdb_rate, pclk, kgdb_sscom_mode);
   1020 	}
   1021 #endif
   1022 }
   1023 #endif
   1024 
   1025 static __inline void
   1026 writeback_dcache_line(vaddr_t va)
   1027 {
   1028 	/* writeback Dcache line */
   1029 	/* we can't use cpu_dcache_wb_range() here, because cpufuncs for ARM9
   1030 	 * assume write-through cache, and always flush Dcache instead of
   1031 	 * cleaning it. Since Boot loader maps page table with write-back
   1032 	 * cached, we really need to clean Dcache. */
   1033 	asm("mcr	p15, 0, %0, c7, c10, 1"
   1034 	    : :	"r"(va));
   1035 }
   1036 
   1037 static __inline void
   1038 clean_dcache_line(vaddr_t va)
   1039 {
   1040 	/* writeback and invalidate Dcache line */
   1041 	asm("mcr	p15, 0, %0, c7, c14, 1"
   1042 	    : : "r"(va));
   1043 }
   1044 
   1045 static struct arm32_dma_range smdk2410_dma_ranges[1];
   1046 
   1047 bus_dma_tag_t
   1048 s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template)
   1049 {
   1050 	extern paddr_t physical_start, physical_end;
   1051 	struct arm32_bus_dma_tag *dmat;
   1052 
   1053 	smdk2410_dma_ranges[0].dr_sysbase = physical_start;
   1054 	smdk2410_dma_ranges[0].dr_busbase = physical_start;
   1055 	smdk2410_dma_ranges[0].dr_len = physical_end - physical_start;
   1056 
   1057 #if 1
   1058 	dmat = dma_tag_template;
   1059 #else
   1060 	dmat = malloc(sizeof *dmat, M_DEVBUF, M_NOWAIT);
   1061 	if (dmat == NULL)
   1062 		return NULL;
   1063 	*dmat =  *dma_tag_template;
   1064 #endif
   1065 
   1066 	dmat->_ranges = smdk2410_dma_ranges;
   1067 	dmat->_nranges = 1;
   1068 
   1069 	return dmat;
   1070 }
   1071