smdk2410_machdep.c revision 1.23 1 /* $NetBSD: smdk2410_machdep.c,v 1.23 2009/08/11 17:04:17 matt Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003 Fujitsu Component Limited
5 * Copyright (c) 2002, 2003, 2005 Genetec Corporation
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The Fujitsu Component Limited nor the name of
17 * Genetec corporation may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
21 * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
22 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
23 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24 * DISCLAIMED. IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
25 * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34 /*
35 * Copyright (c) 2001,2002 ARM Ltd
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. The name of the company may not be used to endorse or promote
47 * products derived from this software without specific prior written
48 * permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
52 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
60 * POSSIBILITY OF SUCH DAMAGE.
61 *
62 */
63
64 /*
65 * Copyright (c) 1997,1998 Mark Brinicombe.
66 * Copyright (c) 1997,1998 Causality Limited.
67 * All rights reserved.
68 *
69 * Redistribution and use in source and binary forms, with or without
70 * modification, are permitted provided that the following conditions
71 * are met:
72 * 1. Redistributions of source code must retain the above copyright
73 * notice, this list of conditions and the following disclaimer.
74 * 2. Redistributions in binary form must reproduce the above copyright
75 * notice, this list of conditions and the following disclaimer in the
76 * documentation and/or other materials provided with the distribution.
77 * 3. All advertising materials mentioning features or use of this software
78 * must display the following acknowledgement:
79 * This product includes software developed by Mark Brinicombe
80 * for the NetBSD Project.
81 * 4. The name of the company nor the name of the author may be used to
82 * endorse or promote products derived from this software without specific
83 * prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
86 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
87 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
88 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
89 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
90 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
91 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * Machine dependant functions for kernel setup for integrator board
98 *
99 * Created : 24/11/97
100 */
101
102 /*
103 * Machine dependant functions for kernel setup for Samsung SMDK2410
104 * derived from integrator_machdep.c
105 */
106
107 #include <sys/cdefs.h>
108 __KERNEL_RCSID(0, "$NetBSD: smdk2410_machdep.c,v 1.23 2009/08/11 17:04:17 matt Exp $");
109
110 #include "opt_ddb.h"
111 #include "opt_kgdb.h"
112 #include "opt_pmap_debug.h"
113 #include "opt_md.h"
114
115 #include <sys/param.h>
116 #include <sys/device.h>
117 #include <sys/systm.h>
118 #include <sys/kernel.h>
119 #include <sys/exec.h>
120 #include <sys/proc.h>
121 #include <sys/msgbuf.h>
122 #include <sys/reboot.h>
123 #include <sys/termios.h>
124 #include <sys/ksyms.h>
125
126 #include <uvm/uvm_extern.h>
127
128 #include <dev/cons.h>
129 #include <dev/md.h>
130
131 #include <machine/db_machdep.h>
132 #include <ddb/db_sym.h>
133 #include <ddb/db_extern.h>
134 #ifdef KGDB
135 #include <sys/kgdb.h>
136 #endif
137
138 #include <machine/bootconfig.h>
139 #include <machine/bus.h>
140 #include <machine/cpu.h>
141 #include <machine/frame.h>
142 #include <machine/intr.h>
143 #include <arm/undefined.h>
144
145 #include <arm/arm32/machdep.h>
146
147 #include <arm/s3c2xx0/s3c2410reg.h>
148 #include <arm/s3c2xx0/s3c2410var.h>
149
150 #include "ksyms.h"
151
152 #ifndef SDRAM_START
153 #define SDRAM_START S3C2410_SDRAM_START
154 #endif
155 #ifndef SDRAM_SIZE
156 #define SDRAM_SIZE (32*1024*1024)
157 #endif
158
159 /*
160 * Address to map I/O registers in early initialize stage.
161 */
162 #define SMDK2410_IO_VBASE 0xfd000000
163
164 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
165 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
166 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
167
168 /*
169 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
170 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
171 */
172 #define KERNEL_VM_SIZE 0x0C000000
173
174 /* Memory disk support */
175 #if defined(MEMORY_DISK_DYNAMIC) && defined(MEMORY_DISK_ROOT_ADDR)
176 #define DO_MEMORY_DISK
177 /* We have memory disk image outside of the kernel on ROM. */
178 #ifdef MEMORY_DISK_ROOT_ROM
179 /* map the image directory and use read-only */
180 #else
181 /* copy the image to RAM */
182 #endif
183 #endif
184
185
186 /*
187 * Address to call from cpu_reset() to reset the machine.
188 * This is machine architecture dependant as it varies depending
189 * on where the ROM appears when you turn the MMU off.
190 */
191 u_int cpu_reset_address = (u_int)0;
192
193 /* Define various stack sizes in pages */
194 #define IRQ_STACK_SIZE 1
195 #define ABT_STACK_SIZE 1
196 #define UND_STACK_SIZE 1
197
198 BootConfig bootconfig; /* Boot config storage */
199 char *boot_args = NULL;
200 char *boot_file = NULL;
201
202 vm_offset_t physical_start;
203 vm_offset_t physical_freestart;
204 vm_offset_t physical_freeend;
205 vm_offset_t physical_end;
206 u_int free_pages;
207 vm_offset_t pagetables_start;
208
209 /*int debug_flags;*/
210 #ifndef PMAP_STATIC_L1S
211 int max_processes = 64; /* Default number */
212 #endif /* !PMAP_STATIC_L1S */
213
214 /* Physical and virtual addresses for some global pages */
215 pv_addr_t irqstack;
216 pv_addr_t undstack;
217 pv_addr_t abtstack;
218 pv_addr_t kernelstack;
219
220 vm_offset_t msgbufphys;
221
222 extern u_int data_abort_handler_address;
223 extern u_int prefetch_abort_handler_address;
224 extern u_int undefined_handler_address;
225
226 #ifdef PMAP_DEBUG
227 extern int pmap_debug_level;
228 #endif
229
230 #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
231 #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
232 #define KERNEL_PT_KERNEL_NUM 2 /* L2 tables for mapping kernel VM */
233
234 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
235
236 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
237 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
238
239 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
240
241 struct user *proc0paddr;
242
243 /* Prototypes */
244
245 void consinit(void);
246 void kgdb_port_init(void);
247
248
249 #include "com.h"
250 #if NCOM > 0
251 #include <dev/ic/comreg.h>
252 #include <dev/ic/comvar.h>
253 #endif
254
255 #include "sscom.h"
256 #if NSSCOM > 0
257 #include "opt_sscom.h"
258 #include <arm/s3c2xx0/sscom_var.h>
259 #endif
260
261 /*
262 * Define the default console speed for the board. This is generally
263 * what the firmware provided with the board defaults to.
264 */
265 #ifndef CONSPEED
266 #define CONSPEED B115200 /* TTYDEF_SPEED */
267 #endif
268 #ifndef CONMODE
269 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
270 #endif
271
272 int comcnspeed = CONSPEED;
273 int comcnmode = CONMODE;
274
275
276 /*
277 * void cpu_reboot(int howto, char *bootstr)
278 *
279 * Reboots the system
280 *
281 * Deal with any syncing, unmounting, dumping and shutdown hooks,
282 * then reset the CPU.
283 */
284 void
285 cpu_reboot(int howto, char *bootstr)
286 {
287 #ifdef DIAGNOSTIC
288 /* info */
289 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
290 #endif
291
292 cpu_reset_address = vtophys((u_int)s3c2410_softreset);
293
294 /*
295 * If we are still cold then hit the air brakes
296 * and crash to earth fast
297 */
298 if (cold) {
299 doshutdownhooks();
300 pmf_system_shutdown(boothowto);
301 printf("The operating system has halted.\n");
302 printf("Please press any key to reboot.\n\n");
303 cngetc();
304 printf("rebooting...\n");
305 cpu_reset();
306 /* NOTREACHED */
307 }
308 /* Disable console buffering */
309
310 /*
311 * If RB_NOSYNC was not specified sync the discs.
312 * Note: Unless cold is set to 1 here, syslogd will die during the
313 * unmount. It looks like syslogd is getting woken up only to find
314 * that it cannot page part of the binary in as the filesystem has
315 * been unmounted.
316 */
317 if (!(howto & RB_NOSYNC))
318 bootsync();
319
320 /* Say NO to interrupts */
321 splhigh();
322
323 /* Do a dump if requested. */
324 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
325 dumpsys();
326
327 /* Run any shutdown hooks */
328 doshutdownhooks();
329
330 pmf_system_shutdown(boothowto);
331
332 /* Make sure IRQ's are disabled */
333 IRQdisable;
334
335 if (howto & RB_HALT) {
336 printf("The operating system has halted.\n");
337 printf("Please press any key to reboot.\n\n");
338 cngetc();
339 }
340 printf("rebooting...\n");
341 cpu_reset();
342 /* NOTREACHED */
343 }
344
345 /*
346 * Static device mappings. These peripheral registers are mapped at
347 * fixed virtual addresses very early in initarm() so that we can use
348 * them while booting the kernel , and stay at the same address
349 * throughout whole kernel's life time.
350 *
351 * We use this table twice; once with bootstrap page table, and once
352 * with kernel's page table which we build up in initarm().
353 *
354 * Since we map these registers into the bootstrap page table using
355 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
356 * registers segment-aligned and segment-rounded in order to avoid
357 * using the 2nd page tables.
358 */
359
360 #define _A(a) ((a) & ~L1_S_OFFSET)
361 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
362
363 #define _V(n) (SMDK2410_IO_VBASE + (n) * L1_S_SIZE)
364
365 #define GPIO_VBASE _V(0)
366 #define INTCTL_VBASE _V(1)
367 #define CLKMAN_VBASE _V(2)
368 #define UART_VBASE _V(3)
369 #ifdef MEMORY_DISK_DYNAMIC
370 #define MEMORY_DISK_VADDR _V(4)
371 #endif
372
373 static const struct pmap_devmap smdk2410_devmap[] = {
374 /* GPIO registers */
375 {
376 GPIO_VBASE,
377 _A(S3C2410_GPIO_BASE),
378 _S(S3C2410_GPIO_SIZE),
379 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
380 },
381 {
382 INTCTL_VBASE,
383 _A(S3C2410_INTCTL_BASE),
384 _S(S3C2410_INTCTL_SIZE),
385 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
386 },
387 {
388 CLKMAN_VBASE,
389 _A(S3C2410_CLKMAN_BASE),
390 _S(S3C24X0_CLKMAN_SIZE),
391 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
392 },
393 { /* UART registers for UART0, 1, 2. */
394 UART_VBASE,
395 _A(S3C2410_UART0_BASE),
396 _S(S3C2410_UART_BASE(3) - S3C2410_UART0_BASE),
397 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
398 },
399
400 { 0, 0, 0, 0 }
401 };
402
403 #undef _A
404 #undef _S
405
406 static inline pd_entry_t *
407 read_ttb(void)
408 {
409 long ttb;
410
411 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(ttb));
412
413
414 return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
415 }
416
417
418 #define ioreg_read8(a) (*(volatile uint8_t *)(a))
419 #define ioreg_write8(a,v) (*(volatile uint8_t *)(a)=(v))
420 #define ioreg_read32(a) (*(volatile uint32_t *)(a))
421 #define ioreg_write32(a,v) (*(volatile uint32_t *)(a)=(v))
422
423 /*
424 * u_int initarm(...)
425 *
426 * Initial entry point on startup. This gets called before main() is
427 * entered.
428 * It should be responsible for setting up everything that must be
429 * in place when main is called.
430 * This includes
431 * Taking a copy of the boot configuration structure.
432 * Initialising the physical console so characters can be printed.
433 * Setting up page tables for the kernel
434 * Relocating the kernel to the bottom of physical memory
435 */
436
437 u_int
438 initarm(void *arg)
439 {
440 int loop;
441 int loop1;
442 u_int l1pagetable;
443 extern int etext __asm("_etext");
444 extern int end __asm("_end");
445 int progress_counter = 0;
446
447 #ifdef DO_MEMORY_DISK
448 vm_offset_t md_root_start;
449 #define MD_ROOT_SIZE (MEMORY_DISK_ROOT_SIZE * DEV_BSIZE)
450 #endif
451
452 #define gpio_read8(reg) ioreg_read8(GPIO_VBASE + (reg))
453
454 #define LEDSTEP() __LED(progress_counter++)
455
456 #define pdatf (*(volatile uint8_t *)(S3C2410_GPIO_BASE+GPIO_PFDAT))
457 #define __LED(x) (pdatf = (pdatf & ~0xf0) | (~(x) & 0xf0))
458
459 LEDSTEP();
460
461 /* CS8900A on CS3 and CL-PD7610 need nBE1 signal. make sure
462 * memory controller is set correctly. (USB download firmware
463 * doesn't do this right) Also, we use WAIT signal for them.
464 */
465 ioreg_write32(S3C2410_MEMCTL_BASE + MEMCTL_BWSCON,
466 (BWSCON_ST|BWSCON_WS) << BWSCON_BANK_SHIFT(2) |
467 (BWSCON_ST|BWSCON_WS) << BWSCON_BANK_SHIFT(3) |
468 ioreg_read32(S3C2410_MEMCTL_BASE + MEMCTL_BWSCON));
469 /* tweak access timing for CS8900A */
470 ioreg_write32(S3C2410_MEMCTL_BASE + MEMCTL_BANKCON(3),
471 (0<<BANKCON_TACS_SHIFT)|(1<<BANKCON_TCOS_SHIFT)|
472 (7<<BANKCON_TACC_SHIFT)|(0<<BANKCON_TOCH_SHIFT)|
473 (0<<BANKCON_TCAH_SHIFT));
474
475 /*
476 * Heads up ... Setup the CPU / MMU / TLB functions
477 */
478 if (set_cpufuncs())
479 panic("cpu not recognized!");
480
481 LEDSTEP();
482
483 /*
484 * Map I/O registers that are used in startup. Now we are
485 * still using page table prepared by bootloader. Later we'll
486 * map those registers at the same address in the kernel page
487 * table.
488 */
489 pmap_devmap_bootstrap((vaddr_t)read_ttb(), smdk2410_devmap);
490
491 #undef pdatf
492 #define pdatf (*(volatile uint8_t *)(GPIO_VBASE+GPIO_PFDAT))
493
494
495 LEDSTEP();
496
497 /* Disable all peripheral interrupts */
498 ioreg_write32(INTCTL_VBASE + INTCTL_INTMSK, ~0);
499
500 /* initialize some variables so that splfoo() doesn't
501 touch illegal address. */
502 s3c2xx0_intr_bootstrap(INTCTL_VBASE);
503
504 consinit();
505 #ifdef VERBOSE_INIT_ARM
506 printf("consinit done\n");
507 #endif
508
509 #ifdef KGDB
510 LEDSTEP();
511 kgdb_port_init();
512 #endif
513 LEDSTEP();
514
515 #ifdef VERBOSE_INIT_ARM
516 /* Talk to the user */
517 printf("\nNetBSD/evbarm (SMDK2410) booting ...\n");
518 #endif
519 /*
520 * Ok we have the following memory map
521 *
522 * Physical Address Range Description
523 * ----------------------- ----------------------------------
524 * 0x00000000 - 0x00ffffff Intel flash Memory (16MB)
525 * 0x02000000 - 0x020fffff AMD flash Memory (1MB)
526 * or (depend on DIPSW setting)
527 * 0x00000000 - 0x000fffff AMD flash Memory (1MB)
528 * 0x02000000 - 0x02ffffff Intel flash Memory (16MB)
529 *
530 * 0x30000000 - 0x31ffffff SDRAM (32MB)
531 *
532 * The initarm() has the responsibility for creating the kernel
533 * page tables.
534 * It must also set up various memory pointers that are used
535 * by pmap etc.
536 */
537
538 /* Fake bootconfig structure for the benefit of pmap.c */
539 /* XXX must make the memory description h/w independent */
540 bootconfig.dramblocks = 1;
541 bootconfig.dram[0].address = SDRAM_START;
542 bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE;
543
544 /*
545 * Set up the variables that define the availablilty of
546 * physical memory. For now, we're going to set
547 * physical_freestart to 0x08200000 (where the kernel
548 * was loaded), and allocate the memory we need downwards.
549 * If we get too close to the bottom of SDRAM, we
550 * will panic. We will update physical_freestart and
551 * physical_freeend later to reflect what pmap_bootstrap()
552 * wants to see.
553 *
554 * XXX pmap_bootstrap() needs an enema.
555 */
556 physical_start = bootconfig.dram[0].address;
557 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
558
559 #ifdef DO_MEMORY_DISK
560 #ifdef MEMORY_DISK_ROOT_ROM
561 md_root_start = MEMORY_DISK_ROOT_ADDR;
562 boothowto |= RB_RDONLY;
563 #else
564 /* Reserve physmem for ram disk */
565 md_root_start = ((physical_end - MD_ROOT_SIZE) & ~(L1_S_SIZE-1));
566 printf("Reserve %ld bytes for memory disk\n",
567 physical_end - md_root_start);
568 /* copy fs contents */
569 memcpy((void *)md_root_start, (void *)MEMORY_DISK_ROOT_ADDR,
570 MD_ROOT_SIZE);
571 physical_end = md_root_start;
572 #endif
573 #endif
574
575 physical_freestart = SDRAM_START; /* XXX */
576 physical_freeend = SDRAM_START + 0x00200000;
577
578 physmem = (physical_end - physical_start) / PAGE_SIZE;
579
580 #ifdef VERBOSE_INIT_ARM
581 /* Tell the user about the memory */
582 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
583 physical_start, physical_end - 1);
584 #endif
585
586 /*
587 * XXX
588 * Okay, the kernel starts 2MB in from the bottom of physical
589 * memory. We are going to allocate our bootstrap pages downwards
590 * from there.
591 *
592 * We need to allocate some fixed page tables to get the kernel
593 * going. We allocate one page directory and a number of page
594 * tables and store the physical addresses in the kernel_pt_table
595 * array.
596 *
597 * The kernel page directory must be on a 16K boundary. The page
598 * tables must be on 4K boundaries. What we do is allocate the
599 * page directory on the first 16K boundary that we encounter, and
600 * the page tables on 4K boundaries otherwise. Since we allocate
601 * at least 3 L2 page tables, we are guaranteed to encounter at
602 * least one 16K aligned region.
603 */
604
605 #ifdef VERBOSE_INIT_ARM
606 printf("Allocating page tables\n");
607 #endif
608
609 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
610
611 #ifdef VERBOSE_INIT_ARM
612 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
613 physical_freestart, free_pages, free_pages);
614 #endif
615
616 /* Define a macro to simplify memory allocation */
617 #define valloc_pages(var, np) \
618 alloc_pages((var).pv_pa, (np)); \
619 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
620
621 #define alloc_pages(var, np) \
622 physical_freeend -= ((np) * PAGE_SIZE); \
623 if (physical_freeend < physical_freestart) \
624 panic("initarm: out of memory"); \
625 (var) = physical_freeend; \
626 free_pages -= (np); \
627 memset((char *)(var), 0, ((np) * PAGE_SIZE));
628
629 loop1 = 0;
630 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
631 /* Are we 16KB aligned for an L1 ? */
632 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
633 && kernel_l1pt.pv_pa == 0) {
634 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
635 } else {
636 valloc_pages(kernel_pt_table[loop1],
637 L2_TABLE_SIZE / PAGE_SIZE);
638 ++loop1;
639 }
640 }
641
642 /* This should never be able to happen but better confirm that. */
643 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
644 panic("initarm: Failed to align the kernel page directory\n");
645
646 /*
647 * Allocate a page for the system page mapped to V0x00000000
648 * This page will just contain the system vectors and can be
649 * shared by all processes.
650 */
651 alloc_pages(systempage.pv_pa, 1);
652
653 /* Allocate stacks for all modes */
654 valloc_pages(irqstack, IRQ_STACK_SIZE);
655 valloc_pages(abtstack, ABT_STACK_SIZE);
656 valloc_pages(undstack, UND_STACK_SIZE);
657 valloc_pages(kernelstack, UPAGES);
658
659 #ifdef VERBOSE_INIT_ARM
660 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
661 irqstack.pv_va);
662 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
663 abtstack.pv_va);
664 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
665 undstack.pv_va);
666 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
667 kernelstack.pv_va);
668 #endif
669
670 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
671
672 LEDSTEP();
673
674 /*
675 * Ok we have allocated physical pages for the primary kernel
676 * page tables
677 */
678
679 #ifdef VERBOSE_INIT_ARM
680 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
681 #endif
682
683 /*
684 * Now we start construction of the L1 page table
685 * We start by mapping the L2 page tables into the L1.
686 * This means that we can replace L1 mappings later on if necessary
687 */
688 l1pagetable = kernel_l1pt.pv_pa;
689
690 /* Map the L2 pages tables in the L1 page table */
691 pmap_link_l2pt(l1pagetable, 0x00000000,
692 &kernel_pt_table[KERNEL_PT_SYS]);
693 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
694 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
695 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
696 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
697 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
698 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
699
700 /* update the top of the kernel VM */
701 pmap_curmaxkvaddr =
702 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
703
704 #ifdef VERBOSE_INIT_ARM
705 printf("Mapping kernel\n");
706 #endif
707
708 /* Now we fill in the L2 pagetable for the kernel static code/data */
709 {
710 size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE;
711 size_t totalsize = (uintptr_t)&end - KERNEL_TEXT_BASE;
712 u_int logical;
713
714 textsize = (textsize + PGOFSET) & ~PGOFSET;
715 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
716
717 logical = 0x00200000; /* offset of kernel in RAM */
718
719 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
720 physical_start + logical, textsize,
721 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
722 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
723 physical_start + logical, totalsize - textsize,
724 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
725 }
726
727 #ifdef VERBOSE_INIT_ARM
728 printf("Constructing L2 page tables\n");
729 #endif
730
731 /* Map the stack pages */
732 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
733 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
734 PTE_CACHE);
735 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
736 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
737 PTE_CACHE);
738 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
739 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
740 PTE_CACHE);
741 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
742 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
743
744 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
745 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
746
747 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
748 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
749 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
750 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
751 }
752
753 /* Map the vector page. */
754 #if 1
755 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
756 * cache-clean code there. */
757 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
758 VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
759 #else
760 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
761 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
762 #endif
763
764 #ifdef MEMORY_DISK_DYNAMIC
765 /* map MD root image */
766 pmap_map_chunk(l1pagetable, MEMORY_DISK_VADDR, md_root_start,
767 MD_ROOT_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
768
769 md_root_setconf((void *)md_root_start, MD_ROOT_SIZE);
770 #endif /* MEMORY_DISK_DYNAMIC */
771 /*
772 * map integrated peripherals at same address in l1pagetable
773 * so that we can continue to use console.
774 */
775 pmap_devmap_bootstrap(l1pagetable, smdk2410_devmap);
776
777 /*
778 * Now we have the real page tables in place so we can switch to them.
779 * Once this is done we will be running with the REAL kernel page
780 * tables.
781 */
782
783 /*
784 * Update the physical_freestart/physical_freeend/free_pages
785 * variables.
786 */
787 {
788 physical_freestart = physical_start +
789 (((((uintptr_t)&end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE);
790 physical_freeend = physical_end;
791 free_pages =
792 (physical_freeend - physical_freestart) / PAGE_SIZE;
793 }
794
795 /* Switch tables */
796 #ifdef VERBOSE_INIT_ARM
797 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
798 physical_freestart, free_pages, free_pages);
799 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
800 #endif
801 LEDSTEP();
802 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
803 setttb(kernel_l1pt.pv_pa);
804 cpu_tlb_flushID();
805 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
806
807 /*
808 * Moved from cpu_startup() as data_abort_handler() references
809 * this during uvm init
810 */
811 proc0paddr = (struct user *)kernelstack.pv_va;
812 lwp0.l_addr = proc0paddr;
813
814 #ifdef VERBOSE_INIT_ARM
815 printf("done!\n");
816 #endif
817
818 LEDSTEP();
819 #ifdef VERBOSE_INIT_ARM
820 printf("bootstrap done.\n");
821 #endif
822
823 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
824
825 /*
826 * Pages were allocated during the secondary bootstrap for the
827 * stacks for different CPU modes.
828 * We must now set the r13 registers in the different CPU modes to
829 * point to these stacks.
830 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
831 * of the stack memory.
832 */
833 #ifdef VERBOSE_INIT_ARM
834 printf("init subsystems: stacks ");
835 #endif
836
837 set_stackptr(PSR_IRQ32_MODE,
838 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
839 set_stackptr(PSR_ABT32_MODE,
840 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
841 set_stackptr(PSR_UND32_MODE,
842 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
843
844 LEDSTEP();
845
846 /*
847 * Well we should set a data abort handler.
848 * Once things get going this will change as we will need a proper
849 * handler.
850 * Until then we will use a handler that just panics but tells us
851 * why.
852 * Initialisation of the vectors will just panic on a data abort.
853 * This just fills in a slightly better one.
854 */
855 #ifdef VERBOSE_INIT_ARM
856 printf("vectors ");
857 #endif
858 data_abort_handler_address = (u_int)data_abort_handler;
859 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
860 undefined_handler_address = (u_int)undefinedinstruction_bounce;
861
862 /* Initialise the undefined instruction handlers */
863 #ifdef VERBOSE_INIT_ARM
864 printf("undefined ");
865 #endif
866 undefined_init();
867
868 LEDSTEP();
869
870 /* Load memory into UVM. */
871 #ifdef VERBOSE_INIT_ARM
872 printf("page ");
873 #endif
874 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
875 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
876 atop(physical_freestart), atop(physical_freeend),
877 VM_FREELIST_DEFAULT);
878
879 LEDSTEP();
880 /* Boot strap pmap telling it where the kernel page table is */
881 #ifdef VERBOSE_INIT_ARM
882 printf("pmap ");
883 #endif
884 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
885
886 LEDSTEP();
887
888 /* Setup the IRQ system */
889 #ifdef VERBOSE_INIT_ARM
890 printf("irq ");
891 #endif
892 /* XXX irq_init(); */
893
894 #ifdef VERBOSE_INIT_ARM
895 printf("done.\n");
896 #endif
897
898 #ifdef BOOTHOWTO
899 boothowto |= BOOTHOWTO;
900 #endif
901 {
902 uint8_t gpio = ~gpio_read8(GPIO_PFDAT);
903
904 if (gpio & (1<<0)) /* SW1 (EINT0) */
905 boothowto ^= RB_SINGLE;
906 if (gpio & (1<<2)) /* SW2 (EINT2) */
907 boothowto ^= RB_KDB;
908 #ifdef VERBOSE_INIT_ARM
909 printf( "sw: %x boothowto: %x\n", gpio, boothowto );
910 #endif
911 }
912
913 #ifdef KGDB
914 if (boothowto & RB_KDB) {
915 kgdb_debug_init = 1;
916 kgdb_connect(1);
917 }
918 #endif
919
920 #ifdef DDB
921 db_machine_init();
922 if (boothowto & RB_KDB)
923 Debugger();
924 #endif
925
926 /* We return the new stack pointer address */
927 return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
928 }
929
930 void
931 consinit(void)
932 {
933 static int consinit_done = 0;
934 bus_space_tag_t iot = &s3c2xx0_bs_tag;
935 int pclk;
936
937 if (consinit_done != 0)
938 return;
939
940 consinit_done = 1;
941
942 s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
943
944 #if NSSCOM > 0
945 #ifdef SSCOM0CONSOLE
946 if (0 == s3c2410_sscom_cnattach(iot, 0, comcnspeed,
947 pclk, comcnmode))
948 return;
949 #endif
950 #ifdef SSCOM1CONSOLE
951 if (0 == s3c2410_sscom_cnattach(iot, 1, comcnspeed,
952 pclk, comcnmode))
953 return;
954 #endif
955 #endif /* NSSCOM */
956 #if NCOM>0 && defined(CONCOMADDR)
957 if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
958 COM_FREQ, COM_TYPE_NORMAL, comcnmode))
959 panic("can't init serial console @%x", CONCOMADDR);
960 return;
961 #endif
962
963 consinit_done = 0;
964 }
965
966
967 #ifdef KGDB
968
969 #if (NSSCOM > 0)
970
971 #ifdef KGDB_DEVNAME
972 const char kgdb_devname[] = KGDB_DEVNAME;
973 #else
974 const char kgdb_devname[] = "";
975 #endif
976
977 #ifndef KGDB_DEVMODE
978 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */
979 #endif
980 int kgdb_sscom_mode = KGDB_DEVMODE;
981
982 #endif /* NSSCOM */
983
984 void
985 kgdb_port_init(void)
986 {
987 #if (NSSCOM > 0)
988 int unit = -1;
989 int pclk;
990
991 if (strcmp(kgdb_devname, "sscom0") == 0)
992 unit = 0;
993 else if (strcmp(kgdb_devname, "sscom1") == 0)
994 unit = 1;
995
996 if (unit >= 0) {
997 s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
998
999 s3c2410_sscom_kgdb_attach(&s3c2xx0_bs_tag,
1000 unit, kgdb_rate, pclk, kgdb_sscom_mode);
1001 }
1002 #endif
1003 }
1004 #endif
1005
1006 static inline void
1007 writeback_dcache_line(vaddr_t va)
1008 {
1009 /* writeback Dcache line */
1010 /* we can't use cpu_dcache_wb_range() here, because cpufuncs for ARM9
1011 * assume write-through cache, and always flush Dcache instead of
1012 * cleaning it. Since Boot loader maps page table with write-back
1013 * cached, we really need to clean Dcache. */
1014 __asm("mcr p15, 0, %0, c7, c10, 1"
1015 : : "r"(va));
1016 }
1017
1018 static inline void
1019 clean_dcache_line(vaddr_t va)
1020 {
1021 /* writeback and invalidate Dcache line */
1022 __asm("mcr p15, 0, %0, c7, c14, 1"
1023 : : "r"(va));
1024 }
1025
1026 static struct arm32_dma_range smdk2410_dma_ranges[1];
1027
1028 bus_dma_tag_t
1029 s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template)
1030 {
1031 extern paddr_t physical_start, physical_end;
1032 struct arm32_bus_dma_tag *dmat;
1033
1034 smdk2410_dma_ranges[0].dr_sysbase = physical_start;
1035 smdk2410_dma_ranges[0].dr_busbase = physical_start;
1036 smdk2410_dma_ranges[0].dr_len = physical_end - physical_start;
1037
1038 #if 1
1039 dmat = dma_tag_template;
1040 #else
1041 dmat = malloc(sizeof *dmat, M_DEVBUF, M_NOWAIT);
1042 if (dmat == NULL)
1043 return NULL;
1044 *dmat = *dma_tag_template;
1045 #endif
1046
1047 dmat->_ranges = smdk2410_dma_ranges;
1048 dmat->_nranges = 1;
1049
1050 return dmat;
1051 }
1052