smdk2800_machdep.c revision 1.19 1 1.19 abs /* $NetBSD: smdk2800_machdep.c,v 1.19 2004/12/12 21:03:06 abs Exp $ */
2 1.1 bsh
3 1.1 bsh /*
4 1.1 bsh * Copyright (c) 2002 Fujitsu Component Limited
5 1.1 bsh * Copyright (c) 2002 Genetec Corporation
6 1.1 bsh * All rights reserved.
7 1.1 bsh *
8 1.1 bsh * Redistribution and use in source and binary forms, with or without
9 1.1 bsh * modification, are permitted provided that the following conditions
10 1.1 bsh * are met:
11 1.1 bsh * 1. Redistributions of source code must retain the above copyright
12 1.1 bsh * notice, this list of conditions and the following disclaimer.
13 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 bsh * notice, this list of conditions and the following disclaimer in the
15 1.1 bsh * documentation and/or other materials provided with the distribution.
16 1.1 bsh * 3. Neither the name of The Fujitsu Component Limited nor the name of
17 1.1 bsh * Genetec corporation may not be used to endorse or promote products
18 1.1 bsh * derived from this software without specific prior written permission.
19 1.1 bsh *
20 1.1 bsh * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
21 1.1 bsh * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
22 1.1 bsh * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
23 1.1 bsh * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24 1.1 bsh * DISCLAIMED. IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
25 1.1 bsh * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 1.1 bsh * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 1.1 bsh * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28 1.1 bsh * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29 1.1 bsh * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 1.1 bsh * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 1.1 bsh * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 bsh * SUCH DAMAGE.
33 1.1 bsh */
34 1.1 bsh
35 1.1 bsh /*
36 1.1 bsh * Copyright (c) 2001,2002 ARM Ltd
37 1.1 bsh * All rights reserved.
38 1.1 bsh *
39 1.1 bsh * Redistribution and use in source and binary forms, with or without
40 1.1 bsh * modification, are permitted provided that the following conditions
41 1.1 bsh * are met:
42 1.1 bsh * 1. Redistributions of source code must retain the above copyright
43 1.1 bsh * notice, this list of conditions and the following disclaimer.
44 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright
45 1.1 bsh * notice, this list of conditions and the following disclaimer in the
46 1.1 bsh * documentation and/or other materials provided with the distribution.
47 1.1 bsh * 3. The name of the company may not be used to endorse or promote
48 1.1 bsh * products derived from this software without specific prior written
49 1.1 bsh * permission.
50 1.1 bsh *
51 1.1 bsh * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
52 1.1 bsh * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
53 1.1 bsh * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
54 1.1 bsh * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD
55 1.1 bsh * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
56 1.1 bsh * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
57 1.1 bsh * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
58 1.1 bsh * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
59 1.1 bsh * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 1.1 bsh * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 1.1 bsh * POSSIBILITY OF SUCH DAMAGE.
62 1.1 bsh *
63 1.1 bsh */
64 1.1 bsh
65 1.1 bsh /*
66 1.1 bsh * Copyright (c) 1997,1998 Mark Brinicombe.
67 1.1 bsh * Copyright (c) 1997,1998 Causality Limited.
68 1.1 bsh * All rights reserved.
69 1.1 bsh *
70 1.1 bsh * Redistribution and use in source and binary forms, with or without
71 1.1 bsh * modification, are permitted provided that the following conditions
72 1.1 bsh * are met:
73 1.1 bsh * 1. Redistributions of source code must retain the above copyright
74 1.1 bsh * notice, this list of conditions and the following disclaimer.
75 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright
76 1.1 bsh * notice, this list of conditions and the following disclaimer in the
77 1.1 bsh * documentation and/or other materials provided with the distribution.
78 1.1 bsh * 3. All advertising materials mentioning features or use of this software
79 1.1 bsh * must display the following acknowledgement:
80 1.1 bsh * This product includes software developed by Mark Brinicombe
81 1.1 bsh * for the NetBSD Project.
82 1.1 bsh * 4. The name of the company nor the name of the author may be used to
83 1.1 bsh * endorse or promote products derived from this software without specific
84 1.1 bsh * prior written permission.
85 1.1 bsh *
86 1.1 bsh * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
87 1.1 bsh * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
88 1.1 bsh * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
89 1.1 bsh * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
90 1.1 bsh * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
91 1.1 bsh * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
92 1.1 bsh * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
93 1.1 bsh * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
94 1.1 bsh * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
95 1.1 bsh * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
96 1.1 bsh * SUCH DAMAGE.
97 1.1 bsh *
98 1.1 bsh * Machine dependant functions for kernel setup for integrator board
99 1.1 bsh *
100 1.1 bsh * Created : 24/11/97
101 1.1 bsh */
102 1.1 bsh
103 1.9 bsh /*
104 1.9 bsh * Machine dependant functions for kernel setup for Samsung SMDK2800
105 1.9 bsh * derived from integrator_machdep.c
106 1.9 bsh */
107 1.15 lukem
108 1.15 lukem #include <sys/cdefs.h>
109 1.19 abs __KERNEL_RCSID(0, "$NetBSD: smdk2800_machdep.c,v 1.19 2004/12/12 21:03:06 abs Exp $");
110 1.9 bsh
111 1.1 bsh #include "opt_ddb.h"
112 1.1 bsh #include "opt_kgdb.h"
113 1.1 bsh #include "opt_ipkdb.h"
114 1.1 bsh #include "opt_pmap_debug.h"
115 1.1 bsh #include "opt_md.h"
116 1.1 bsh #include "pci.h"
117 1.1 bsh
118 1.1 bsh #include <sys/param.h>
119 1.1 bsh #include <sys/device.h>
120 1.1 bsh #include <sys/systm.h>
121 1.1 bsh #include <sys/kernel.h>
122 1.1 bsh #include <sys/exec.h>
123 1.1 bsh #include <sys/proc.h>
124 1.1 bsh #include <sys/msgbuf.h>
125 1.1 bsh #include <sys/reboot.h>
126 1.1 bsh #include <sys/termios.h>
127 1.3 ragge #include <sys/ksyms.h>
128 1.1 bsh
129 1.2 thorpej #include <uvm/uvm_extern.h>
130 1.2 thorpej
131 1.1 bsh #include <dev/cons.h>
132 1.1 bsh #include <dev/md.h>
133 1.1 bsh
134 1.1 bsh #include <machine/db_machdep.h>
135 1.1 bsh #include <ddb/db_sym.h>
136 1.1 bsh #include <ddb/db_extern.h>
137 1.1 bsh #ifdef KGDB
138 1.1 bsh #include <sys/kgdb.h>
139 1.1 bsh #endif
140 1.1 bsh
141 1.1 bsh #include <machine/bootconfig.h>
142 1.1 bsh #include <machine/bus.h>
143 1.1 bsh #include <machine/cpu.h>
144 1.1 bsh #include <machine/frame.h>
145 1.1 bsh #include <machine/intr.h>
146 1.1 bsh #include <arm/undefined.h>
147 1.1 bsh
148 1.1 bsh #include <arm/arm32/machdep.h>
149 1.1 bsh
150 1.1 bsh #include <arm/s3c2xx0/s3c2800reg.h>
151 1.1 bsh #include <arm/s3c2xx0/s3c2800var.h>
152 1.1 bsh
153 1.3 ragge #include "ksyms.h"
154 1.3 ragge
155 1.1 bsh #ifndef SDRAM_START
156 1.1 bsh #define SDRAM_START S3C2800_DBANK0_START
157 1.1 bsh #endif
158 1.1 bsh #ifndef SDRAM_SIZE
159 1.1 bsh #define SDRAM_SIZE (32*1024*1024)
160 1.1 bsh #endif
161 1.1 bsh
162 1.1 bsh /*
163 1.1 bsh * Address to map I/O registers in early initialize stage.
164 1.1 bsh */
165 1.1 bsh #define SMDK2800_IO_AREA_VBASE 0xfd000000
166 1.1 bsh #define SMDK2800_VBASE_FREE 0xfd200000
167 1.7 thorpej
168 1.7 thorpej /* Kernel text starts 2MB in from the bottom of the kernel address space. */
169 1.7 thorpej #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
170 1.11 thorpej #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
171 1.12 thorpej
172 1.12 thorpej /*
173 1.12 thorpej * The range 0xc1000000 - 0xccffffff is available for kernel VM space
174 1.12 thorpej * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
175 1.12 thorpej */
176 1.12 thorpej #define KERNEL_VM_SIZE 0x0C000000
177 1.1 bsh
178 1.9 bsh /* Memory disk support */
179 1.9 bsh #if defined(MEMORY_DISK_DYNAMIC) && defined(MEMORY_DISK_ROOT_ADDR)
180 1.9 bsh #define DO_MEMORY_DISK
181 1.9 bsh /* We have memory disk image outside of the kernel on ROM. */
182 1.9 bsh #ifdef MEMORY_DISK_ROOT_ROM
183 1.9 bsh /* map the image directory and use read-only */
184 1.9 bsh #else
185 1.9 bsh /* copy the image to RAM */
186 1.9 bsh #endif
187 1.9 bsh #endif
188 1.9 bsh
189 1.9 bsh
190 1.1 bsh /*
191 1.1 bsh * Address to call from cpu_reset() to reset the machine.
192 1.1 bsh * This is machine architecture dependant as it varies depending
193 1.1 bsh * on where the ROM appears when you turn the MMU off.
194 1.1 bsh */
195 1.1 bsh u_int cpu_reset_address = (u_int)0;
196 1.1 bsh
197 1.1 bsh /* Define various stack sizes in pages */
198 1.1 bsh #define IRQ_STACK_SIZE 1
199 1.1 bsh #define ABT_STACK_SIZE 1
200 1.1 bsh #ifdef IPKDB
201 1.1 bsh #define UND_STACK_SIZE 2
202 1.1 bsh #else
203 1.1 bsh #define UND_STACK_SIZE 1
204 1.1 bsh #endif
205 1.1 bsh
206 1.1 bsh BootConfig bootconfig; /* Boot config storage */
207 1.1 bsh char *boot_args = NULL;
208 1.1 bsh char *boot_file = NULL;
209 1.1 bsh
210 1.1 bsh vm_offset_t physical_start;
211 1.1 bsh vm_offset_t physical_freestart;
212 1.1 bsh vm_offset_t physical_freeend;
213 1.1 bsh vm_offset_t physical_end;
214 1.1 bsh u_int free_pages;
215 1.1 bsh vm_offset_t pagetables_start;
216 1.1 bsh int physmem = 0;
217 1.1 bsh
218 1.1 bsh /*int debug_flags;*/
219 1.1 bsh #ifndef PMAP_STATIC_L1S
220 1.1 bsh int max_processes = 64; /* Default number */
221 1.1 bsh #endif /* !PMAP_STATIC_L1S */
222 1.1 bsh
223 1.1 bsh /* Physical and virtual addresses for some global pages */
224 1.1 bsh pv_addr_t systempage;
225 1.1 bsh pv_addr_t irqstack;
226 1.1 bsh pv_addr_t undstack;
227 1.1 bsh pv_addr_t abtstack;
228 1.1 bsh pv_addr_t kernelstack;
229 1.1 bsh
230 1.1 bsh vm_offset_t msgbufphys;
231 1.1 bsh
232 1.1 bsh extern u_int data_abort_handler_address;
233 1.1 bsh extern u_int prefetch_abort_handler_address;
234 1.1 bsh extern u_int undefined_handler_address;
235 1.1 bsh
236 1.1 bsh #ifdef PMAP_DEBUG
237 1.1 bsh extern int pmap_debug_level;
238 1.1 bsh #endif
239 1.1 bsh
240 1.1 bsh #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
241 1.1 bsh #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
242 1.1 bsh #define KERNEL_PT_KERNEL_NUM 2 /* L2 tables for mapping kernel VM */
243 1.1 bsh
244 1.1 bsh #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
245 1.1 bsh
246 1.1 bsh #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
247 1.1 bsh #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
248 1.1 bsh
249 1.1 bsh pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
250 1.1 bsh
251 1.1 bsh struct user *proc0paddr;
252 1.1 bsh
253 1.1 bsh /* Prototypes */
254 1.1 bsh
255 1.1 bsh void consinit(void);
256 1.1 bsh void kgdb_port_init(void);
257 1.1 bsh
258 1.1 bsh static int
259 1.1 bsh bootstrap_bs_map(void *t, bus_addr_t bpa, bus_size_t size,
260 1.1 bsh int cacheable, bus_space_handle_t * bshp);
261 1.9 bsh static void map_builtin_peripherals(void);
262 1.1 bsh static void copy_io_area_map(pd_entry_t * new_pd);
263 1.1 bsh
264 1.1 bsh /* A load of console goo. */
265 1.1 bsh #include "vga.h"
266 1.1 bsh #if NVGA > 0
267 1.1 bsh #include <dev/ic/mc6845reg.h>
268 1.1 bsh #include <dev/ic/pcdisplayvar.h>
269 1.1 bsh #include <dev/ic/vgareg.h>
270 1.1 bsh #include <dev/ic/vgavar.h>
271 1.1 bsh #endif
272 1.1 bsh
273 1.1 bsh #include "com.h"
274 1.1 bsh #if NCOM > 0
275 1.1 bsh #include <dev/ic/comreg.h>
276 1.1 bsh #include <dev/ic/comvar.h>
277 1.1 bsh #endif
278 1.1 bsh
279 1.1 bsh #include "sscom.h"
280 1.1 bsh #if NSSCOM > 0
281 1.1 bsh #include "opt_sscom.h"
282 1.1 bsh #include <arm/s3c2xx0/sscom_var.h>
283 1.1 bsh #endif
284 1.1 bsh
285 1.1 bsh /*
286 1.1 bsh * Define the default console speed for the board. This is generally
287 1.1 bsh * what the firmware provided with the board defaults to.
288 1.1 bsh */
289 1.1 bsh #ifndef CONSPEED
290 1.1 bsh #define CONSPEED B115200 /* TTYDEF_SPEED */
291 1.1 bsh #endif
292 1.1 bsh #ifndef CONMODE
293 1.1 bsh #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
294 1.1 bsh #endif
295 1.1 bsh
296 1.1 bsh int comcnspeed = CONSPEED;
297 1.1 bsh int comcnmode = CONMODE;
298 1.1 bsh
299 1.1 bsh struct bus_space bootstrap_bs_tag;
300 1.1 bsh
301 1.1 bsh /*
302 1.1 bsh * void cpu_reboot(int howto, char *bootstr)
303 1.1 bsh *
304 1.1 bsh * Reboots the system
305 1.1 bsh *
306 1.1 bsh * Deal with any syncing, unmounting, dumping and shutdown hooks,
307 1.1 bsh * then reset the CPU.
308 1.1 bsh */
309 1.1 bsh void
310 1.1 bsh cpu_reboot(int howto, char *bootstr)
311 1.1 bsh {
312 1.1 bsh
313 1.9 bsh cpu_reset_address = vtophys((u_int)s3c2800_softreset);
314 1.1 bsh
315 1.1 bsh /*
316 1.1 bsh * If we are still cold then hit the air brakes
317 1.1 bsh * and crash to earth fast
318 1.1 bsh */
319 1.1 bsh if (cold) {
320 1.1 bsh doshutdownhooks();
321 1.1 bsh printf("The operating system has halted.\n");
322 1.1 bsh printf("Please press any key to reboot.\n\n");
323 1.1 bsh cngetc();
324 1.1 bsh printf("rebooting...\n");
325 1.1 bsh cpu_reset();
326 1.1 bsh /* NOTREACHED */
327 1.1 bsh }
328 1.1 bsh /* Disable console buffering */
329 1.1 bsh
330 1.1 bsh /*
331 1.1 bsh * If RB_NOSYNC was not specified sync the discs.
332 1.1 bsh * Note: Unless cold is set to 1 here, syslogd will die during the
333 1.1 bsh * unmount. It looks like syslogd is getting woken up only to find
334 1.1 bsh * that it cannot page part of the binary in as the filesystem has
335 1.1 bsh * been unmounted.
336 1.1 bsh */
337 1.1 bsh if (!(howto & RB_NOSYNC))
338 1.1 bsh bootsync();
339 1.1 bsh
340 1.1 bsh /* Say NO to interrupts */
341 1.1 bsh splhigh();
342 1.1 bsh
343 1.1 bsh /* Do a dump if requested. */
344 1.1 bsh if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
345 1.1 bsh dumpsys();
346 1.1 bsh
347 1.1 bsh /* Run any shutdown hooks */
348 1.1 bsh doshutdownhooks();
349 1.1 bsh
350 1.1 bsh /* Make sure IRQ's are disabled */
351 1.1 bsh IRQdisable;
352 1.1 bsh
353 1.1 bsh if (howto & RB_HALT) {
354 1.1 bsh printf("The operating system has halted.\n");
355 1.1 bsh printf("Please press any key to reboot.\n\n");
356 1.1 bsh cngetc();
357 1.1 bsh }
358 1.1 bsh printf("rebooting...\n");
359 1.1 bsh cpu_reset();
360 1.1 bsh /* NOTREACHED */
361 1.1 bsh }
362 1.1 bsh #define ioreg_write8(a,v) (*(volatile uint8_t *)(a)=(v))
363 1.1 bsh
364 1.1 bsh /*
365 1.1 bsh * u_int initarm(...)
366 1.1 bsh *
367 1.1 bsh * Initial entry point on startup. This gets called before main() is
368 1.1 bsh * entered.
369 1.1 bsh * It should be responsible for setting up everything that must be
370 1.1 bsh * in place when main is called.
371 1.1 bsh * This includes
372 1.1 bsh * Taking a copy of the boot configuration structure.
373 1.1 bsh * Initialising the physical console so characters can be printed.
374 1.1 bsh * Setting up page tables for the kernel
375 1.1 bsh * Relocating the kernel to the bottom of physical memory
376 1.1 bsh */
377 1.1 bsh
378 1.1 bsh u_int
379 1.1 bsh initarm(void *arg)
380 1.1 bsh {
381 1.1 bsh int loop;
382 1.1 bsh int loop1;
383 1.1 bsh u_int l1pagetable;
384 1.1 bsh extern int etext asm("_etext");
385 1.1 bsh extern int end asm("_end");
386 1.1 bsh pv_addr_t kernel_l1pt;
387 1.9 bsh struct s3c2800_softc temp_softc; /* used to initialize IO regs */
388 1.1 bsh int progress_counter = 0;
389 1.9 bsh
390 1.9 bsh #ifdef DO_MEMORY_DISK
391 1.9 bsh vm_offset_t md_root_start;
392 1.9 bsh #define MD_ROOT_SIZE (MEMORY_DISK_ROOT_SIZE * DEV_BSIZE)
393 1.1 bsh #endif
394 1.1 bsh
395 1.9 bsh #define gpio_read8(reg) bus_space_read_1(temp_softc.sc_sx.sc_iot, \
396 1.9 bsh temp_softc.sc_sx.sc_gpio_ioh, (reg))
397 1.9 bsh
398 1.1 bsh #define LEDSTEP() __LED(progress_counter++)
399 1.1 bsh
400 1.1 bsh #define pdatc (*(volatile uint8_t *)(S3C2800_GPIO_BASE+GPIO_PDATC))
401 1.1 bsh #define __LED(x) (pdatc = (pdatc & ~0x07) | (~(x) & 0x07))
402 1.1 bsh
403 1.1 bsh LEDSTEP();
404 1.1 bsh /*
405 1.1 bsh * Heads up ... Setup the CPU / MMU / TLB functions
406 1.1 bsh */
407 1.1 bsh if (set_cpufuncs())
408 1.17 wiz panic("CPU not recognized!");
409 1.1 bsh
410 1.1 bsh LEDSTEP();
411 1.9 bsh
412 1.9 bsh map_builtin_peripherals();
413 1.9 bsh
414 1.1 bsh /*
415 1.1 bsh * prepare fake bus space tag
416 1.1 bsh */
417 1.1 bsh bootstrap_bs_tag = s3c2xx0_bs_tag;
418 1.1 bsh bootstrap_bs_tag.bs_map = bootstrap_bs_map;
419 1.9 bsh s3c2xx0_softc = &temp_softc.sc_sx;
420 1.9 bsh s3c2xx0_softc->sc_iot = &bootstrap_bs_tag;
421 1.1 bsh
422 1.1 bsh bootstrap_bs_map(&bootstrap_bs_tag, S3C2800_GPIO_BASE,
423 1.9 bsh S3C2800_GPIO_SIZE, 0, &temp_softc.sc_sx.sc_gpio_ioh);
424 1.1 bsh bootstrap_bs_map(&bootstrap_bs_tag, S3C2800_INTCTL_BASE,
425 1.9 bsh S3C2800_INTCTL_SIZE, 0, &temp_softc.sc_sx.sc_intctl_ioh);
426 1.9 bsh bootstrap_bs_map(&bootstrap_bs_tag, S3C2800_CLKMAN_BASE,
427 1.9 bsh S3C2800_CLKMAN_SIZE, 0, &temp_softc.sc_sx.sc_clkman_ioh);
428 1.1 bsh
429 1.1 bsh #undef __LED
430 1.10 thorpej #define __LED(x) \
431 1.10 thorpej bus_space_write_1(&bootstrap_bs_tag, \
432 1.10 thorpej temp_softc.sc_sx.sc_gpio_ioh, \
433 1.10 thorpej GPIO_PDATC, (~(x) & 0x07) | \
434 1.10 thorpej (bus_space_read_1(&bootstrap_bs_tag, \
435 1.9 bsh temp_softc.sc_sx.sc_gpio_ioh, GPIO_PDATC ) & ~0x07))
436 1.1 bsh
437 1.1 bsh LEDSTEP();
438 1.1 bsh
439 1.1 bsh /* Disable all peripheral interrupts */
440 1.9 bsh bus_space_write_4(&bootstrap_bs_tag, temp_softc.sc_sx.sc_intctl_ioh,
441 1.1 bsh INTCTL_INTMSK, 0);
442 1.1 bsh
443 1.16 bsh s3c2800_clock_freq(s3c2xx0_softc);
444 1.9 bsh
445 1.1 bsh consinit();
446 1.10 thorpej #ifdef VERBOSE_INIT_ARM
447 1.1 bsh printf("consinit done\n");
448 1.10 thorpej #endif
449 1.1 bsh
450 1.1 bsh #ifdef KGDB
451 1.1 bsh LEDSTEP();
452 1.1 bsh kgdb_port_init();
453 1.1 bsh #endif
454 1.1 bsh LEDSTEP();
455 1.1 bsh
456 1.10 thorpej #ifdef VERBOSE_INIT_ARM
457 1.1 bsh /* Talk to the user */
458 1.1 bsh printf("\nNetBSD/evbarm (SMDK2800) booting ...\n");
459 1.10 thorpej #endif
460 1.1 bsh
461 1.1 bsh /*
462 1.1 bsh * Ok we have the following memory map
463 1.1 bsh *
464 1.1 bsh * Physical Address Range Description
465 1.1 bsh * ----------------------- ----------------------------------
466 1.1 bsh * 0x00000000 - 0x00ffffff Intel flash Memory (16MB)
467 1.1 bsh * 0x02000000 - 0x020fffff AMD flash Memory (1MB)
468 1.1 bsh * or (depend on DIPSW setting)
469 1.1 bsh * 0x00000000 - 0x000fffff AMD flash Memory (1MB)
470 1.1 bsh * 0x02000000 - 0x02ffffff Intel flash Memory (16MB)
471 1.1 bsh *
472 1.1 bsh * 0x08000000 - 0x09ffffff SDRAM (32MB)
473 1.1 bsh * 0x20000000 - 0x3fffffff PCI space
474 1.1 bsh *
475 1.1 bsh * The initarm() has the responsibility for creating the kernel
476 1.1 bsh * page tables.
477 1.1 bsh * It must also set up various memory pointers that are used
478 1.1 bsh * by pmap etc.
479 1.1 bsh */
480 1.1 bsh
481 1.1 bsh /* Fake bootconfig structure for the benefit of pmap.c */
482 1.1 bsh /* XXX must make the memory description h/w independent */
483 1.1 bsh bootconfig.dramblocks = 1;
484 1.1 bsh bootconfig.dram[0].address = SDRAM_START;
485 1.2 thorpej bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE;
486 1.1 bsh
487 1.1 bsh /*
488 1.1 bsh * Set up the variables that define the availablilty of
489 1.1 bsh * physical memory. For now, we're going to set
490 1.1 bsh * physical_freestart to 0x08200000 (where the kernel
491 1.1 bsh * was loaded), and allocate the memory we need downwards.
492 1.1 bsh * If we get too close to the bottom of SDRAM, we
493 1.1 bsh * will panic. We will update physical_freestart and
494 1.1 bsh * physical_freeend later to reflect what pmap_bootstrap()
495 1.1 bsh * wants to see.
496 1.1 bsh *
497 1.1 bsh * XXX pmap_bootstrap() needs an enema.
498 1.1 bsh */
499 1.1 bsh physical_start = bootconfig.dram[0].address;
500 1.2 thorpej physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
501 1.9 bsh
502 1.9 bsh #if DO_MEMORY_DISK
503 1.9 bsh #ifdef MEMORY_DISK_ROOT_ROM
504 1.9 bsh md_root_start = MEMORY_DISK_ROOT_ADDR;
505 1.9 bsh boothowto |= RB_RDONLY;
506 1.9 bsh #else
507 1.9 bsh /* Reserve physmem for ram disk */
508 1.9 bsh md_root_start = ((physical_end - MD_ROOT_SIZE) & ~(L1_S_SIZE-1));
509 1.9 bsh printf("Reserve %ld bytes for memory disk\n",
510 1.9 bsh physical_end - md_root_start);
511 1.9 bsh /* copy fs contents */
512 1.9 bsh memcpy((void *)md_root_start, (void *)MEMORY_DISK_ROOT_ADDR,
513 1.9 bsh MD_ROOT_SIZE);
514 1.9 bsh physical_end = md_root_start;
515 1.9 bsh #endif
516 1.1 bsh #endif
517 1.1 bsh
518 1.1 bsh physical_freestart = 0x08000000UL; /* XXX */
519 1.1 bsh physical_freeend = 0x08200000UL;
520 1.1 bsh
521 1.2 thorpej physmem = (physical_end - physical_start) / PAGE_SIZE;
522 1.1 bsh
523 1.10 thorpej #ifdef VERBOSE_INIT_ARM
524 1.1 bsh /* Tell the user about the memory */
525 1.1 bsh printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
526 1.1 bsh physical_start, physical_end - 1);
527 1.10 thorpej #endif
528 1.1 bsh
529 1.1 bsh /*
530 1.1 bsh * XXX
531 1.1 bsh * Okay, the kernel starts 2MB in from the bottom of physical
532 1.1 bsh * memory. We are going to allocate our bootstrap pages downwards
533 1.1 bsh * from there.
534 1.1 bsh *
535 1.1 bsh * We need to allocate some fixed page tables to get the kernel
536 1.1 bsh * going. We allocate one page directory and a number of page
537 1.1 bsh * tables and store the physical addresses in the kernel_pt_table
538 1.1 bsh * array.
539 1.1 bsh *
540 1.1 bsh * The kernel page directory must be on a 16K boundary. The page
541 1.19 abs * tables must be on 4K boundaries. What we do is allocate the
542 1.1 bsh * page directory on the first 16K boundary that we encounter, and
543 1.1 bsh * the page tables on 4K boundaries otherwise. Since we allocate
544 1.1 bsh * at least 3 L2 page tables, we are guaranteed to encounter at
545 1.1 bsh * least one 16K aligned region.
546 1.1 bsh */
547 1.1 bsh
548 1.1 bsh #ifdef VERBOSE_INIT_ARM
549 1.1 bsh printf("Allocating page tables\n");
550 1.1 bsh #endif
551 1.1 bsh
552 1.2 thorpej free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
553 1.1 bsh
554 1.1 bsh #ifdef VERBOSE_INIT_ARM
555 1.1 bsh printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
556 1.1 bsh physical_freestart, free_pages, free_pages);
557 1.1 bsh #endif
558 1.1 bsh
559 1.1 bsh /* Define a macro to simplify memory allocation */
560 1.1 bsh #define valloc_pages(var, np) \
561 1.1 bsh alloc_pages((var).pv_pa, (np)); \
562 1.1 bsh (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
563 1.1 bsh
564 1.1 bsh #define alloc_pages(var, np) \
565 1.2 thorpej physical_freeend -= ((np) * PAGE_SIZE); \
566 1.1 bsh if (physical_freeend < physical_freestart) \
567 1.1 bsh panic("initarm: out of memory"); \
568 1.1 bsh (var) = physical_freeend; \
569 1.1 bsh free_pages -= (np); \
570 1.2 thorpej memset((char *)(var), 0, ((np) * PAGE_SIZE));
571 1.1 bsh
572 1.1 bsh loop1 = 0;
573 1.1 bsh kernel_l1pt.pv_pa = 0;
574 1.1 bsh for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
575 1.1 bsh /* Are we 16KB aligned for an L1 ? */
576 1.1 bsh if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
577 1.1 bsh && kernel_l1pt.pv_pa == 0) {
578 1.2 thorpej valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
579 1.1 bsh } else {
580 1.4 thorpej valloc_pages(kernel_pt_table[loop1],
581 1.4 thorpej L2_TABLE_SIZE / PAGE_SIZE);
582 1.1 bsh ++loop1;
583 1.1 bsh }
584 1.1 bsh }
585 1.1 bsh
586 1.1 bsh /* This should never be able to happen but better confirm that. */
587 1.9 bsh if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
588 1.1 bsh panic("initarm: Failed to align the kernel page directory\n");
589 1.1 bsh
590 1.1 bsh /*
591 1.1 bsh * Allocate a page for the system page mapped to V0x00000000
592 1.1 bsh * This page will just contain the system vectors and can be
593 1.1 bsh * shared by all processes.
594 1.1 bsh */
595 1.1 bsh alloc_pages(systempage.pv_pa, 1);
596 1.1 bsh
597 1.1 bsh /* Allocate stacks for all modes */
598 1.1 bsh valloc_pages(irqstack, IRQ_STACK_SIZE);
599 1.1 bsh valloc_pages(abtstack, ABT_STACK_SIZE);
600 1.1 bsh valloc_pages(undstack, UND_STACK_SIZE);
601 1.1 bsh valloc_pages(kernelstack, UPAGES);
602 1.1 bsh
603 1.1 bsh #ifdef VERBOSE_INIT_ARM
604 1.1 bsh printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
605 1.1 bsh irqstack.pv_va);
606 1.1 bsh printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
607 1.1 bsh abtstack.pv_va);
608 1.1 bsh printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
609 1.1 bsh undstack.pv_va);
610 1.1 bsh printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
611 1.1 bsh kernelstack.pv_va);
612 1.1 bsh #endif
613 1.1 bsh
614 1.2 thorpej alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
615 1.1 bsh
616 1.1 bsh LEDSTEP();
617 1.1 bsh
618 1.1 bsh /*
619 1.1 bsh * Ok we have allocated physical pages for the primary kernel
620 1.1 bsh * page tables
621 1.1 bsh */
622 1.1 bsh
623 1.1 bsh #ifdef VERBOSE_INIT_ARM
624 1.1 bsh printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
625 1.1 bsh #endif
626 1.1 bsh
627 1.1 bsh /*
628 1.1 bsh * Now we start construction of the L1 page table
629 1.1 bsh * We start by mapping the L2 page tables into the L1.
630 1.1 bsh * This means that we can replace L1 mappings later on if necessary
631 1.1 bsh */
632 1.1 bsh l1pagetable = kernel_l1pt.pv_pa;
633 1.1 bsh
634 1.1 bsh /* Map the L2 pages tables in the L1 page table */
635 1.1 bsh pmap_link_l2pt(l1pagetable, 0x00000000,
636 1.1 bsh &kernel_pt_table[KERNEL_PT_SYS]);
637 1.1 bsh for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
638 1.1 bsh pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
639 1.1 bsh &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
640 1.1 bsh for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
641 1.1 bsh pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
642 1.1 bsh &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
643 1.1 bsh
644 1.1 bsh /* update the top of the kernel VM */
645 1.1 bsh pmap_curmaxkvaddr =
646 1.1 bsh KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
647 1.1 bsh
648 1.1 bsh #ifdef VERBOSE_INIT_ARM
649 1.1 bsh printf("Mapping kernel\n");
650 1.1 bsh #endif
651 1.1 bsh
652 1.1 bsh /* Now we fill in the L2 pagetable for the kernel static code/data */
653 1.1 bsh {
654 1.8 bsh size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE;
655 1.8 bsh size_t totalsize = (uintptr_t)&end - KERNEL_TEXT_BASE;
656 1.1 bsh u_int logical;
657 1.1 bsh
658 1.1 bsh textsize = (textsize + PGOFSET) & ~PGOFSET;
659 1.1 bsh totalsize = (totalsize + PGOFSET) & ~PGOFSET;
660 1.1 bsh
661 1.1 bsh logical = 0x00200000; /* offset of kernel in RAM */
662 1.1 bsh
663 1.1 bsh logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
664 1.1 bsh physical_start + logical, textsize,
665 1.1 bsh VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
666 1.1 bsh logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
667 1.1 bsh physical_start + logical, totalsize - textsize,
668 1.1 bsh VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
669 1.1 bsh }
670 1.1 bsh
671 1.1 bsh #ifdef VERBOSE_INIT_ARM
672 1.1 bsh printf("Constructing L2 page tables\n");
673 1.1 bsh #endif
674 1.1 bsh
675 1.1 bsh /* Map the stack pages */
676 1.1 bsh pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
677 1.2 thorpej IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
678 1.2 thorpej PTE_CACHE);
679 1.1 bsh pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
680 1.2 thorpej ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
681 1.2 thorpej PTE_CACHE);
682 1.1 bsh pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
683 1.2 thorpej UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
684 1.2 thorpej PTE_CACHE);
685 1.1 bsh pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
686 1.2 thorpej UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
687 1.1 bsh
688 1.4 thorpej pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
689 1.4 thorpej L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
690 1.1 bsh
691 1.4 thorpej for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
692 1.4 thorpej pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
693 1.4 thorpej kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
694 1.4 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
695 1.4 thorpej }
696 1.1 bsh
697 1.1 bsh /* Map the vector page. */
698 1.1 bsh #if 1
699 1.1 bsh /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
700 1.1 bsh * cache-clean code there. */
701 1.1 bsh pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
702 1.1 bsh VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
703 1.1 bsh #else
704 1.1 bsh pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
705 1.1 bsh VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
706 1.1 bsh #endif
707 1.1 bsh
708 1.1 bsh #ifdef MEMORY_DISK_DYNAMIC
709 1.9 bsh /* map MD root image */
710 1.9 bsh bootstrap_bs_map(&bootstrap_bs_tag, md_root_start, MD_ROOT_SIZE,
711 1.9 bsh BUS_SPACE_MAP_CACHEABLE | BUS_SPACE_MAP_LINEAR,
712 1.9 bsh (bus_space_handle_t *)&md_root_start);
713 1.1 bsh
714 1.9 bsh md_root_setconf((void *)md_root_start, MD_ROOT_SIZE);
715 1.9 bsh #endif /* MEMORY_DISK_DYNAMIC */
716 1.1 bsh /*
717 1.1 bsh * map integrated peripherals at same address in l1pagetable
718 1.1 bsh * so that we can continue to use console.
719 1.1 bsh */
720 1.1 bsh copy_io_area_map((pd_entry_t *)l1pagetable);
721 1.1 bsh
722 1.1 bsh /*
723 1.1 bsh * Now we have the real page tables in place so we can switch to them.
724 1.1 bsh * Once this is done we will be running with the REAL kernel page
725 1.1 bsh * tables.
726 1.1 bsh */
727 1.1 bsh
728 1.1 bsh /*
729 1.1 bsh * Update the physical_freestart/physical_freeend/free_pages
730 1.1 bsh * variables.
731 1.1 bsh */
732 1.1 bsh {
733 1.1 bsh physical_freestart = physical_start +
734 1.8 bsh (((((uintptr_t)&end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE);
735 1.1 bsh physical_freeend = physical_end;
736 1.2 thorpej free_pages =
737 1.2 thorpej (physical_freeend - physical_freestart) / PAGE_SIZE;
738 1.1 bsh }
739 1.1 bsh
740 1.1 bsh /* Switch tables */
741 1.1 bsh #ifdef VERBOSE_INIT_ARM
742 1.1 bsh printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
743 1.1 bsh physical_freestart, free_pages, free_pages);
744 1.1 bsh printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
745 1.1 bsh #endif
746 1.1 bsh LEDSTEP();
747 1.4 thorpej cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
748 1.1 bsh setttb(kernel_l1pt.pv_pa);
749 1.1 bsh cpu_tlb_flushID();
750 1.4 thorpej cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
751 1.4 thorpej
752 1.4 thorpej /*
753 1.4 thorpej * Moved from cpu_startup() as data_abort_handler() references
754 1.4 thorpej * this during uvm init
755 1.4 thorpej */
756 1.4 thorpej proc0paddr = (struct user *)kernelstack.pv_va;
757 1.4 thorpej lwp0.l_addr = proc0paddr;
758 1.1 bsh
759 1.1 bsh #ifdef VERBOSE_INIT_ARM
760 1.1 bsh printf("done!\n");
761 1.1 bsh #endif
762 1.1 bsh
763 1.1 bsh #if 0
764 1.1 bsh /*
765 1.1 bsh * The IFPGA registers have just moved.
766 1.1 bsh * Detach the diagnostic serial port and reattach at the new address.
767 1.1 bsh */
768 1.1 bsh plcomcndetach();
769 1.1 bsh /*
770 1.1 bsh * XXX this should only be done in main() but it useful to
771 1.1 bsh * have output earlier ...
772 1.1 bsh */
773 1.1 bsh consinit();
774 1.1 bsh #endif
775 1.1 bsh
776 1.1 bsh LEDSTEP();
777 1.1 bsh #ifdef VERBOSE_INIT_ARM
778 1.1 bsh printf("bootstrap done.\n");
779 1.1 bsh #endif
780 1.1 bsh
781 1.1 bsh arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
782 1.1 bsh
783 1.1 bsh /*
784 1.1 bsh * Pages were allocated during the secondary bootstrap for the
785 1.1 bsh * stacks for different CPU modes.
786 1.1 bsh * We must now set the r13 registers in the different CPU modes to
787 1.1 bsh * point to these stacks.
788 1.1 bsh * Since the ARM stacks use STMFD etc. we must set r13 to the top end
789 1.1 bsh * of the stack memory.
790 1.1 bsh */
791 1.10 thorpej #ifdef VERBOSE_INIT_ARM
792 1.1 bsh printf("init subsystems: stacks ");
793 1.10 thorpej #endif
794 1.1 bsh
795 1.2 thorpej set_stackptr(PSR_IRQ32_MODE,
796 1.2 thorpej irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
797 1.2 thorpej set_stackptr(PSR_ABT32_MODE,
798 1.2 thorpej abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
799 1.2 thorpej set_stackptr(PSR_UND32_MODE,
800 1.2 thorpej undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
801 1.1 bsh
802 1.1 bsh LEDSTEP();
803 1.1 bsh
804 1.1 bsh /*
805 1.1 bsh * Well we should set a data abort handler.
806 1.1 bsh * Once things get going this will change as we will need a proper
807 1.1 bsh * handler.
808 1.1 bsh * Until then we will use a handler that just panics but tells us
809 1.1 bsh * why.
810 1.1 bsh * Initialisation of the vectors will just panic on a data abort.
811 1.18 abs * This just fills in a slightly better one.
812 1.1 bsh */
813 1.10 thorpej #ifdef VERBOSE_INIT_ARM
814 1.1 bsh printf("vectors ");
815 1.10 thorpej #endif
816 1.1 bsh data_abort_handler_address = (u_int)data_abort_handler;
817 1.1 bsh prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
818 1.1 bsh undefined_handler_address = (u_int)undefinedinstruction_bounce;
819 1.1 bsh
820 1.1 bsh /* Initialise the undefined instruction handlers */
821 1.10 thorpej #ifdef VERBOSE_INIT_ARM
822 1.1 bsh printf("undefined ");
823 1.10 thorpej #endif
824 1.1 bsh undefined_init();
825 1.1 bsh
826 1.1 bsh LEDSTEP();
827 1.1 bsh
828 1.1 bsh /* Load memory into UVM. */
829 1.10 thorpej #ifdef VERBOSE_INIT_ARM
830 1.1 bsh printf("page ");
831 1.10 thorpej #endif
832 1.1 bsh uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
833 1.1 bsh uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
834 1.1 bsh atop(physical_freestart), atop(physical_freeend),
835 1.1 bsh VM_FREELIST_DEFAULT);
836 1.1 bsh
837 1.1 bsh LEDSTEP();
838 1.1 bsh /* Boot strap pmap telling it where the kernel page table is */
839 1.10 thorpej #ifdef VERBOSE_INIT_ARM
840 1.1 bsh printf("pmap ");
841 1.10 thorpej #endif
842 1.6 thorpej pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
843 1.6 thorpej KERNEL_VM_BASE + KERNEL_VM_SIZE);
844 1.1 bsh
845 1.1 bsh LEDSTEP();
846 1.1 bsh
847 1.1 bsh /* Setup the IRQ system */
848 1.10 thorpej #ifdef VERBOSE_INIT_ARM
849 1.1 bsh printf("irq ");
850 1.10 thorpej #endif
851 1.1 bsh /* XXX irq_init(); */
852 1.1 bsh
853 1.10 thorpej #ifdef VERBOSE_INIT_ARM
854 1.1 bsh printf("done.\n");
855 1.10 thorpej #endif
856 1.1 bsh
857 1.9 bsh #ifdef BOOTHOWTO_INIT
858 1.9 bsh boothowto |= BOOTHOWTO_INIT;
859 1.9 bsh #endif
860 1.9 bsh {
861 1.9 bsh uint8_t gpio = ~gpio_read8(GPIO_PDATF);
862 1.9 bsh
863 1.9 bsh if (gpio & (1<<5)) /* SW3 */
864 1.9 bsh boothowto ^= RB_SINGLE;
865 1.9 bsh if (gpio & (1<<7)) /* SW7 */
866 1.9 bsh boothowto ^= RB_KDB;
867 1.10 thorpej #ifdef VERBOSE_INIT_ARM
868 1.9 bsh printf( "sw: %x boothowto: %x\n", gpio, boothowto );
869 1.10 thorpej #endif
870 1.9 bsh }
871 1.1 bsh
872 1.1 bsh #ifdef IPKDB
873 1.1 bsh /* Initialise ipkdb */
874 1.1 bsh ipkdb_init();
875 1.1 bsh if (boothowto & RB_KDB)
876 1.1 bsh ipkdb_connect(0);
877 1.1 bsh #endif
878 1.1 bsh
879 1.1 bsh #ifdef KGDB
880 1.1 bsh if (boothowto & RB_KDB) {
881 1.1 bsh kgdb_debug_init = 1;
882 1.1 bsh kgdb_connect(1);
883 1.1 bsh }
884 1.1 bsh #endif
885 1.1 bsh
886 1.3 ragge #if NKSYMS || defined(DDB) || defined(LKM)
887 1.3 ragge /* Firmware doesn't load symbols. */
888 1.3 ragge ksyms_init(0, NULL, NULL);
889 1.3 ragge #endif
890 1.3 ragge
891 1.1 bsh #ifdef DDB
892 1.1 bsh db_machine_init();
893 1.1 bsh if (boothowto & RB_KDB)
894 1.1 bsh Debugger();
895 1.1 bsh #endif
896 1.1 bsh
897 1.1 bsh /* We return the new stack pointer address */
898 1.1 bsh return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
899 1.1 bsh }
900 1.1 bsh
901 1.1 bsh void
902 1.1 bsh consinit(void)
903 1.1 bsh {
904 1.1 bsh static int consinit_done = 0;
905 1.1 bsh bus_space_tag_t iot = s3c2xx0_softc->sc_iot;
906 1.9 bsh int pclk = s3c2xx0_softc->sc_pclk;
907 1.1 bsh
908 1.1 bsh if (consinit_done != 0)
909 1.1 bsh return;
910 1.1 bsh
911 1.1 bsh consinit_done = 1;
912 1.1 bsh
913 1.1 bsh #if NSSCOM > 0
914 1.1 bsh #ifdef SSCOM0CONSOLE
915 1.1 bsh if (0 == s3c2800_sscom_cnattach(iot, 0, comcnspeed,
916 1.9 bsh pclk, comcnmode))
917 1.1 bsh return;
918 1.1 bsh #endif
919 1.1 bsh #ifdef SSCOM1CONSOLE
920 1.1 bsh if (0 == s3c2800_sscom_cnattach(iot, 1, comcnspeed,
921 1.9 bsh pclk, comcnmode))
922 1.1 bsh return;
923 1.1 bsh #endif
924 1.1 bsh #endif /* NSSCOM */
925 1.1 bsh #if NCOM>0 && defined(CONCOMADDR)
926 1.1 bsh if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
927 1.13 thorpej COM_FREQ, COM_TYPE_NORMAL, comcnmode))
928 1.1 bsh panic("can't init serial console @%x", CONCOMADDR);
929 1.1 bsh return;
930 1.1 bsh #endif
931 1.1 bsh
932 1.1 bsh consinit_done = 0;
933 1.1 bsh }
934 1.1 bsh
935 1.1 bsh
936 1.1 bsh #ifdef KGDB
937 1.1 bsh
938 1.1 bsh #if (NSSCOM > 0)
939 1.1 bsh
940 1.1 bsh #ifdef KGDB_DEVNAME
941 1.1 bsh const char kgdb_devname[] = KGDB_DEVNAME;
942 1.1 bsh #else
943 1.1 bsh const char kgdb_devname[] = "";
944 1.1 bsh #endif
945 1.1 bsh
946 1.1 bsh #ifndef KGDB_DEVMODE
947 1.1 bsh #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */
948 1.1 bsh #endif
949 1.1 bsh int kgdb_sscom_mode = KGDB_DEVMODE;
950 1.1 bsh
951 1.1 bsh #endif /* NSSCOM */
952 1.1 bsh
953 1.1 bsh void
954 1.1 bsh kgdb_port_init(void)
955 1.1 bsh {
956 1.1 bsh #if (NSSCOM > 0)
957 1.1 bsh int unit = -1;
958 1.9 bsh int pclk = s3c2xx0_softc->sc_pclk;
959 1.1 bsh
960 1.1 bsh if (strcmp(kgdb_devname, "sscom0") == 0)
961 1.1 bsh unit = 0;
962 1.1 bsh else if (strcmp(kgdb_devname, "sscom1") == 0)
963 1.1 bsh unit = 1;
964 1.1 bsh
965 1.1 bsh if (unit >= 0) {
966 1.1 bsh s3c2800_sscom_kgdb_attach(s3c2xx0_softc->sc_iot,
967 1.9 bsh unit, kgdb_rate, pclk, kgdb_sscom_mode);
968 1.1 bsh }
969 1.1 bsh #endif
970 1.1 bsh }
971 1.1 bsh #endif
972 1.1 bsh
973 1.1 bsh static __inline
974 1.1 bsh pd_entry_t *
975 1.1 bsh read_ttb(void)
976 1.1 bsh {
977 1.1 bsh long ttb;
978 1.1 bsh
979 1.1 bsh __asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(ttb));
980 1.1 bsh
981 1.1 bsh
982 1.1 bsh return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
983 1.1 bsh }
984 1.1 bsh
985 1.1 bsh
986 1.1 bsh static __inline void
987 1.1 bsh writeback_dcache_line(vaddr_t va)
988 1.1 bsh {
989 1.1 bsh /* writeback Dcache line */
990 1.1 bsh /* we can't use cpu_dcache_wb_range() here, because cpufuncs for ARM9
991 1.1 bsh * assume write-through cache, and always flush Dcache instead of
992 1.1 bsh * cleaning it. Since Boot loader maps page table with write-back
993 1.1 bsh * cached, we really need to clean Dcache. */
994 1.1 bsh asm("mcr p15, 0, %0, c7, c10, 1"
995 1.1 bsh : : "r"(va));
996 1.1 bsh }
997 1.1 bsh
998 1.1 bsh static __inline void
999 1.1 bsh clean_dcache_line(vaddr_t va)
1000 1.1 bsh {
1001 1.1 bsh /* writeback and invalidate Dcache line */
1002 1.1 bsh asm("mcr p15, 0, %0, c7, c14, 1"
1003 1.1 bsh : : "r"(va));
1004 1.1 bsh }
1005 1.1 bsh
1006 1.1 bsh static vaddr_t section_free = SMDK2800_VBASE_FREE;
1007 1.1 bsh
1008 1.9 bsh static void
1009 1.9 bsh map_builtin_peripherals(void)
1010 1.9 bsh {
1011 1.9 bsh pd_entry_t *pagedir = read_ttb();
1012 1.9 bsh int i, sec;
1013 1.9 bsh
1014 1.9 bsh for (i=0; i < 2; ++i) {
1015 1.9 bsh
1016 1.9 bsh pmap_map_section((vaddr_t)pagedir,
1017 1.9 bsh SMDK2800_IO_AREA_VBASE + (i <<L1_S_SHIFT),
1018 1.9 bsh S3C2800_PERIPHERALS + (i << L1_S_SHIFT),
1019 1.9 bsh VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
1020 1.9 bsh
1021 1.9 bsh sec = (SMDK2800_IO_AREA_VBASE >> L1_S_SHIFT) + i;
1022 1.9 bsh writeback_dcache_line((vaddr_t)&pagedir[sec]);
1023 1.9 bsh }
1024 1.9 bsh
1025 1.9 bsh cpu_drain_writebuf();
1026 1.9 bsh cpu_tlb_flushD();
1027 1.9 bsh }
1028 1.9 bsh
1029 1.1 bsh /*
1030 1.1 bsh * simple memory mapping function used in early bootstrap stage
1031 1.1 bsh * before pmap is initialized.
1032 1.1 bsh * This assumes only peripheral registers to map. they are mapped to
1033 1.1 bsh * fixed address with section mapping.
1034 1.1 bsh */
1035 1.1 bsh static int
1036 1.1 bsh bootstrap_bs_map(void *t, bus_addr_t bpa, bus_size_t size,
1037 1.1 bsh int flag, bus_space_handle_t * bshp)
1038 1.1 bsh {
1039 1.9 bsh long offset;
1040 1.1 bsh int modified = 0;
1041 1.1 bsh pd_entry_t *pagedir = read_ttb();
1042 1.1 bsh /* This assumes PA==VA for page directory */
1043 1.1 bsh
1044 1.1 bsh if (S3C2800_PERIPHERALS <= bpa && bpa < S3C2800_PERIPHERALS + 0x200000) {
1045 1.1 bsh offset = bpa - S3C2800_PERIPHERALS;
1046 1.1 bsh if (offset < 0 || 2 * L1_S_SIZE < offset)
1047 1.1 bsh panic("bootstrap_bs_map: can't map");
1048 1.1 bsh *bshp = (bus_space_handle_t)(SMDK2800_IO_AREA_VBASE + offset);
1049 1.1 bsh } else {
1050 1.1 bsh vaddr_t va;
1051 1.1 bsh bus_addr_t pa;
1052 1.1 bsh int cacheable = flag & BUS_SPACE_MAP_CACHEABLE;
1053 1.1 bsh
1054 1.1 bsh
1055 1.1 bsh size = (size + L1_S_OFFSET) & ~L1_S_OFFSET;
1056 1.1 bsh pa = bpa & ~L1_S_OFFSET;
1057 1.1 bsh offset = bpa - pa;
1058 1.1 bsh
1059 1.1 bsh va = section_free;
1060 1.1 bsh while (size) {
1061 1.1 bsh pmap_map_section((vaddr_t)pagedir, va,
1062 1.1 bsh pa, VM_PROT_READ | VM_PROT_WRITE,
1063 1.1 bsh cacheable ? PTE_CACHE : PTE_NOCACHE);
1064 1.1 bsh writeback_dcache_line((vaddr_t)& pagedir[va >> L1_S_SHIFT]);
1065 1.1 bsh va += L1_S_SIZE;
1066 1.1 bsh pa += L1_S_SIZE;
1067 1.1 bsh size -= L1_S_SIZE;
1068 1.1 bsh }
1069 1.1 bsh
1070 1.1 bsh *bshp = (bus_space_handle_t)(section_free + offset);
1071 1.1 bsh section_free = va;
1072 1.1 bsh }
1073 1.1 bsh
1074 1.1 bsh
1075 1.1 bsh if (modified) {
1076 1.1 bsh
1077 1.1 bsh cpu_drain_writebuf();
1078 1.1 bsh cpu_tlb_flushD();
1079 1.1 bsh }
1080 1.1 bsh return (0);
1081 1.1 bsh }
1082 1.1 bsh
1083 1.1 bsh static void
1084 1.1 bsh copy_io_area_map(pd_entry_t * new_pd)
1085 1.1 bsh {
1086 1.1 bsh pd_entry_t *cur_pd = read_ttb();
1087 1.9 bsh int sec;
1088 1.1 bsh
1089 1.1 bsh for (sec = SMDK2800_IO_AREA_VBASE >> L1_S_SHIFT;
1090 1.1 bsh sec < (section_free >> L1_S_SHIFT); ++sec) {
1091 1.1 bsh new_pd[sec] = cur_pd[sec];
1092 1.1 bsh }
1093 1.1 bsh }
1094