smdk2800_machdep.c revision 1.31 1 1.31 matt /* $NetBSD: smdk2800_machdep.c,v 1.31 2009/08/11 17:04:17 matt Exp $ */
2 1.1 bsh
3 1.1 bsh /*
4 1.20 bsh * Copyright (c) 2002, 2003, 2005 Fujitsu Component Limited
5 1.20 bsh * Copyright (c) 2002, 2003, 2005 Genetec Corporation
6 1.1 bsh * All rights reserved.
7 1.1 bsh *
8 1.1 bsh * Redistribution and use in source and binary forms, with or without
9 1.1 bsh * modification, are permitted provided that the following conditions
10 1.1 bsh * are met:
11 1.1 bsh * 1. Redistributions of source code must retain the above copyright
12 1.1 bsh * notice, this list of conditions and the following disclaimer.
13 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 bsh * notice, this list of conditions and the following disclaimer in the
15 1.1 bsh * documentation and/or other materials provided with the distribution.
16 1.1 bsh * 3. Neither the name of The Fujitsu Component Limited nor the name of
17 1.1 bsh * Genetec corporation may not be used to endorse or promote products
18 1.1 bsh * derived from this software without specific prior written permission.
19 1.1 bsh *
20 1.1 bsh * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
21 1.1 bsh * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
22 1.1 bsh * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
23 1.1 bsh * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24 1.1 bsh * DISCLAIMED. IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
25 1.1 bsh * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 1.1 bsh * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 1.1 bsh * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28 1.1 bsh * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29 1.1 bsh * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 1.1 bsh * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 1.1 bsh * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 bsh * SUCH DAMAGE.
33 1.1 bsh */
34 1.1 bsh
35 1.1 bsh /*
36 1.1 bsh * Copyright (c) 2001,2002 ARM Ltd
37 1.1 bsh * All rights reserved.
38 1.1 bsh *
39 1.1 bsh * Redistribution and use in source and binary forms, with or without
40 1.1 bsh * modification, are permitted provided that the following conditions
41 1.1 bsh * are met:
42 1.1 bsh * 1. Redistributions of source code must retain the above copyright
43 1.1 bsh * notice, this list of conditions and the following disclaimer.
44 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright
45 1.1 bsh * notice, this list of conditions and the following disclaimer in the
46 1.1 bsh * documentation and/or other materials provided with the distribution.
47 1.1 bsh * 3. The name of the company may not be used to endorse or promote
48 1.1 bsh * products derived from this software without specific prior written
49 1.1 bsh * permission.
50 1.1 bsh *
51 1.1 bsh * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
52 1.1 bsh * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
53 1.1 bsh * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
54 1.1 bsh * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD
55 1.1 bsh * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
56 1.1 bsh * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
57 1.1 bsh * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
58 1.1 bsh * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
59 1.1 bsh * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 1.1 bsh * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 1.1 bsh * POSSIBILITY OF SUCH DAMAGE.
62 1.1 bsh *
63 1.1 bsh */
64 1.1 bsh
65 1.1 bsh /*
66 1.1 bsh * Copyright (c) 1997,1998 Mark Brinicombe.
67 1.1 bsh * Copyright (c) 1997,1998 Causality Limited.
68 1.1 bsh * All rights reserved.
69 1.1 bsh *
70 1.1 bsh * Redistribution and use in source and binary forms, with or without
71 1.1 bsh * modification, are permitted provided that the following conditions
72 1.1 bsh * are met:
73 1.1 bsh * 1. Redistributions of source code must retain the above copyright
74 1.1 bsh * notice, this list of conditions and the following disclaimer.
75 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright
76 1.1 bsh * notice, this list of conditions and the following disclaimer in the
77 1.1 bsh * documentation and/or other materials provided with the distribution.
78 1.1 bsh * 3. All advertising materials mentioning features or use of this software
79 1.1 bsh * must display the following acknowledgement:
80 1.1 bsh * This product includes software developed by Mark Brinicombe
81 1.1 bsh * for the NetBSD Project.
82 1.1 bsh * 4. The name of the company nor the name of the author may be used to
83 1.1 bsh * endorse or promote products derived from this software without specific
84 1.1 bsh * prior written permission.
85 1.1 bsh *
86 1.1 bsh * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
87 1.1 bsh * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
88 1.1 bsh * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
89 1.1 bsh * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
90 1.1 bsh * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
91 1.1 bsh * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
92 1.1 bsh * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
93 1.1 bsh * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
94 1.1 bsh * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
95 1.1 bsh * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
96 1.1 bsh * SUCH DAMAGE.
97 1.1 bsh *
98 1.1 bsh * Machine dependant functions for kernel setup for integrator board
99 1.1 bsh *
100 1.1 bsh * Created : 24/11/97
101 1.1 bsh */
102 1.1 bsh
103 1.9 bsh /*
104 1.9 bsh * Machine dependant functions for kernel setup for Samsung SMDK2800
105 1.9 bsh * derived from integrator_machdep.c
106 1.9 bsh */
107 1.15 lukem
108 1.15 lukem #include <sys/cdefs.h>
109 1.31 matt __KERNEL_RCSID(0, "$NetBSD: smdk2800_machdep.c,v 1.31 2009/08/11 17:04:17 matt Exp $");
110 1.9 bsh
111 1.1 bsh #include "opt_ddb.h"
112 1.1 bsh #include "opt_kgdb.h"
113 1.1 bsh #include "opt_pmap_debug.h"
114 1.1 bsh #include "opt_md.h"
115 1.1 bsh #include "pci.h"
116 1.1 bsh
117 1.1 bsh #include <sys/param.h>
118 1.1 bsh #include <sys/device.h>
119 1.1 bsh #include <sys/systm.h>
120 1.1 bsh #include <sys/kernel.h>
121 1.1 bsh #include <sys/exec.h>
122 1.1 bsh #include <sys/proc.h>
123 1.1 bsh #include <sys/msgbuf.h>
124 1.1 bsh #include <sys/reboot.h>
125 1.1 bsh #include <sys/termios.h>
126 1.3 ragge #include <sys/ksyms.h>
127 1.1 bsh
128 1.2 thorpej #include <uvm/uvm_extern.h>
129 1.2 thorpej
130 1.1 bsh #include <dev/cons.h>
131 1.1 bsh #include <dev/md.h>
132 1.1 bsh
133 1.1 bsh #include <machine/db_machdep.h>
134 1.1 bsh #include <ddb/db_sym.h>
135 1.1 bsh #include <ddb/db_extern.h>
136 1.1 bsh #ifdef KGDB
137 1.1 bsh #include <sys/kgdb.h>
138 1.1 bsh #endif
139 1.1 bsh
140 1.1 bsh #include <machine/bootconfig.h>
141 1.1 bsh #include <machine/bus.h>
142 1.1 bsh #include <machine/cpu.h>
143 1.1 bsh #include <machine/frame.h>
144 1.1 bsh #include <machine/intr.h>
145 1.1 bsh #include <arm/undefined.h>
146 1.1 bsh
147 1.1 bsh #include <arm/arm32/machdep.h>
148 1.1 bsh
149 1.1 bsh #include <arm/s3c2xx0/s3c2800reg.h>
150 1.1 bsh #include <arm/s3c2xx0/s3c2800var.h>
151 1.20 bsh #include <evbarm/smdk2xx0/smdk2800var.h>
152 1.1 bsh
153 1.3 ragge #include "ksyms.h"
154 1.3 ragge
155 1.7 thorpej /* Kernel text starts 2MB in from the bottom of the kernel address space. */
156 1.7 thorpej #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
157 1.11 thorpej #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
158 1.12 thorpej
159 1.12 thorpej /*
160 1.12 thorpej * The range 0xc1000000 - 0xccffffff is available for kernel VM space
161 1.12 thorpej * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
162 1.12 thorpej */
163 1.12 thorpej #define KERNEL_VM_SIZE 0x0C000000
164 1.1 bsh
165 1.9 bsh /* Memory disk support */
166 1.9 bsh #if defined(MEMORY_DISK_DYNAMIC) && defined(MEMORY_DISK_ROOT_ADDR)
167 1.9 bsh #define DO_MEMORY_DISK
168 1.9 bsh /* We have memory disk image outside of the kernel on ROM. */
169 1.9 bsh #ifdef MEMORY_DISK_ROOT_ROM
170 1.9 bsh /* map the image directory and use read-only */
171 1.9 bsh #else
172 1.9 bsh /* copy the image to RAM */
173 1.9 bsh #endif
174 1.9 bsh #endif
175 1.9 bsh
176 1.9 bsh
177 1.1 bsh /*
178 1.1 bsh * Address to call from cpu_reset() to reset the machine.
179 1.1 bsh * This is machine architecture dependant as it varies depending
180 1.1 bsh * on where the ROM appears when you turn the MMU off.
181 1.1 bsh */
182 1.1 bsh u_int cpu_reset_address = (u_int)0;
183 1.1 bsh
184 1.1 bsh /* Define various stack sizes in pages */
185 1.1 bsh #define IRQ_STACK_SIZE 1
186 1.1 bsh #define ABT_STACK_SIZE 1
187 1.1 bsh #define UND_STACK_SIZE 1
188 1.1 bsh
189 1.1 bsh BootConfig bootconfig; /* Boot config storage */
190 1.1 bsh char *boot_args = NULL;
191 1.1 bsh char *boot_file = NULL;
192 1.1 bsh
193 1.1 bsh vm_offset_t physical_start;
194 1.1 bsh vm_offset_t physical_freestart;
195 1.1 bsh vm_offset_t physical_freeend;
196 1.1 bsh vm_offset_t physical_end;
197 1.1 bsh u_int free_pages;
198 1.1 bsh vm_offset_t pagetables_start;
199 1.1 bsh
200 1.1 bsh /*int debug_flags;*/
201 1.1 bsh #ifndef PMAP_STATIC_L1S
202 1.1 bsh int max_processes = 64; /* Default number */
203 1.1 bsh #endif /* !PMAP_STATIC_L1S */
204 1.1 bsh
205 1.1 bsh /* Physical and virtual addresses for some global pages */
206 1.1 bsh pv_addr_t irqstack;
207 1.1 bsh pv_addr_t undstack;
208 1.1 bsh pv_addr_t abtstack;
209 1.1 bsh pv_addr_t kernelstack;
210 1.1 bsh
211 1.1 bsh vm_offset_t msgbufphys;
212 1.1 bsh
213 1.1 bsh extern u_int data_abort_handler_address;
214 1.1 bsh extern u_int prefetch_abort_handler_address;
215 1.1 bsh extern u_int undefined_handler_address;
216 1.1 bsh
217 1.1 bsh #ifdef PMAP_DEBUG
218 1.1 bsh extern int pmap_debug_level;
219 1.1 bsh #endif
220 1.1 bsh
221 1.1 bsh #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
222 1.1 bsh #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
223 1.1 bsh #define KERNEL_PT_KERNEL_NUM 2 /* L2 tables for mapping kernel VM */
224 1.1 bsh
225 1.1 bsh #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
226 1.1 bsh
227 1.1 bsh #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
228 1.1 bsh #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
229 1.1 bsh
230 1.1 bsh pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
231 1.1 bsh
232 1.1 bsh struct user *proc0paddr;
233 1.1 bsh
234 1.1 bsh /* Prototypes */
235 1.1 bsh
236 1.1 bsh void consinit(void);
237 1.1 bsh void kgdb_port_init(void);
238 1.1 bsh
239 1.1 bsh /* A load of console goo. */
240 1.1 bsh #include "vga.h"
241 1.1 bsh #if NVGA > 0
242 1.1 bsh #include <dev/ic/mc6845reg.h>
243 1.1 bsh #include <dev/ic/pcdisplayvar.h>
244 1.1 bsh #include <dev/ic/vgareg.h>
245 1.1 bsh #include <dev/ic/vgavar.h>
246 1.1 bsh #endif
247 1.1 bsh
248 1.1 bsh #include "com.h"
249 1.1 bsh #if NCOM > 0
250 1.1 bsh #include <dev/ic/comreg.h>
251 1.1 bsh #include <dev/ic/comvar.h>
252 1.1 bsh #endif
253 1.1 bsh
254 1.1 bsh #include "sscom.h"
255 1.1 bsh #if NSSCOM > 0
256 1.1 bsh #include "opt_sscom.h"
257 1.1 bsh #include <arm/s3c2xx0/sscom_var.h>
258 1.1 bsh #endif
259 1.1 bsh
260 1.1 bsh /*
261 1.1 bsh * Define the default console speed for the board. This is generally
262 1.1 bsh * what the firmware provided with the board defaults to.
263 1.1 bsh */
264 1.1 bsh #ifndef CONSPEED
265 1.1 bsh #define CONSPEED B115200 /* TTYDEF_SPEED */
266 1.1 bsh #endif
267 1.1 bsh #ifndef CONMODE
268 1.1 bsh #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
269 1.1 bsh #endif
270 1.1 bsh
271 1.1 bsh int comcnspeed = CONSPEED;
272 1.1 bsh int comcnmode = CONMODE;
273 1.1 bsh
274 1.1 bsh /*
275 1.1 bsh * void cpu_reboot(int howto, char *bootstr)
276 1.1 bsh *
277 1.1 bsh * Reboots the system
278 1.1 bsh *
279 1.1 bsh * Deal with any syncing, unmounting, dumping and shutdown hooks,
280 1.1 bsh * then reset the CPU.
281 1.1 bsh */
282 1.1 bsh void
283 1.1 bsh cpu_reboot(int howto, char *bootstr)
284 1.1 bsh {
285 1.1 bsh
286 1.9 bsh cpu_reset_address = vtophys((u_int)s3c2800_softreset);
287 1.1 bsh
288 1.1 bsh /*
289 1.1 bsh * If we are still cold then hit the air brakes
290 1.1 bsh * and crash to earth fast
291 1.1 bsh */
292 1.1 bsh if (cold) {
293 1.1 bsh doshutdownhooks();
294 1.27 dyoung pmf_system_shutdown(boothowto);
295 1.1 bsh printf("The operating system has halted.\n");
296 1.1 bsh printf("Please press any key to reboot.\n\n");
297 1.1 bsh cngetc();
298 1.1 bsh printf("rebooting...\n");
299 1.1 bsh cpu_reset();
300 1.1 bsh /* NOTREACHED */
301 1.1 bsh }
302 1.1 bsh /* Disable console buffering */
303 1.1 bsh
304 1.1 bsh /*
305 1.1 bsh * If RB_NOSYNC was not specified sync the discs.
306 1.1 bsh * Note: Unless cold is set to 1 here, syslogd will die during the
307 1.1 bsh * unmount. It looks like syslogd is getting woken up only to find
308 1.1 bsh * that it cannot page part of the binary in as the filesystem has
309 1.1 bsh * been unmounted.
310 1.1 bsh */
311 1.1 bsh if (!(howto & RB_NOSYNC))
312 1.1 bsh bootsync();
313 1.1 bsh
314 1.1 bsh /* Say NO to interrupts */
315 1.1 bsh splhigh();
316 1.1 bsh
317 1.1 bsh /* Do a dump if requested. */
318 1.1 bsh if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
319 1.1 bsh dumpsys();
320 1.1 bsh
321 1.1 bsh /* Run any shutdown hooks */
322 1.1 bsh doshutdownhooks();
323 1.1 bsh
324 1.27 dyoung pmf_system_shutdown(boothowto);
325 1.27 dyoung
326 1.1 bsh /* Make sure IRQ's are disabled */
327 1.1 bsh IRQdisable;
328 1.1 bsh
329 1.1 bsh if (howto & RB_HALT) {
330 1.1 bsh printf("The operating system has halted.\n");
331 1.1 bsh printf("Please press any key to reboot.\n\n");
332 1.1 bsh cngetc();
333 1.1 bsh }
334 1.1 bsh printf("rebooting...\n");
335 1.1 bsh cpu_reset();
336 1.1 bsh /* NOTREACHED */
337 1.1 bsh }
338 1.21 bsh
339 1.21 bsh /*
340 1.21 bsh * All built-in peripheral registers are statically mapped in start up
341 1.21 bsh * routine. This table tells pmap subsystem about it, and to map them
342 1.21 bsh * at the same position.
343 1.21 bsh */
344 1.21 bsh static const struct pmap_devmap smdk2800_devmap[] = {
345 1.21 bsh {
346 1.21 bsh SMDK2800_IO_AREA_VBASE,
347 1.21 bsh S3C2800_PERIPHERALS,
348 1.21 bsh S3C2800_PERIPHERALS_SIZE,
349 1.21 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
350 1.21 bsh },
351 1.21 bsh { 0, 0, 0, 0 }
352 1.21 bsh };
353 1.21 bsh
354 1.21 bsh #define ioreg_vaddr(pa) ((pa) - S3C2800_PERIPHERALS + SMDK2800_IO_AREA_VBASE)
355 1.21 bsh #define ioreg32(pa) (*(volatile uint32_t *)ioreg_vaddr(pa))
356 1.1 bsh
357 1.1 bsh /*
358 1.1 bsh * u_int initarm(...)
359 1.1 bsh *
360 1.1 bsh * Initial entry point on startup. This gets called before main() is
361 1.1 bsh * entered.
362 1.1 bsh * It should be responsible for setting up everything that must be
363 1.1 bsh * in place when main is called.
364 1.1 bsh * This includes
365 1.1 bsh * Taking a copy of the boot configuration structure.
366 1.1 bsh * Initialising the physical console so characters can be printed.
367 1.1 bsh * Setting up page tables for the kernel
368 1.1 bsh * Relocating the kernel to the bottom of physical memory
369 1.1 bsh */
370 1.1 bsh
371 1.1 bsh u_int
372 1.1 bsh initarm(void *arg)
373 1.1 bsh {
374 1.1 bsh int loop;
375 1.1 bsh int loop1;
376 1.1 bsh u_int l1pagetable;
377 1.23 perry extern int etext __asm("_etext");
378 1.23 perry extern int end __asm("_end");
379 1.1 bsh int progress_counter = 0;
380 1.9 bsh
381 1.9 bsh #ifdef DO_MEMORY_DISK
382 1.9 bsh vm_offset_t md_root_start;
383 1.9 bsh #define MD_ROOT_SIZE (MEMORY_DISK_ROOT_SIZE * DEV_BSIZE)
384 1.1 bsh #endif
385 1.1 bsh
386 1.21 bsh #define gpio8(reg) (*(volatile uint8_t *)(ioreg_vaddr(S3C2800_GPIO_BASE) + (reg)))
387 1.9 bsh
388 1.1 bsh #define LEDSTEP() __LED(progress_counter++)
389 1.1 bsh
390 1.21 bsh #define pdatc gpio8(GPIO_PDATC)
391 1.1 bsh #define __LED(x) (pdatc = (pdatc & ~0x07) | (~(x) & 0x07))
392 1.1 bsh
393 1.1 bsh LEDSTEP();
394 1.1 bsh /*
395 1.1 bsh * Heads up ... Setup the CPU / MMU / TLB functions
396 1.1 bsh */
397 1.1 bsh if (set_cpufuncs())
398 1.17 wiz panic("CPU not recognized!");
399 1.1 bsh
400 1.1 bsh LEDSTEP();
401 1.9 bsh
402 1.1 bsh
403 1.1 bsh /* Disable all peripheral interrupts */
404 1.21 bsh ioreg32(S3C2800_INTCTL_BASE + INTCTL_INTMSK) = 0;
405 1.9 bsh
406 1.1 bsh consinit();
407 1.10 thorpej #ifdef VERBOSE_INIT_ARM
408 1.1 bsh printf("consinit done\n");
409 1.10 thorpej #endif
410 1.1 bsh
411 1.1 bsh #ifdef KGDB
412 1.1 bsh LEDSTEP();
413 1.1 bsh kgdb_port_init();
414 1.1 bsh #endif
415 1.1 bsh LEDSTEP();
416 1.1 bsh
417 1.10 thorpej #ifdef VERBOSE_INIT_ARM
418 1.1 bsh /* Talk to the user */
419 1.1 bsh printf("\nNetBSD/evbarm (SMDK2800) booting ...\n");
420 1.10 thorpej #endif
421 1.1 bsh
422 1.1 bsh /*
423 1.1 bsh * Ok we have the following memory map
424 1.1 bsh *
425 1.1 bsh * Physical Address Range Description
426 1.1 bsh * ----------------------- ----------------------------------
427 1.1 bsh * 0x00000000 - 0x00ffffff Intel flash Memory (16MB)
428 1.1 bsh * 0x02000000 - 0x020fffff AMD flash Memory (1MB)
429 1.1 bsh * or (depend on DIPSW setting)
430 1.1 bsh * 0x00000000 - 0x000fffff AMD flash Memory (1MB)
431 1.1 bsh * 0x02000000 - 0x02ffffff Intel flash Memory (16MB)
432 1.1 bsh *
433 1.1 bsh * 0x08000000 - 0x09ffffff SDRAM (32MB)
434 1.1 bsh * 0x20000000 - 0x3fffffff PCI space
435 1.1 bsh *
436 1.1 bsh * The initarm() has the responsibility for creating the kernel
437 1.1 bsh * page tables.
438 1.1 bsh * It must also set up various memory pointers that are used
439 1.1 bsh * by pmap etc.
440 1.1 bsh */
441 1.1 bsh
442 1.1 bsh /* Fake bootconfig structure for the benefit of pmap.c */
443 1.1 bsh /* XXX must make the memory description h/w independent */
444 1.1 bsh bootconfig.dramblocks = 1;
445 1.1 bsh bootconfig.dram[0].address = SDRAM_START;
446 1.2 thorpej bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE;
447 1.1 bsh
448 1.1 bsh /*
449 1.1 bsh * Set up the variables that define the availablilty of
450 1.1 bsh * physical memory. For now, we're going to set
451 1.1 bsh * physical_freestart to 0x08200000 (where the kernel
452 1.1 bsh * was loaded), and allocate the memory we need downwards.
453 1.1 bsh * If we get too close to the bottom of SDRAM, we
454 1.1 bsh * will panic. We will update physical_freestart and
455 1.1 bsh * physical_freeend later to reflect what pmap_bootstrap()
456 1.1 bsh * wants to see.
457 1.1 bsh *
458 1.1 bsh * XXX pmap_bootstrap() needs an enema.
459 1.1 bsh */
460 1.1 bsh physical_start = bootconfig.dram[0].address;
461 1.2 thorpej physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
462 1.9 bsh
463 1.9 bsh #if DO_MEMORY_DISK
464 1.9 bsh #ifdef MEMORY_DISK_ROOT_ROM
465 1.9 bsh md_root_start = MEMORY_DISK_ROOT_ADDR;
466 1.9 bsh boothowto |= RB_RDONLY;
467 1.9 bsh #else
468 1.9 bsh /* Reserve physmem for ram disk */
469 1.9 bsh md_root_start = ((physical_end - MD_ROOT_SIZE) & ~(L1_S_SIZE-1));
470 1.9 bsh printf("Reserve %ld bytes for memory disk\n",
471 1.9 bsh physical_end - md_root_start);
472 1.9 bsh /* copy fs contents */
473 1.9 bsh memcpy((void *)md_root_start, (void *)MEMORY_DISK_ROOT_ADDR,
474 1.9 bsh MD_ROOT_SIZE);
475 1.9 bsh physical_end = md_root_start;
476 1.9 bsh #endif
477 1.1 bsh #endif
478 1.1 bsh
479 1.1 bsh physical_freestart = 0x08000000UL; /* XXX */
480 1.1 bsh physical_freeend = 0x08200000UL;
481 1.1 bsh
482 1.2 thorpej physmem = (physical_end - physical_start) / PAGE_SIZE;
483 1.1 bsh
484 1.10 thorpej #ifdef VERBOSE_INIT_ARM
485 1.1 bsh /* Tell the user about the memory */
486 1.1 bsh printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
487 1.1 bsh physical_start, physical_end - 1);
488 1.10 thorpej #endif
489 1.1 bsh
490 1.1 bsh /*
491 1.1 bsh * XXX
492 1.1 bsh * Okay, the kernel starts 2MB in from the bottom of physical
493 1.1 bsh * memory. We are going to allocate our bootstrap pages downwards
494 1.1 bsh * from there.
495 1.1 bsh *
496 1.1 bsh * We need to allocate some fixed page tables to get the kernel
497 1.1 bsh * going. We allocate one page directory and a number of page
498 1.1 bsh * tables and store the physical addresses in the kernel_pt_table
499 1.1 bsh * array.
500 1.1 bsh *
501 1.1 bsh * The kernel page directory must be on a 16K boundary. The page
502 1.19 abs * tables must be on 4K boundaries. What we do is allocate the
503 1.1 bsh * page directory on the first 16K boundary that we encounter, and
504 1.1 bsh * the page tables on 4K boundaries otherwise. Since we allocate
505 1.1 bsh * at least 3 L2 page tables, we are guaranteed to encounter at
506 1.1 bsh * least one 16K aligned region.
507 1.1 bsh */
508 1.1 bsh
509 1.1 bsh #ifdef VERBOSE_INIT_ARM
510 1.1 bsh printf("Allocating page tables\n");
511 1.1 bsh #endif
512 1.1 bsh
513 1.2 thorpej free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
514 1.1 bsh
515 1.1 bsh #ifdef VERBOSE_INIT_ARM
516 1.1 bsh printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
517 1.1 bsh physical_freestart, free_pages, free_pages);
518 1.1 bsh #endif
519 1.1 bsh
520 1.1 bsh /* Define a macro to simplify memory allocation */
521 1.1 bsh #define valloc_pages(var, np) \
522 1.1 bsh alloc_pages((var).pv_pa, (np)); \
523 1.1 bsh (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
524 1.1 bsh
525 1.1 bsh #define alloc_pages(var, np) \
526 1.2 thorpej physical_freeend -= ((np) * PAGE_SIZE); \
527 1.1 bsh if (physical_freeend < physical_freestart) \
528 1.1 bsh panic("initarm: out of memory"); \
529 1.1 bsh (var) = physical_freeend; \
530 1.1 bsh free_pages -= (np); \
531 1.2 thorpej memset((char *)(var), 0, ((np) * PAGE_SIZE));
532 1.1 bsh
533 1.1 bsh loop1 = 0;
534 1.1 bsh for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
535 1.1 bsh /* Are we 16KB aligned for an L1 ? */
536 1.1 bsh if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
537 1.1 bsh && kernel_l1pt.pv_pa == 0) {
538 1.2 thorpej valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
539 1.1 bsh } else {
540 1.4 thorpej valloc_pages(kernel_pt_table[loop1],
541 1.4 thorpej L2_TABLE_SIZE / PAGE_SIZE);
542 1.1 bsh ++loop1;
543 1.1 bsh }
544 1.1 bsh }
545 1.1 bsh
546 1.1 bsh /* This should never be able to happen but better confirm that. */
547 1.9 bsh if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
548 1.1 bsh panic("initarm: Failed to align the kernel page directory\n");
549 1.1 bsh
550 1.1 bsh /*
551 1.1 bsh * Allocate a page for the system page mapped to V0x00000000
552 1.1 bsh * This page will just contain the system vectors and can be
553 1.1 bsh * shared by all processes.
554 1.1 bsh */
555 1.1 bsh alloc_pages(systempage.pv_pa, 1);
556 1.1 bsh
557 1.1 bsh /* Allocate stacks for all modes */
558 1.1 bsh valloc_pages(irqstack, IRQ_STACK_SIZE);
559 1.1 bsh valloc_pages(abtstack, ABT_STACK_SIZE);
560 1.1 bsh valloc_pages(undstack, UND_STACK_SIZE);
561 1.1 bsh valloc_pages(kernelstack, UPAGES);
562 1.1 bsh
563 1.1 bsh #ifdef VERBOSE_INIT_ARM
564 1.1 bsh printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
565 1.1 bsh irqstack.pv_va);
566 1.1 bsh printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
567 1.1 bsh abtstack.pv_va);
568 1.1 bsh printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
569 1.1 bsh undstack.pv_va);
570 1.1 bsh printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
571 1.1 bsh kernelstack.pv_va);
572 1.1 bsh #endif
573 1.1 bsh
574 1.2 thorpej alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
575 1.1 bsh
576 1.1 bsh LEDSTEP();
577 1.1 bsh
578 1.1 bsh /*
579 1.1 bsh * Ok we have allocated physical pages for the primary kernel
580 1.1 bsh * page tables
581 1.1 bsh */
582 1.1 bsh
583 1.1 bsh #ifdef VERBOSE_INIT_ARM
584 1.1 bsh printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
585 1.1 bsh #endif
586 1.1 bsh
587 1.1 bsh /*
588 1.1 bsh * Now we start construction of the L1 page table
589 1.1 bsh * We start by mapping the L2 page tables into the L1.
590 1.1 bsh * This means that we can replace L1 mappings later on if necessary
591 1.1 bsh */
592 1.1 bsh l1pagetable = kernel_l1pt.pv_pa;
593 1.1 bsh
594 1.1 bsh /* Map the L2 pages tables in the L1 page table */
595 1.1 bsh pmap_link_l2pt(l1pagetable, 0x00000000,
596 1.1 bsh &kernel_pt_table[KERNEL_PT_SYS]);
597 1.1 bsh for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
598 1.1 bsh pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
599 1.1 bsh &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
600 1.1 bsh for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
601 1.1 bsh pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
602 1.1 bsh &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
603 1.1 bsh
604 1.1 bsh /* update the top of the kernel VM */
605 1.1 bsh pmap_curmaxkvaddr =
606 1.1 bsh KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
607 1.1 bsh
608 1.1 bsh #ifdef VERBOSE_INIT_ARM
609 1.1 bsh printf("Mapping kernel\n");
610 1.1 bsh #endif
611 1.1 bsh
612 1.1 bsh /* Now we fill in the L2 pagetable for the kernel static code/data */
613 1.1 bsh {
614 1.8 bsh size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE;
615 1.8 bsh size_t totalsize = (uintptr_t)&end - KERNEL_TEXT_BASE;
616 1.1 bsh u_int logical;
617 1.1 bsh
618 1.1 bsh textsize = (textsize + PGOFSET) & ~PGOFSET;
619 1.1 bsh totalsize = (totalsize + PGOFSET) & ~PGOFSET;
620 1.1 bsh
621 1.1 bsh logical = 0x00200000; /* offset of kernel in RAM */
622 1.1 bsh
623 1.1 bsh logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
624 1.1 bsh physical_start + logical, textsize,
625 1.1 bsh VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
626 1.1 bsh logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
627 1.1 bsh physical_start + logical, totalsize - textsize,
628 1.1 bsh VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
629 1.1 bsh }
630 1.1 bsh
631 1.1 bsh #ifdef VERBOSE_INIT_ARM
632 1.1 bsh printf("Constructing L2 page tables\n");
633 1.1 bsh #endif
634 1.1 bsh
635 1.1 bsh /* Map the stack pages */
636 1.1 bsh pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
637 1.2 thorpej IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
638 1.2 thorpej PTE_CACHE);
639 1.1 bsh pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
640 1.2 thorpej ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
641 1.2 thorpej PTE_CACHE);
642 1.1 bsh pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
643 1.2 thorpej UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
644 1.2 thorpej PTE_CACHE);
645 1.1 bsh pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
646 1.2 thorpej UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
647 1.1 bsh
648 1.4 thorpej pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
649 1.4 thorpej L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
650 1.1 bsh
651 1.4 thorpej for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
652 1.4 thorpej pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
653 1.4 thorpej kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
654 1.4 thorpej VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
655 1.4 thorpej }
656 1.1 bsh
657 1.1 bsh /* Map the vector page. */
658 1.1 bsh #if 1
659 1.1 bsh /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
660 1.1 bsh * cache-clean code there. */
661 1.1 bsh pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
662 1.1 bsh VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
663 1.1 bsh #else
664 1.1 bsh pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
665 1.1 bsh VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
666 1.1 bsh #endif
667 1.1 bsh
668 1.1 bsh #ifdef MEMORY_DISK_DYNAMIC
669 1.9 bsh /* map MD root image */
670 1.21 bsh pmap_map_chunk(l1pagetable, SMDK2800_MEMORY_DISK_VADDR, md_root_start,
671 1.21 bsh MD_ROOT_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
672 1.1 bsh
673 1.9 bsh md_root_setconf((void *)md_root_start, MD_ROOT_SIZE);
674 1.9 bsh #endif /* MEMORY_DISK_DYNAMIC */
675 1.1 bsh /*
676 1.1 bsh * map integrated peripherals at same address in l1pagetable
677 1.1 bsh * so that we can continue to use console.
678 1.1 bsh */
679 1.21 bsh pmap_devmap_bootstrap(l1pagetable, smdk2800_devmap);
680 1.1 bsh
681 1.1 bsh /*
682 1.1 bsh * Now we have the real page tables in place so we can switch to them.
683 1.1 bsh * Once this is done we will be running with the REAL kernel page
684 1.1 bsh * tables.
685 1.1 bsh */
686 1.1 bsh
687 1.1 bsh /*
688 1.1 bsh * Update the physical_freestart/physical_freeend/free_pages
689 1.1 bsh * variables.
690 1.1 bsh */
691 1.1 bsh {
692 1.1 bsh physical_freestart = physical_start +
693 1.8 bsh (((((uintptr_t)&end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE);
694 1.1 bsh physical_freeend = physical_end;
695 1.2 thorpej free_pages =
696 1.2 thorpej (physical_freeend - physical_freestart) / PAGE_SIZE;
697 1.1 bsh }
698 1.1 bsh
699 1.1 bsh /* Switch tables */
700 1.1 bsh #ifdef VERBOSE_INIT_ARM
701 1.1 bsh printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
702 1.1 bsh physical_freestart, free_pages, free_pages);
703 1.1 bsh printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
704 1.1 bsh #endif
705 1.1 bsh LEDSTEP();
706 1.4 thorpej cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
707 1.1 bsh setttb(kernel_l1pt.pv_pa);
708 1.1 bsh cpu_tlb_flushID();
709 1.4 thorpej cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
710 1.4 thorpej
711 1.4 thorpej /*
712 1.4 thorpej * Moved from cpu_startup() as data_abort_handler() references
713 1.4 thorpej * this during uvm init
714 1.4 thorpej */
715 1.4 thorpej proc0paddr = (struct user *)kernelstack.pv_va;
716 1.4 thorpej lwp0.l_addr = proc0paddr;
717 1.1 bsh
718 1.1 bsh #ifdef VERBOSE_INIT_ARM
719 1.1 bsh printf("done!\n");
720 1.1 bsh #endif
721 1.1 bsh
722 1.1 bsh #if 0
723 1.1 bsh /*
724 1.1 bsh * The IFPGA registers have just moved.
725 1.1 bsh * Detach the diagnostic serial port and reattach at the new address.
726 1.1 bsh */
727 1.1 bsh plcomcndetach();
728 1.1 bsh /*
729 1.1 bsh * XXX this should only be done in main() but it useful to
730 1.1 bsh * have output earlier ...
731 1.1 bsh */
732 1.1 bsh consinit();
733 1.1 bsh #endif
734 1.1 bsh
735 1.1 bsh LEDSTEP();
736 1.1 bsh #ifdef VERBOSE_INIT_ARM
737 1.1 bsh printf("bootstrap done.\n");
738 1.1 bsh #endif
739 1.1 bsh
740 1.1 bsh arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
741 1.1 bsh
742 1.1 bsh /*
743 1.1 bsh * Pages were allocated during the secondary bootstrap for the
744 1.1 bsh * stacks for different CPU modes.
745 1.1 bsh * We must now set the r13 registers in the different CPU modes to
746 1.1 bsh * point to these stacks.
747 1.1 bsh * Since the ARM stacks use STMFD etc. we must set r13 to the top end
748 1.1 bsh * of the stack memory.
749 1.1 bsh */
750 1.10 thorpej #ifdef VERBOSE_INIT_ARM
751 1.1 bsh printf("init subsystems: stacks ");
752 1.10 thorpej #endif
753 1.1 bsh
754 1.2 thorpej set_stackptr(PSR_IRQ32_MODE,
755 1.2 thorpej irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
756 1.2 thorpej set_stackptr(PSR_ABT32_MODE,
757 1.2 thorpej abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
758 1.2 thorpej set_stackptr(PSR_UND32_MODE,
759 1.2 thorpej undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
760 1.1 bsh
761 1.1 bsh LEDSTEP();
762 1.1 bsh
763 1.1 bsh /*
764 1.1 bsh * Well we should set a data abort handler.
765 1.1 bsh * Once things get going this will change as we will need a proper
766 1.1 bsh * handler.
767 1.1 bsh * Until then we will use a handler that just panics but tells us
768 1.1 bsh * why.
769 1.1 bsh * Initialisation of the vectors will just panic on a data abort.
770 1.18 abs * This just fills in a slightly better one.
771 1.1 bsh */
772 1.10 thorpej #ifdef VERBOSE_INIT_ARM
773 1.1 bsh printf("vectors ");
774 1.10 thorpej #endif
775 1.1 bsh data_abort_handler_address = (u_int)data_abort_handler;
776 1.1 bsh prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
777 1.1 bsh undefined_handler_address = (u_int)undefinedinstruction_bounce;
778 1.1 bsh
779 1.1 bsh /* Initialise the undefined instruction handlers */
780 1.10 thorpej #ifdef VERBOSE_INIT_ARM
781 1.1 bsh printf("undefined ");
782 1.10 thorpej #endif
783 1.1 bsh undefined_init();
784 1.1 bsh
785 1.1 bsh LEDSTEP();
786 1.1 bsh
787 1.1 bsh /* Load memory into UVM. */
788 1.10 thorpej #ifdef VERBOSE_INIT_ARM
789 1.1 bsh printf("page ");
790 1.10 thorpej #endif
791 1.1 bsh uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
792 1.1 bsh uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
793 1.1 bsh atop(physical_freestart), atop(physical_freeend),
794 1.1 bsh VM_FREELIST_DEFAULT);
795 1.1 bsh
796 1.1 bsh LEDSTEP();
797 1.1 bsh /* Boot strap pmap telling it where the kernel page table is */
798 1.10 thorpej #ifdef VERBOSE_INIT_ARM
799 1.1 bsh printf("pmap ");
800 1.10 thorpej #endif
801 1.26 matt pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
802 1.1 bsh
803 1.1 bsh LEDSTEP();
804 1.1 bsh
805 1.1 bsh /* Setup the IRQ system */
806 1.10 thorpej #ifdef VERBOSE_INIT_ARM
807 1.1 bsh printf("irq ");
808 1.10 thorpej #endif
809 1.1 bsh /* XXX irq_init(); */
810 1.1 bsh
811 1.10 thorpej #ifdef VERBOSE_INIT_ARM
812 1.1 bsh printf("done.\n");
813 1.10 thorpej #endif
814 1.1 bsh
815 1.9 bsh #ifdef BOOTHOWTO_INIT
816 1.9 bsh boothowto |= BOOTHOWTO_INIT;
817 1.9 bsh #endif
818 1.9 bsh {
819 1.21 bsh uint8_t gpio = ~gpio8(GPIO_PDATF);
820 1.9 bsh
821 1.9 bsh if (gpio & (1<<5)) /* SW3 */
822 1.9 bsh boothowto ^= RB_SINGLE;
823 1.9 bsh if (gpio & (1<<7)) /* SW7 */
824 1.9 bsh boothowto ^= RB_KDB;
825 1.10 thorpej #ifdef VERBOSE_INIT_ARM
826 1.9 bsh printf( "sw: %x boothowto: %x\n", gpio, boothowto );
827 1.10 thorpej #endif
828 1.9 bsh }
829 1.1 bsh
830 1.1 bsh #ifdef KGDB
831 1.1 bsh if (boothowto & RB_KDB) {
832 1.1 bsh kgdb_debug_init = 1;
833 1.1 bsh kgdb_connect(1);
834 1.1 bsh }
835 1.1 bsh #endif
836 1.1 bsh
837 1.1 bsh #ifdef DDB
838 1.1 bsh db_machine_init();
839 1.1 bsh if (boothowto & RB_KDB)
840 1.1 bsh Debugger();
841 1.1 bsh #endif
842 1.1 bsh
843 1.1 bsh /* We return the new stack pointer address */
844 1.1 bsh return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
845 1.1 bsh }
846 1.1 bsh
847 1.1 bsh void
848 1.1 bsh consinit(void)
849 1.1 bsh {
850 1.1 bsh static int consinit_done = 0;
851 1.21 bsh bus_space_tag_t iot = &s3c2xx0_bs_tag;
852 1.21 bsh int pclk;
853 1.1 bsh
854 1.1 bsh if (consinit_done != 0)
855 1.1 bsh return;
856 1.1 bsh
857 1.1 bsh consinit_done = 1;
858 1.1 bsh
859 1.21 bsh pmap_devmap_register(smdk2800_devmap);
860 1.21 bsh
861 1.29 cliff s3c2800_clock_freq2(ioreg_vaddr(S3C2800_CLKMAN_BASE), NULL, NULL, &pclk);
862 1.21 bsh
863 1.1 bsh #if NSSCOM > 0
864 1.1 bsh #ifdef SSCOM0CONSOLE
865 1.1 bsh if (0 == s3c2800_sscom_cnattach(iot, 0, comcnspeed,
866 1.9 bsh pclk, comcnmode))
867 1.1 bsh return;
868 1.1 bsh #endif
869 1.1 bsh #ifdef SSCOM1CONSOLE
870 1.1 bsh if (0 == s3c2800_sscom_cnattach(iot, 1, comcnspeed,
871 1.9 bsh pclk, comcnmode))
872 1.1 bsh return;
873 1.1 bsh #endif
874 1.1 bsh #endif /* NSSCOM */
875 1.1 bsh #if NCOM>0 && defined(CONCOMADDR)
876 1.1 bsh if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
877 1.13 thorpej COM_FREQ, COM_TYPE_NORMAL, comcnmode))
878 1.1 bsh panic("can't init serial console @%x", CONCOMADDR);
879 1.1 bsh return;
880 1.1 bsh #endif
881 1.1 bsh
882 1.1 bsh consinit_done = 0;
883 1.1 bsh }
884 1.1 bsh
885 1.1 bsh
886 1.1 bsh #ifdef KGDB
887 1.1 bsh
888 1.1 bsh #if (NSSCOM > 0)
889 1.1 bsh
890 1.1 bsh #ifdef KGDB_DEVNAME
891 1.1 bsh const char kgdb_devname[] = KGDB_DEVNAME;
892 1.1 bsh #else
893 1.1 bsh const char kgdb_devname[] = "";
894 1.1 bsh #endif
895 1.1 bsh
896 1.1 bsh #ifndef KGDB_DEVMODE
897 1.1 bsh #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */
898 1.1 bsh #endif
899 1.1 bsh int kgdb_sscom_mode = KGDB_DEVMODE;
900 1.1 bsh
901 1.1 bsh #endif /* NSSCOM */
902 1.1 bsh
903 1.1 bsh void
904 1.1 bsh kgdb_port_init(void)
905 1.1 bsh {
906 1.1 bsh #if (NSSCOM > 0)
907 1.1 bsh int unit = -1;
908 1.21 bsh int pclk;
909 1.1 bsh
910 1.1 bsh if (strcmp(kgdb_devname, "sscom0") == 0)
911 1.1 bsh unit = 0;
912 1.1 bsh else if (strcmp(kgdb_devname, "sscom1") == 0)
913 1.1 bsh unit = 1;
914 1.1 bsh
915 1.1 bsh if (unit >= 0) {
916 1.29 cliff s3c2800_clock_freq2(ioreg_vaddr(S3C2800_CLKMAN_BASE),
917 1.21 bsh NULL, NULL, &pclk);
918 1.21 bsh
919 1.21 bsh s3c2800_sscom_kgdb_attach(&s3c2xx0_bs_tag,
920 1.9 bsh unit, kgdb_rate, pclk, kgdb_sscom_mode);
921 1.1 bsh }
922 1.1 bsh #endif
923 1.1 bsh }
924 1.1 bsh #endif
925