smdk2800_machdep.c revision 1.8 1 /* $NetBSD: smdk2800_machdep.c,v 1.8 2003/05/13 04:53:25 bsh Exp $ */
2
3 /*
4 * Copyright (c) 2002 Fujitsu Component Limited
5 * Copyright (c) 2002 Genetec Corporation
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The Fujitsu Component Limited nor the name of
17 * Genetec corporation may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
21 * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
22 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
23 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24 * DISCLAIMED. IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
25 * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 /*
36 * Machine dependant functions for kernel setup for Samsung SMDK2800
37 * derived from integrator_machdep.c
38 */
39
40 /*
41 * Copyright (c) 2001,2002 ARM Ltd
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. The name of the company may not be used to endorse or promote
53 * products derived from this software without specific prior written
54 * permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 *
68 */
69
70 /*
71 * Copyright (c) 1997,1998 Mark Brinicombe.
72 * Copyright (c) 1997,1998 Causality Limited.
73 * All rights reserved.
74 *
75 * Redistribution and use in source and binary forms, with or without
76 * modification, are permitted provided that the following conditions
77 * are met:
78 * 1. Redistributions of source code must retain the above copyright
79 * notice, this list of conditions and the following disclaimer.
80 * 2. Redistributions in binary form must reproduce the above copyright
81 * notice, this list of conditions and the following disclaimer in the
82 * documentation and/or other materials provided with the distribution.
83 * 3. All advertising materials mentioning features or use of this software
84 * must display the following acknowledgement:
85 * This product includes software developed by Mark Brinicombe
86 * for the NetBSD Project.
87 * 4. The name of the company nor the name of the author may be used to
88 * endorse or promote products derived from this software without specific
89 * prior written permission.
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
92 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
93 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
94 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
95 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
96 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
97 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101 * SUCH DAMAGE.
102 *
103 * Machine dependant functions for kernel setup for integrator board
104 *
105 * Created : 24/11/97
106 */
107
108 #include "opt_ddb.h"
109 #include "opt_kgdb.h"
110 #include "opt_ipkdb.h"
111 #include "opt_pmap_debug.h"
112 #include "opt_md.h"
113 #include "pci.h"
114
115 #include <sys/param.h>
116 #include <sys/device.h>
117 #include <sys/systm.h>
118 #include <sys/kernel.h>
119 #include <sys/exec.h>
120 #include <sys/proc.h>
121 #include <sys/msgbuf.h>
122 #include <sys/reboot.h>
123 #include <sys/termios.h>
124 #include <sys/ksyms.h>
125
126 #include <uvm/uvm_extern.h>
127
128 #include <dev/cons.h>
129 #include <dev/md.h>
130
131 #include <machine/db_machdep.h>
132 #include <ddb/db_sym.h>
133 #include <ddb/db_extern.h>
134 #ifdef KGDB
135 #include <sys/kgdb.h>
136 #endif
137
138 #include <machine/bootconfig.h>
139 #include <machine/bus.h>
140 #include <machine/cpu.h>
141 #include <machine/frame.h>
142 #include <machine/intr.h>
143 #include <arm/undefined.h>
144
145 #include <arm/arm32/machdep.h>
146
147 #include <arm/s3c2xx0/s3c2800reg.h>
148 #include <arm/s3c2xx0/s3c2800var.h>
149
150 #include "ksyms.h"
151
152 #ifndef SDRAM_START
153 #define SDRAM_START S3C2800_DBANK0_START
154 #endif
155 #ifndef SDRAM_SIZE
156 #define SDRAM_SIZE (32*1024*1024)
157 #endif
158
159 /*
160 * Address to map I/O registers in early initialize stage.
161 */
162 #define SMDK2800_IO_AREA_VBASE 0xfd000000
163 #define SMDK2800_VBASE_FREE 0xfd200000
164
165 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
166 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
167
168 /*
169 * Address to call from cpu_reset() to reset the machine.
170 * This is machine architecture dependant as it varies depending
171 * on where the ROM appears when you turn the MMU off.
172 */
173 u_int cpu_reset_address = (u_int)0;
174
175 /* Define various stack sizes in pages */
176 #define IRQ_STACK_SIZE 1
177 #define ABT_STACK_SIZE 1
178 #ifdef IPKDB
179 #define UND_STACK_SIZE 2
180 #else
181 #define UND_STACK_SIZE 1
182 #endif
183
184 BootConfig bootconfig; /* Boot config storage */
185 char *boot_args = NULL;
186 char *boot_file = NULL;
187
188 vm_offset_t physical_start;
189 vm_offset_t physical_freestart;
190 vm_offset_t physical_freeend;
191 vm_offset_t physical_end;
192 u_int free_pages;
193 vm_offset_t pagetables_start;
194 int physmem = 0;
195
196 /*int debug_flags;*/
197 #ifndef PMAP_STATIC_L1S
198 int max_processes = 64; /* Default number */
199 #endif /* !PMAP_STATIC_L1S */
200
201 /* Physical and virtual addresses for some global pages */
202 pv_addr_t systempage;
203 pv_addr_t irqstack;
204 pv_addr_t undstack;
205 pv_addr_t abtstack;
206 pv_addr_t kernelstack;
207
208 vm_offset_t msgbufphys;
209
210 extern u_int data_abort_handler_address;
211 extern u_int prefetch_abort_handler_address;
212 extern u_int undefined_handler_address;
213
214 #ifdef PMAP_DEBUG
215 extern int pmap_debug_level;
216 #endif
217
218 #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
219 #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
220 #define KERNEL_PT_KERNEL_NUM 2 /* L2 tables for mapping kernel VM */
221
222 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
223
224 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
225 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
226
227 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
228
229 struct user *proc0paddr;
230
231 #ifdef MEMORY_DISK_DYNAMIC
232 #define MD_ROOT_SIZE 4 /* in megabytes */
233 #define MD_ROOT_START 0x400000/* MD root image in ROM */
234 #endif
235
236
237 /* Prototypes */
238
239 void consinit(void);
240 void kgdb_port_init(void);
241
242 static int
243 bootstrap_bs_map(void *t, bus_addr_t bpa, bus_size_t size,
244 int cacheable, bus_space_handle_t * bshp);
245 static void copy_io_area_map(pd_entry_t * new_pd);
246
247 /* A load of console goo. */
248 #include "vga.h"
249 #if NVGA > 0
250 #include <dev/ic/mc6845reg.h>
251 #include <dev/ic/pcdisplayvar.h>
252 #include <dev/ic/vgareg.h>
253 #include <dev/ic/vgavar.h>
254 #endif
255
256 #include "com.h"
257 #if NCOM > 0
258 #include <dev/ic/comreg.h>
259 #include <dev/ic/comvar.h>
260 #endif
261
262 #include "sscom.h"
263 #if NSSCOM > 0
264 #include "opt_sscom.h"
265 #include <arm/s3c2xx0/sscom_var.h>
266 #endif
267
268 /*
269 * Define the default console speed for the board. This is generally
270 * what the firmware provided with the board defaults to.
271 */
272 #ifndef CONSPEED
273 #define CONSPEED B115200 /* TTYDEF_SPEED */
274 #endif
275 #ifndef CONMODE
276 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
277 #endif
278
279 int comcnspeed = CONSPEED;
280 int comcnmode = CONMODE;
281
282 struct bus_space bootstrap_bs_tag;
283
284 /*
285 * void cpu_reboot(int howto, char *bootstr)
286 *
287 * Reboots the system
288 *
289 * Deal with any syncing, unmounting, dumping and shutdown hooks,
290 * then reset the CPU.
291 */
292 void
293 cpu_reboot(int howto, char *bootstr)
294 {
295 #ifdef DIAGNOSTIC
296 /* info */
297 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
298 #endif
299
300 cpu_reset_address = (u_int)s3c2800_softreset;
301
302 /*
303 * If we are still cold then hit the air brakes
304 * and crash to earth fast
305 */
306 if (cold) {
307 doshutdownhooks();
308 printf("The operating system has halted.\n");
309 printf("Please press any key to reboot.\n\n");
310 cngetc();
311 printf("rebooting...\n");
312 cpu_reset();
313 /* NOTREACHED */
314 }
315 /* Disable console buffering */
316
317 /*
318 * If RB_NOSYNC was not specified sync the discs.
319 * Note: Unless cold is set to 1 here, syslogd will die during the
320 * unmount. It looks like syslogd is getting woken up only to find
321 * that it cannot page part of the binary in as the filesystem has
322 * been unmounted.
323 */
324 if (!(howto & RB_NOSYNC))
325 bootsync();
326
327 /* Say NO to interrupts */
328 splhigh();
329
330 /* Do a dump if requested. */
331 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
332 dumpsys();
333
334 /* Run any shutdown hooks */
335 doshutdownhooks();
336
337 /* Make sure IRQ's are disabled */
338 IRQdisable;
339
340 if (howto & RB_HALT) {
341 printf("The operating system has halted.\n");
342 printf("Please press any key to reboot.\n\n");
343 cngetc();
344 }
345 printf("rebooting...\n");
346 cpu_reset();
347 /* NOTREACHED */
348 }
349 #define ioreg_write8(a,v) (*(volatile uint8_t *)(a)=(v))
350
351 /*
352 * u_int initarm(...)
353 *
354 * Initial entry point on startup. This gets called before main() is
355 * entered.
356 * It should be responsible for setting up everything that must be
357 * in place when main is called.
358 * This includes
359 * Taking a copy of the boot configuration structure.
360 * Initialising the physical console so characters can be printed.
361 * Setting up page tables for the kernel
362 * Relocating the kernel to the bottom of physical memory
363 */
364
365 u_int
366 initarm(void *arg)
367 {
368 int loop;
369 int loop1;
370 u_int l1pagetable;
371 extern int etext asm("_etext");
372 extern int end asm("_end");
373 pv_addr_t kernel_l1pt;
374 struct s3c2xx0_softc temp_softc; /* used to initialize IO regs */
375 int progress_counter = 0;
376 #ifdef MEMORY_DISK_DYNAMIC
377 void *md_root_start, *md_root_rom;
378 #endif
379
380 #define LEDSTEP() __LED(progress_counter++)
381
382 #define pdatc (*(volatile uint8_t *)(S3C2800_GPIO_BASE+GPIO_PDATC))
383 #define __LED(x) (pdatc = (pdatc & ~0x07) | (~(x) & 0x07))
384
385 LEDSTEP();
386 /*
387 * Heads up ... Setup the CPU / MMU / TLB functions
388 */
389 if (set_cpufuncs())
390 panic("cpu not recognized!");
391
392 LEDSTEP();
393 /*
394 * prepare fake bus space tag
395 */
396 bootstrap_bs_tag = s3c2xx0_bs_tag;
397 bootstrap_bs_tag.bs_map = bootstrap_bs_map;
398 temp_softc.sc_iot = &bootstrap_bs_tag;
399 s3c2xx0_softc = &temp_softc;
400
401
402 bootstrap_bs_map(&bootstrap_bs_tag, S3C2800_GPIO_BASE,
403 S3C2800_GPIO_SIZE, 0, &temp_softc.sc_gpio_ioh);
404 bootstrap_bs_map(&bootstrap_bs_tag, S3C2800_INTCTL_BASE,
405 S3C2800_INTCTL_SIZE, 0, &temp_softc.sc_intctl_ioh);
406
407 #undef __LED
408 #define __LED(x) bus_space_write_1( &bootstrap_bs_tag, temp_softc.sc_gpio_ioh, \
409 GPIO_PDATC, (~(x) & 0x07) | \
410 (bus_space_read_1( &bootstrap_bs_tag, \
411 temp_softc.sc_gpio_ioh, GPIO_PDATC ) & ~0x07) )
412
413 LEDSTEP();
414
415 /* Disable all peripheral interrupts */
416 bus_space_write_4(&bootstrap_bs_tag, temp_softc.sc_intctl_ioh,
417 INTCTL_INTMSK, 0);
418
419 consinit();
420 printf("consinit done\n");
421
422 #ifdef KGDB
423 LEDSTEP();
424 kgdb_port_init();
425 #endif
426 LEDSTEP();
427
428 /* Talk to the user */
429 printf("\nNetBSD/evbarm (SMDK2800) booting ...\n");
430
431 /*
432 * Ok we have the following memory map
433 *
434 * Physical Address Range Description
435 * ----------------------- ----------------------------------
436 * 0x00000000 - 0x00ffffff Intel flash Memory (16MB)
437 * 0x02000000 - 0x020fffff AMD flash Memory (1MB)
438 * or (depend on DIPSW setting)
439 * 0x00000000 - 0x000fffff AMD flash Memory (1MB)
440 * 0x02000000 - 0x02ffffff Intel flash Memory (16MB)
441 *
442 * 0x08000000 - 0x09ffffff SDRAM (32MB)
443 * 0x20000000 - 0x3fffffff PCI space
444 *
445 * The initarm() has the responsibility for creating the kernel
446 * page tables.
447 * It must also set up various memory pointers that are used
448 * by pmap etc.
449 */
450
451 /* Fake bootconfig structure for the benefit of pmap.c */
452 /* XXX must make the memory description h/w independent */
453 bootconfig.dramblocks = 1;
454 bootconfig.dram[0].address = SDRAM_START;
455 bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE;
456
457 /*
458 * Set up the variables that define the availablilty of
459 * physical memory. For now, we're going to set
460 * physical_freestart to 0x08200000 (where the kernel
461 * was loaded), and allocate the memory we need downwards.
462 * If we get too close to the bottom of SDRAM, we
463 * will panic. We will update physical_freestart and
464 * physical_freeend later to reflect what pmap_bootstrap()
465 * wants to see.
466 *
467 * XXX pmap_bootstrap() needs an enema.
468 */
469 physical_start = bootconfig.dram[0].address;
470 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
471 #ifdef MEMORY_DISK_DYNAMIC
472 /* Reserve for ram disk */
473 printf("Reserve %d bytes for memory disk\n", MD_ROOT_SIZE * L1_S_SIZE);
474 physical_end -= MD_ROOT_SIZE * L1_S_SIZE;
475 #endif
476
477 physical_freestart = 0x08000000UL; /* XXX */
478 physical_freeend = 0x08200000UL;
479
480 physmem = (physical_end - physical_start) / PAGE_SIZE;
481
482 /* Tell the user about the memory */
483 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
484 physical_start, physical_end - 1);
485
486 /*
487 * XXX
488 * Okay, the kernel starts 2MB in from the bottom of physical
489 * memory. We are going to allocate our bootstrap pages downwards
490 * from there.
491 *
492 * We need to allocate some fixed page tables to get the kernel
493 * going. We allocate one page directory and a number of page
494 * tables and store the physical addresses in the kernel_pt_table
495 * array.
496 *
497 * The kernel page directory must be on a 16K boundary. The page
498 * tables must be on 4K bounaries. What we do is allocate the
499 * page directory on the first 16K boundary that we encounter, and
500 * the page tables on 4K boundaries otherwise. Since we allocate
501 * at least 3 L2 page tables, we are guaranteed to encounter at
502 * least one 16K aligned region.
503 */
504
505 #ifdef VERBOSE_INIT_ARM
506 printf("Allocating page tables\n");
507 #endif
508
509 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
510
511 #ifdef VERBOSE_INIT_ARM
512 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
513 physical_freestart, free_pages, free_pages);
514 #endif
515
516 /* Define a macro to simplify memory allocation */
517 #define valloc_pages(var, np) \
518 alloc_pages((var).pv_pa, (np)); \
519 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
520
521 #define alloc_pages(var, np) \
522 physical_freeend -= ((np) * PAGE_SIZE); \
523 if (physical_freeend < physical_freestart) \
524 panic("initarm: out of memory"); \
525 (var) = physical_freeend; \
526 free_pages -= (np); \
527 memset((char *)(var), 0, ((np) * PAGE_SIZE));
528
529 loop1 = 0;
530 kernel_l1pt.pv_pa = 0;
531 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
532 /* Are we 16KB aligned for an L1 ? */
533 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
534 && kernel_l1pt.pv_pa == 0) {
535 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
536 } else {
537 valloc_pages(kernel_pt_table[loop1],
538 L2_TABLE_SIZE / PAGE_SIZE);
539 ++loop1;
540 }
541 }
542
543 /* This should never be able to happen but better confirm that. */
544 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
545 panic("initarm: Failed to align the kernel page directory\n");
546
547 /*
548 * Allocate a page for the system page mapped to V0x00000000
549 * This page will just contain the system vectors and can be
550 * shared by all processes.
551 */
552 alloc_pages(systempage.pv_pa, 1);
553
554 /* Allocate stacks for all modes */
555 valloc_pages(irqstack, IRQ_STACK_SIZE);
556 valloc_pages(abtstack, ABT_STACK_SIZE);
557 valloc_pages(undstack, UND_STACK_SIZE);
558 valloc_pages(kernelstack, UPAGES);
559
560 #ifdef VERBOSE_INIT_ARM
561 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
562 irqstack.pv_va);
563 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
564 abtstack.pv_va);
565 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
566 undstack.pv_va);
567 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
568 kernelstack.pv_va);
569 #endif
570
571 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
572
573 LEDSTEP();
574
575 /*
576 * Ok we have allocated physical pages for the primary kernel
577 * page tables
578 */
579
580 #ifdef VERBOSE_INIT_ARM
581 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
582 #endif
583
584 /*
585 * Now we start construction of the L1 page table
586 * We start by mapping the L2 page tables into the L1.
587 * This means that we can replace L1 mappings later on if necessary
588 */
589 l1pagetable = kernel_l1pt.pv_pa;
590
591 /* Map the L2 pages tables in the L1 page table */
592 pmap_link_l2pt(l1pagetable, 0x00000000,
593 &kernel_pt_table[KERNEL_PT_SYS]);
594 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
595 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
596 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
597 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
598 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
599 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
600
601 /* update the top of the kernel VM */
602 pmap_curmaxkvaddr =
603 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
604
605 #ifdef VERBOSE_INIT_ARM
606 printf("Mapping kernel\n");
607 #endif
608
609 /* Now we fill in the L2 pagetable for the kernel static code/data */
610 {
611 size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE;
612 size_t totalsize = (uintptr_t)&end - KERNEL_TEXT_BASE;
613 u_int logical;
614
615 textsize = (textsize + PGOFSET) & ~PGOFSET;
616 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
617
618 logical = 0x00200000; /* offset of kernel in RAM */
619
620 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
621 physical_start + logical, textsize,
622 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
623 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
624 physical_start + logical, totalsize - textsize,
625 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
626 }
627
628 #ifdef VERBOSE_INIT_ARM
629 printf("Constructing L2 page tables\n");
630 #endif
631
632 /* Map the stack pages */
633 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
634 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
635 PTE_CACHE);
636 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
637 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
638 PTE_CACHE);
639 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
640 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
641 PTE_CACHE);
642 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
643 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
644
645 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
646 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
647
648 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
649 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
650 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
651 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
652 }
653
654 /* Map the vector page. */
655 #if 1
656 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
657 * cache-clean code there. */
658 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
659 VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
660 #else
661 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
662 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
663 #endif
664
665 #if 0
666 /* Map the core memory needed before autoconfig */
667 loop = 0;
668 while (l1_sec_table[loop].size) {
669 vm_size_t sz;
670
671 #ifdef VERBOSE_INIT_ARM
672 printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
673 l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
674 l1_sec_table[loop].va);
675 #endif
676 for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
677 pmap_map_section(l1pagetable,
678 l1_sec_table[loop].va + sz,
679 l1_sec_table[loop].pa + sz,
680 l1_sec_table[loop].prot,
681 l1_sec_table[loop].cache);
682 ++loop;
683 }
684 #endif
685
686 #ifdef MEMORY_DISK_DYNAMIC
687 /* Map ram for MD root This will overwrite old page table */
688 bootstrap_bs_map(&bootstrap_bs_tag, physical_end,
689 MD_ROOT_SIZE * L1_S_SIZE, 0, (bus_space_handle_t *) & md_root_start);
690 /* map MD root image on ROM */
691 bootstrap_bs_map(&bootstrap_bs_tag, MD_ROOT_START,
692 MD_ROOT_SIZE * L1_S_SIZE, 0, (bus_space_handle_t *) & md_root_rom);
693
694 #endif
695 /*
696 * map integrated peripherals at same address in l1pagetable
697 * so that we can continue to use console.
698 */
699 copy_io_area_map((pd_entry_t *)l1pagetable);
700
701 /*
702 * Now we have the real page tables in place so we can switch to them.
703 * Once this is done we will be running with the REAL kernel page
704 * tables.
705 */
706
707 /*
708 * Update the physical_freestart/physical_freeend/free_pages
709 * variables.
710 */
711 {
712 physical_freestart = physical_start +
713 (((((uintptr_t)&end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE);
714 physical_freeend = physical_end;
715 free_pages =
716 (physical_freeend - physical_freestart) / PAGE_SIZE;
717 }
718
719 /* Switch tables */
720 #ifdef VERBOSE_INIT_ARM
721 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
722 physical_freestart, free_pages, free_pages);
723 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
724 #endif
725 LEDSTEP();
726 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
727 setttb(kernel_l1pt.pv_pa);
728 cpu_tlb_flushID();
729 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
730
731 /*
732 * Moved from cpu_startup() as data_abort_handler() references
733 * this during uvm init
734 */
735 proc0paddr = (struct user *)kernelstack.pv_va;
736 lwp0.l_addr = proc0paddr;
737
738 #ifdef VERBOSE_INIT_ARM
739 printf("done!\n");
740 #endif
741
742 #ifdef MEMORY_DISK_DYNAMIC
743 memcpy(md_root_start, md_root_rom, MD_ROOT_SIZE * L1_S_SIZE);
744 md_root_setconf(md_root_start, MD_ROOT_SIZE * L1_S_SIZE);
745 #endif
746
747 #if 0
748 /*
749 * The IFPGA registers have just moved.
750 * Detach the diagnostic serial port and reattach at the new address.
751 */
752 plcomcndetach();
753 /*
754 * XXX this should only be done in main() but it useful to
755 * have output earlier ...
756 */
757 consinit();
758 #endif
759
760 LEDSTEP();
761 #ifdef VERBOSE_INIT_ARM
762 printf("bootstrap done.\n");
763 #endif
764
765 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
766
767 /*
768 * Pages were allocated during the secondary bootstrap for the
769 * stacks for different CPU modes.
770 * We must now set the r13 registers in the different CPU modes to
771 * point to these stacks.
772 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
773 * of the stack memory.
774 */
775 printf("init subsystems: stacks ");
776
777 set_stackptr(PSR_IRQ32_MODE,
778 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
779 set_stackptr(PSR_ABT32_MODE,
780 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
781 set_stackptr(PSR_UND32_MODE,
782 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
783
784 LEDSTEP();
785
786 /*
787 * Well we should set a data abort handler.
788 * Once things get going this will change as we will need a proper
789 * handler.
790 * Until then we will use a handler that just panics but tells us
791 * why.
792 * Initialisation of the vectors will just panic on a data abort.
793 * This just fills in a slighly better one.
794 */
795 printf("vectors ");
796 data_abort_handler_address = (u_int)data_abort_handler;
797 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
798 undefined_handler_address = (u_int)undefinedinstruction_bounce;
799
800 /* Initialise the undefined instruction handlers */
801 printf("undefined ");
802 undefined_init();
803
804 LEDSTEP();
805
806 /* Load memory into UVM. */
807 printf("page ");
808 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
809 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
810 atop(physical_freestart), atop(physical_freeend),
811 VM_FREELIST_DEFAULT);
812
813 LEDSTEP();
814 /* Boot strap pmap telling it where the kernel page table is */
815 printf("pmap ");
816 pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
817 KERNEL_VM_BASE + KERNEL_VM_SIZE);
818
819 LEDSTEP();
820
821 /* Setup the IRQ system */
822 printf("irq ");
823 /* XXX irq_init(); */
824
825 printf("done.\n");
826
827 boothowto |= RB_SINGLE | RB_KDB | RB_ASKNAME;
828
829 #ifdef IPKDB
830 /* Initialise ipkdb */
831 ipkdb_init();
832 if (boothowto & RB_KDB)
833 ipkdb_connect(0);
834 #endif
835
836 #ifdef KGDB
837 if (boothowto & RB_KDB) {
838 kgdb_debug_init = 1;
839 kgdb_connect(1);
840 }
841 #endif
842
843 #if NKSYMS || defined(DDB) || defined(LKM)
844 /* Firmware doesn't load symbols. */
845 ksyms_init(0, NULL, NULL);
846 #endif
847
848 #ifdef DDB
849 db_machine_init();
850 if (boothowto & RB_KDB)
851 Debugger();
852 #endif
853
854 /* We return the new stack pointer address */
855 return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
856 }
857 #ifndef SSCOM_FREQ
858 /* our PCLK is 50MHz */
859 #define SSCOM_FREQ 50000000
860 #endif
861
862 void
863 consinit(void)
864 {
865 static int consinit_done = 0;
866 bus_space_tag_t iot = s3c2xx0_softc->sc_iot;
867
868 if (consinit_done != 0)
869 return;
870
871 consinit_done = 1;
872
873 #if NSSCOM > 0
874 #ifdef SSCOM0CONSOLE
875 if (0 == s3c2800_sscom_cnattach(iot, 0, comcnspeed,
876 SSCOM_FREQ, comcnmode))
877 return;
878 #endif
879 #ifdef SSCOM1CONSOLE
880 if (0 == s3c2800_sscom_cnattach(iot, 1, comcnspeed,
881 SSCOM_FREQ, comcnmode))
882 return;
883 #endif
884 #endif /* NSSCOM */
885 #if NCOM>0 && defined(CONCOMADDR)
886 if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
887 COM_FREQ, comcnmode))
888 panic("can't init serial console @%x", CONCOMADDR);
889 return;
890 #endif
891
892 consinit_done = 0;
893 }
894
895
896 #ifdef KGDB
897
898 #if (NSSCOM > 0)
899
900 #ifdef KGDB_DEVNAME
901 const char kgdb_devname[] = KGDB_DEVNAME;
902 #else
903 const char kgdb_devname[] = "";
904 #endif
905
906 #ifndef KGDB_DEVMODE
907 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */
908 #endif
909 int kgdb_sscom_mode = KGDB_DEVMODE;
910
911 #endif /* NSSCOM */
912
913 void
914 kgdb_port_init(void)
915 {
916 #if (NSSCOM > 0)
917 int unit = -1;
918
919 if (strcmp(kgdb_devname, "sscom0") == 0)
920 unit = 0;
921 else if (strcmp(kgdb_devname, "sscom1") == 0)
922 unit = 1;
923
924 if (unit >= 0) {
925 s3c2800_sscom_kgdb_attach(s3c2xx0_softc->sc_iot,
926 unit, kgdb_rate, SSCOM_FREQ, kgdb_sscom_mode);
927 }
928 #endif
929 }
930 #endif
931
932 static __inline
933 pd_entry_t *
934 read_ttb(void)
935 {
936 long ttb;
937
938 __asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(ttb));
939
940
941 return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
942 }
943
944
945 static __inline void
946 writeback_dcache_line(vaddr_t va)
947 {
948 /* writeback Dcache line */
949 /* we can't use cpu_dcache_wb_range() here, because cpufuncs for ARM9
950 * assume write-through cache, and always flush Dcache instead of
951 * cleaning it. Since Boot loader maps page table with write-back
952 * cached, we really need to clean Dcache. */
953 asm("mcr p15, 0, %0, c7, c10, 1"
954 : : "r"(va));
955 }
956
957 static __inline void
958 clean_dcache_line(vaddr_t va)
959 {
960 /* writeback and invalidate Dcache line */
961 asm("mcr p15, 0, %0, c7, c14, 1"
962 : : "r"(va));
963 }
964
965 static vaddr_t section_free = SMDK2800_VBASE_FREE;
966
967 /*
968 * simple memory mapping function used in early bootstrap stage
969 * before pmap is initialized.
970 * This assumes only peripheral registers to map. they are mapped to
971 * fixed address with section mapping.
972 */
973 static int
974 bootstrap_bs_map(void *t, bus_addr_t bpa, bus_size_t size,
975 int flag, bus_space_handle_t * bshp)
976 {
977 long offset, sec;
978 int modified = 0;
979 pd_entry_t *pagedir = read_ttb();
980 /* This assumes PA==VA for page directory */
981
982 if (S3C2800_PERIPHERALS <= bpa && bpa < S3C2800_PERIPHERALS + 0x200000) {
983 offset = bpa - S3C2800_PERIPHERALS;
984 if (offset < 0 || 2 * L1_S_SIZE < offset)
985 panic("bootstrap_bs_map: can't map");
986 sec = (SMDK2800_IO_AREA_VBASE + offset) >> L1_S_SHIFT;
987
988 /* already mapped? */
989 if ((pagedir[sec] & L1_S_FRAME) != (bpa & L1_S_FRAME)) {
990 pmap_map_section((vaddr_t)pagedir, sec << L1_S_SHIFT,
991 bpa & L1_S_FRAME,
992 VM_PROT_READ | VM_PROT_WRITE,
993 PTE_NOCACHE);
994
995 writeback_dcache_line((vaddr_t)&pagedir[sec]);
996 modified = 1;
997 }
998 *bshp = (bus_space_handle_t)(SMDK2800_IO_AREA_VBASE + offset);
999 } else {
1000 vaddr_t va;
1001 bus_addr_t pa;
1002 int cacheable = flag & BUS_SPACE_MAP_CACHEABLE;
1003
1004
1005 size = (size + L1_S_OFFSET) & ~L1_S_OFFSET;
1006 pa = bpa & ~L1_S_OFFSET;
1007 offset = bpa - pa;
1008
1009 va = section_free;
1010 while (size) {
1011 pmap_map_section((vaddr_t)pagedir, va,
1012 pa, VM_PROT_READ | VM_PROT_WRITE,
1013 cacheable ? PTE_CACHE : PTE_NOCACHE);
1014 writeback_dcache_line((vaddr_t)& pagedir[va >> L1_S_SHIFT]);
1015 va += L1_S_SIZE;
1016 pa += L1_S_SIZE;
1017 size -= L1_S_SIZE;
1018 }
1019
1020 *bshp = (bus_space_handle_t)(section_free + offset);
1021 section_free = va;
1022 }
1023
1024
1025 if (modified) {
1026
1027 cpu_drain_writebuf();
1028 cpu_tlb_flushD();
1029 }
1030 return (0);
1031 }
1032
1033 static void
1034 copy_io_area_map(pd_entry_t * new_pd)
1035 {
1036 pd_entry_t *cur_pd = read_ttb();
1037 vaddr_t sec;
1038
1039 for (sec = SMDK2800_IO_AREA_VBASE >> L1_S_SHIFT;
1040 sec < (section_free >> L1_S_SHIFT); ++sec) {
1041 new_pd[sec] = cur_pd[sec];
1042 }
1043 }
1044