smdk2800_machdep.c revision 1.9 1 /* $NetBSD: smdk2800_machdep.c,v 1.9 2003/05/13 08:30:33 bsh Exp $ */
2
3 /*
4 * Copyright (c) 2002 Fujitsu Component Limited
5 * Copyright (c) 2002 Genetec Corporation
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The Fujitsu Component Limited nor the name of
17 * Genetec corporation may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
21 * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
22 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
23 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24 * DISCLAIMED. IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
25 * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 /*
36 * Copyright (c) 2001,2002 ARM Ltd
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. The name of the company may not be used to endorse or promote
48 * products derived from this software without specific prior written
49 * permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
53 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
54 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD
55 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
56 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
57 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
58 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
59 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 *
63 */
64
65 /*
66 * Copyright (c) 1997,1998 Mark Brinicombe.
67 * Copyright (c) 1997,1998 Causality Limited.
68 * All rights reserved.
69 *
70 * Redistribution and use in source and binary forms, with or without
71 * modification, are permitted provided that the following conditions
72 * are met:
73 * 1. Redistributions of source code must retain the above copyright
74 * notice, this list of conditions and the following disclaimer.
75 * 2. Redistributions in binary form must reproduce the above copyright
76 * notice, this list of conditions and the following disclaimer in the
77 * documentation and/or other materials provided with the distribution.
78 * 3. All advertising materials mentioning features or use of this software
79 * must display the following acknowledgement:
80 * This product includes software developed by Mark Brinicombe
81 * for the NetBSD Project.
82 * 4. The name of the company nor the name of the author may be used to
83 * endorse or promote products derived from this software without specific
84 * prior written permission.
85 *
86 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
87 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
88 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
89 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
90 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
91 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
92 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
93 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
94 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
95 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
96 * SUCH DAMAGE.
97 *
98 * Machine dependant functions for kernel setup for integrator board
99 *
100 * Created : 24/11/97
101 */
102
103 /*
104 * Machine dependant functions for kernel setup for Samsung SMDK2800
105 * derived from integrator_machdep.c
106 */
107
108 #include "opt_ddb.h"
109 #include "opt_kgdb.h"
110 #include "opt_ipkdb.h"
111 #include "opt_pmap_debug.h"
112 #include "opt_md.h"
113 #include "pci.h"
114
115 #include <sys/param.h>
116 #include <sys/device.h>
117 #include <sys/systm.h>
118 #include <sys/kernel.h>
119 #include <sys/exec.h>
120 #include <sys/proc.h>
121 #include <sys/msgbuf.h>
122 #include <sys/reboot.h>
123 #include <sys/termios.h>
124 #include <sys/ksyms.h>
125
126 #include <uvm/uvm_extern.h>
127
128 #include <dev/cons.h>
129 #include <dev/md.h>
130
131 #include <machine/db_machdep.h>
132 #include <ddb/db_sym.h>
133 #include <ddb/db_extern.h>
134 #ifdef KGDB
135 #include <sys/kgdb.h>
136 #endif
137
138 #include <machine/bootconfig.h>
139 #include <machine/bus.h>
140 #include <machine/cpu.h>
141 #include <machine/frame.h>
142 #include <machine/intr.h>
143 #include <arm/undefined.h>
144
145 #include <arm/arm32/machdep.h>
146
147 #include <arm/s3c2xx0/s3c2800reg.h>
148 #include <arm/s3c2xx0/s3c2800var.h>
149
150 #include "ksyms.h"
151
152 #ifndef SDRAM_START
153 #define SDRAM_START S3C2800_DBANK0_START
154 #endif
155 #ifndef SDRAM_SIZE
156 #define SDRAM_SIZE (32*1024*1024)
157 #endif
158
159 /*
160 * Address to map I/O registers in early initialize stage.
161 */
162 #define SMDK2800_IO_AREA_VBASE 0xfd000000
163 #define SMDK2800_VBASE_FREE 0xfd200000
164
165 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
166 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
167
168 /* Memory disk support */
169 #if defined(MEMORY_DISK_DYNAMIC) && defined(MEMORY_DISK_ROOT_ADDR)
170 #define DO_MEMORY_DISK
171 /* We have memory disk image outside of the kernel on ROM. */
172 #ifdef MEMORY_DISK_ROOT_ROM
173 /* map the image directory and use read-only */
174 #else
175 /* copy the image to RAM */
176 #endif
177 #endif
178
179
180 /*
181 * Address to call from cpu_reset() to reset the machine.
182 * This is machine architecture dependant as it varies depending
183 * on where the ROM appears when you turn the MMU off.
184 */
185 u_int cpu_reset_address = (u_int)0;
186
187 /* Define various stack sizes in pages */
188 #define IRQ_STACK_SIZE 1
189 #define ABT_STACK_SIZE 1
190 #ifdef IPKDB
191 #define UND_STACK_SIZE 2
192 #else
193 #define UND_STACK_SIZE 1
194 #endif
195
196 BootConfig bootconfig; /* Boot config storage */
197 char *boot_args = NULL;
198 char *boot_file = NULL;
199
200 vm_offset_t physical_start;
201 vm_offset_t physical_freestart;
202 vm_offset_t physical_freeend;
203 vm_offset_t physical_end;
204 u_int free_pages;
205 vm_offset_t pagetables_start;
206 int physmem = 0;
207
208 /*int debug_flags;*/
209 #ifndef PMAP_STATIC_L1S
210 int max_processes = 64; /* Default number */
211 #endif /* !PMAP_STATIC_L1S */
212
213 /* Physical and virtual addresses for some global pages */
214 pv_addr_t systempage;
215 pv_addr_t irqstack;
216 pv_addr_t undstack;
217 pv_addr_t abtstack;
218 pv_addr_t kernelstack;
219
220 vm_offset_t msgbufphys;
221
222 extern u_int data_abort_handler_address;
223 extern u_int prefetch_abort_handler_address;
224 extern u_int undefined_handler_address;
225
226 #ifdef PMAP_DEBUG
227 extern int pmap_debug_level;
228 #endif
229
230 #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
231 #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
232 #define KERNEL_PT_KERNEL_NUM 2 /* L2 tables for mapping kernel VM */
233
234 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
235
236 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
237 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
238
239 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
240
241 struct user *proc0paddr;
242
243 /* Prototypes */
244
245 void consinit(void);
246 void kgdb_port_init(void);
247
248 static int
249 bootstrap_bs_map(void *t, bus_addr_t bpa, bus_size_t size,
250 int cacheable, bus_space_handle_t * bshp);
251 static void map_builtin_peripherals(void);
252 static void copy_io_area_map(pd_entry_t * new_pd);
253
254 /* A load of console goo. */
255 #include "vga.h"
256 #if NVGA > 0
257 #include <dev/ic/mc6845reg.h>
258 #include <dev/ic/pcdisplayvar.h>
259 #include <dev/ic/vgareg.h>
260 #include <dev/ic/vgavar.h>
261 #endif
262
263 #include "com.h"
264 #if NCOM > 0
265 #include <dev/ic/comreg.h>
266 #include <dev/ic/comvar.h>
267 #endif
268
269 #include "sscom.h"
270 #if NSSCOM > 0
271 #include "opt_sscom.h"
272 #include <arm/s3c2xx0/sscom_var.h>
273 #endif
274
275 /*
276 * Define the default console speed for the board. This is generally
277 * what the firmware provided with the board defaults to.
278 */
279 #ifndef CONSPEED
280 #define CONSPEED B115200 /* TTYDEF_SPEED */
281 #endif
282 #ifndef CONMODE
283 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
284 #endif
285
286 int comcnspeed = CONSPEED;
287 int comcnmode = CONMODE;
288
289 struct bus_space bootstrap_bs_tag;
290
291 /*
292 * void cpu_reboot(int howto, char *bootstr)
293 *
294 * Reboots the system
295 *
296 * Deal with any syncing, unmounting, dumping and shutdown hooks,
297 * then reset the CPU.
298 */
299 void
300 cpu_reboot(int howto, char *bootstr)
301 {
302 #ifdef DIAGNOSTIC
303 /* info */
304 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
305 #endif
306
307 cpu_reset_address = vtophys((u_int)s3c2800_softreset);
308
309 /*
310 * If we are still cold then hit the air brakes
311 * and crash to earth fast
312 */
313 if (cold) {
314 doshutdownhooks();
315 printf("The operating system has halted.\n");
316 printf("Please press any key to reboot.\n\n");
317 cngetc();
318 printf("rebooting...\n");
319 cpu_reset();
320 /* NOTREACHED */
321 }
322 /* Disable console buffering */
323
324 /*
325 * If RB_NOSYNC was not specified sync the discs.
326 * Note: Unless cold is set to 1 here, syslogd will die during the
327 * unmount. It looks like syslogd is getting woken up only to find
328 * that it cannot page part of the binary in as the filesystem has
329 * been unmounted.
330 */
331 if (!(howto & RB_NOSYNC))
332 bootsync();
333
334 /* Say NO to interrupts */
335 splhigh();
336
337 /* Do a dump if requested. */
338 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
339 dumpsys();
340
341 /* Run any shutdown hooks */
342 doshutdownhooks();
343
344 /* Make sure IRQ's are disabled */
345 IRQdisable;
346
347 if (howto & RB_HALT) {
348 printf("The operating system has halted.\n");
349 printf("Please press any key to reboot.\n\n");
350 cngetc();
351 }
352 printf("rebooting...\n");
353 cpu_reset();
354 /* NOTREACHED */
355 }
356 #define ioreg_write8(a,v) (*(volatile uint8_t *)(a)=(v))
357
358 /*
359 * u_int initarm(...)
360 *
361 * Initial entry point on startup. This gets called before main() is
362 * entered.
363 * It should be responsible for setting up everything that must be
364 * in place when main is called.
365 * This includes
366 * Taking a copy of the boot configuration structure.
367 * Initialising the physical console so characters can be printed.
368 * Setting up page tables for the kernel
369 * Relocating the kernel to the bottom of physical memory
370 */
371
372 u_int
373 initarm(void *arg)
374 {
375 int loop;
376 int loop1;
377 u_int l1pagetable;
378 extern int etext asm("_etext");
379 extern int end asm("_end");
380 pv_addr_t kernel_l1pt;
381 struct s3c2800_softc temp_softc; /* used to initialize IO regs */
382 int progress_counter = 0;
383
384 #ifdef DO_MEMORY_DISK
385 vm_offset_t md_root_start;
386 #define MD_ROOT_SIZE (MEMORY_DISK_ROOT_SIZE * DEV_BSIZE)
387 #endif
388
389 #define gpio_read8(reg) bus_space_read_1(temp_softc.sc_sx.sc_iot, \
390 temp_softc.sc_sx.sc_gpio_ioh, (reg))
391
392 #define LEDSTEP() __LED(progress_counter++)
393
394 #define pdatc (*(volatile uint8_t *)(S3C2800_GPIO_BASE+GPIO_PDATC))
395 #define __LED(x) (pdatc = (pdatc & ~0x07) | (~(x) & 0x07))
396
397 LEDSTEP();
398 /*
399 * Heads up ... Setup the CPU / MMU / TLB functions
400 */
401 if (set_cpufuncs())
402 panic("cpu not recognized!");
403
404 LEDSTEP();
405
406 map_builtin_peripherals();
407
408 /*
409 * prepare fake bus space tag
410 */
411 bootstrap_bs_tag = s3c2xx0_bs_tag;
412 bootstrap_bs_tag.bs_map = bootstrap_bs_map;
413 s3c2xx0_softc = &temp_softc.sc_sx;
414 s3c2xx0_softc->sc_iot = &bootstrap_bs_tag;
415
416 bootstrap_bs_map(&bootstrap_bs_tag, S3C2800_GPIO_BASE,
417 S3C2800_GPIO_SIZE, 0, &temp_softc.sc_sx.sc_gpio_ioh);
418 bootstrap_bs_map(&bootstrap_bs_tag, S3C2800_INTCTL_BASE,
419 S3C2800_INTCTL_SIZE, 0, &temp_softc.sc_sx.sc_intctl_ioh);
420 bootstrap_bs_map(&bootstrap_bs_tag, S3C2800_CLKMAN_BASE,
421 S3C2800_CLKMAN_SIZE, 0, &temp_softc.sc_sx.sc_clkman_ioh);
422
423 #undef __LED
424 #define __LED(x) \
425 bus_space_write_1(&bootstrap_bs_tag, temp_softc.sc_sx.sc_gpio_ioh, \
426 GPIO_PDATC, (~(x) & 0x07) | \
427 (bus_space_read_1(&bootstrap_bs_tag, \
428 temp_softc.sc_sx.sc_gpio_ioh, GPIO_PDATC ) & ~0x07))
429
430 LEDSTEP();
431
432 /* Disable all peripheral interrupts */
433 bus_space_write_4(&bootstrap_bs_tag, temp_softc.sc_sx.sc_intctl_ioh,
434 INTCTL_INTMSK, 0);
435
436 s3c2800_clock_freq(&temp_softc);
437
438 consinit();
439 printf("consinit done\n");
440
441 #ifdef KGDB
442 LEDSTEP();
443 kgdb_port_init();
444 #endif
445 LEDSTEP();
446
447 /* Talk to the user */
448 printf("\nNetBSD/evbarm (SMDK2800) booting ...\n");
449
450 /*
451 * Ok we have the following memory map
452 *
453 * Physical Address Range Description
454 * ----------------------- ----------------------------------
455 * 0x00000000 - 0x00ffffff Intel flash Memory (16MB)
456 * 0x02000000 - 0x020fffff AMD flash Memory (1MB)
457 * or (depend on DIPSW setting)
458 * 0x00000000 - 0x000fffff AMD flash Memory (1MB)
459 * 0x02000000 - 0x02ffffff Intel flash Memory (16MB)
460 *
461 * 0x08000000 - 0x09ffffff SDRAM (32MB)
462 * 0x20000000 - 0x3fffffff PCI space
463 *
464 * The initarm() has the responsibility for creating the kernel
465 * page tables.
466 * It must also set up various memory pointers that are used
467 * by pmap etc.
468 */
469
470 /* Fake bootconfig structure for the benefit of pmap.c */
471 /* XXX must make the memory description h/w independent */
472 bootconfig.dramblocks = 1;
473 bootconfig.dram[0].address = SDRAM_START;
474 bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE;
475
476 /*
477 * Set up the variables that define the availablilty of
478 * physical memory. For now, we're going to set
479 * physical_freestart to 0x08200000 (where the kernel
480 * was loaded), and allocate the memory we need downwards.
481 * If we get too close to the bottom of SDRAM, we
482 * will panic. We will update physical_freestart and
483 * physical_freeend later to reflect what pmap_bootstrap()
484 * wants to see.
485 *
486 * XXX pmap_bootstrap() needs an enema.
487 */
488 physical_start = bootconfig.dram[0].address;
489 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
490
491 #if DO_MEMORY_DISK
492 #ifdef MEMORY_DISK_ROOT_ROM
493 md_root_start = MEMORY_DISK_ROOT_ADDR;
494 boothowto |= RB_RDONLY;
495 #else
496 /* Reserve physmem for ram disk */
497 md_root_start = ((physical_end - MD_ROOT_SIZE) & ~(L1_S_SIZE-1));
498 printf("Reserve %ld bytes for memory disk\n",
499 physical_end - md_root_start);
500 /* copy fs contents */
501 memcpy((void *)md_root_start, (void *)MEMORY_DISK_ROOT_ADDR,
502 MD_ROOT_SIZE);
503 physical_end = md_root_start;
504 #endif
505 #endif
506
507 physical_freestart = 0x08000000UL; /* XXX */
508 physical_freeend = 0x08200000UL;
509
510 physmem = (physical_end - physical_start) / PAGE_SIZE;
511
512 /* Tell the user about the memory */
513 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
514 physical_start, physical_end - 1);
515
516 /*
517 * XXX
518 * Okay, the kernel starts 2MB in from the bottom of physical
519 * memory. We are going to allocate our bootstrap pages downwards
520 * from there.
521 *
522 * We need to allocate some fixed page tables to get the kernel
523 * going. We allocate one page directory and a number of page
524 * tables and store the physical addresses in the kernel_pt_table
525 * array.
526 *
527 * The kernel page directory must be on a 16K boundary. The page
528 * tables must be on 4K bounaries. What we do is allocate the
529 * page directory on the first 16K boundary that we encounter, and
530 * the page tables on 4K boundaries otherwise. Since we allocate
531 * at least 3 L2 page tables, we are guaranteed to encounter at
532 * least one 16K aligned region.
533 */
534
535 #ifdef VERBOSE_INIT_ARM
536 printf("Allocating page tables\n");
537 #endif
538
539 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
540
541 #ifdef VERBOSE_INIT_ARM
542 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
543 physical_freestart, free_pages, free_pages);
544 #endif
545
546 /* Define a macro to simplify memory allocation */
547 #define valloc_pages(var, np) \
548 alloc_pages((var).pv_pa, (np)); \
549 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
550
551 #define alloc_pages(var, np) \
552 physical_freeend -= ((np) * PAGE_SIZE); \
553 if (physical_freeend < physical_freestart) \
554 panic("initarm: out of memory"); \
555 (var) = physical_freeend; \
556 free_pages -= (np); \
557 memset((char *)(var), 0, ((np) * PAGE_SIZE));
558
559 loop1 = 0;
560 kernel_l1pt.pv_pa = 0;
561 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
562 /* Are we 16KB aligned for an L1 ? */
563 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
564 && kernel_l1pt.pv_pa == 0) {
565 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
566 } else {
567 valloc_pages(kernel_pt_table[loop1],
568 L2_TABLE_SIZE / PAGE_SIZE);
569 ++loop1;
570 }
571 }
572
573 /* This should never be able to happen but better confirm that. */
574 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
575 panic("initarm: Failed to align the kernel page directory\n");
576
577 /*
578 * Allocate a page for the system page mapped to V0x00000000
579 * This page will just contain the system vectors and can be
580 * shared by all processes.
581 */
582 alloc_pages(systempage.pv_pa, 1);
583
584 /* Allocate stacks for all modes */
585 valloc_pages(irqstack, IRQ_STACK_SIZE);
586 valloc_pages(abtstack, ABT_STACK_SIZE);
587 valloc_pages(undstack, UND_STACK_SIZE);
588 valloc_pages(kernelstack, UPAGES);
589
590 #ifdef VERBOSE_INIT_ARM
591 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
592 irqstack.pv_va);
593 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
594 abtstack.pv_va);
595 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
596 undstack.pv_va);
597 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
598 kernelstack.pv_va);
599 #endif
600
601 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
602
603 LEDSTEP();
604
605 /*
606 * Ok we have allocated physical pages for the primary kernel
607 * page tables
608 */
609
610 #ifdef VERBOSE_INIT_ARM
611 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
612 #endif
613
614 /*
615 * Now we start construction of the L1 page table
616 * We start by mapping the L2 page tables into the L1.
617 * This means that we can replace L1 mappings later on if necessary
618 */
619 l1pagetable = kernel_l1pt.pv_pa;
620
621 /* Map the L2 pages tables in the L1 page table */
622 pmap_link_l2pt(l1pagetable, 0x00000000,
623 &kernel_pt_table[KERNEL_PT_SYS]);
624 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
625 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
626 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
627 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
628 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
629 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
630
631 /* update the top of the kernel VM */
632 pmap_curmaxkvaddr =
633 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
634
635 #ifdef VERBOSE_INIT_ARM
636 printf("Mapping kernel\n");
637 #endif
638
639 /* Now we fill in the L2 pagetable for the kernel static code/data */
640 {
641 size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE;
642 size_t totalsize = (uintptr_t)&end - KERNEL_TEXT_BASE;
643 u_int logical;
644
645 textsize = (textsize + PGOFSET) & ~PGOFSET;
646 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
647
648 logical = 0x00200000; /* offset of kernel in RAM */
649
650 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
651 physical_start + logical, textsize,
652 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
653 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
654 physical_start + logical, totalsize - textsize,
655 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
656 }
657
658 #ifdef VERBOSE_INIT_ARM
659 printf("Constructing L2 page tables\n");
660 #endif
661
662 /* Map the stack pages */
663 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
664 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
665 PTE_CACHE);
666 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
667 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
668 PTE_CACHE);
669 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
670 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
671 PTE_CACHE);
672 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
673 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
674
675 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
676 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
677
678 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
679 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
680 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
681 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
682 }
683
684 /* Map the vector page. */
685 #if 1
686 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
687 * cache-clean code there. */
688 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
689 VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
690 #else
691 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
692 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
693 #endif
694
695 #if 0
696 /* Map the core memory needed before autoconfig */
697 loop = 0;
698 while (l1_sec_table[loop].size) {
699 vm_size_t sz;
700
701 #ifdef VERBOSE_INIT_ARM
702 printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
703 l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
704 l1_sec_table[loop].va);
705 #endif
706 for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
707 pmap_map_section(l1pagetable,
708 l1_sec_table[loop].va + sz,
709 l1_sec_table[loop].pa + sz,
710 l1_sec_table[loop].prot,
711 l1_sec_table[loop].cache);
712 ++loop;
713 }
714 #endif
715
716 #ifdef MEMORY_DISK_DYNAMIC
717 /* map MD root image */
718 bootstrap_bs_map(&bootstrap_bs_tag, md_root_start, MD_ROOT_SIZE,
719 BUS_SPACE_MAP_CACHEABLE | BUS_SPACE_MAP_LINEAR,
720 (bus_space_handle_t *)&md_root_start);
721
722 md_root_setconf((void *)md_root_start, MD_ROOT_SIZE);
723 #endif /* MEMORY_DISK_DYNAMIC */
724 /*
725 * map integrated peripherals at same address in l1pagetable
726 * so that we can continue to use console.
727 */
728 copy_io_area_map((pd_entry_t *)l1pagetable);
729
730 /*
731 * Now we have the real page tables in place so we can switch to them.
732 * Once this is done we will be running with the REAL kernel page
733 * tables.
734 */
735
736 /*
737 * Update the physical_freestart/physical_freeend/free_pages
738 * variables.
739 */
740 {
741 physical_freestart = physical_start +
742 (((((uintptr_t)&end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE);
743 physical_freeend = physical_end;
744 free_pages =
745 (physical_freeend - physical_freestart) / PAGE_SIZE;
746 }
747
748 /* Switch tables */
749 #ifdef VERBOSE_INIT_ARM
750 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
751 physical_freestart, free_pages, free_pages);
752 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
753 #endif
754 LEDSTEP();
755 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
756 setttb(kernel_l1pt.pv_pa);
757 cpu_tlb_flushID();
758 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
759
760 /*
761 * Moved from cpu_startup() as data_abort_handler() references
762 * this during uvm init
763 */
764 proc0paddr = (struct user *)kernelstack.pv_va;
765 lwp0.l_addr = proc0paddr;
766
767 #ifdef VERBOSE_INIT_ARM
768 printf("done!\n");
769 #endif
770
771 #if 0
772 /*
773 * The IFPGA registers have just moved.
774 * Detach the diagnostic serial port and reattach at the new address.
775 */
776 plcomcndetach();
777 /*
778 * XXX this should only be done in main() but it useful to
779 * have output earlier ...
780 */
781 consinit();
782 #endif
783
784 LEDSTEP();
785 #ifdef VERBOSE_INIT_ARM
786 printf("bootstrap done.\n");
787 #endif
788
789 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
790
791 /*
792 * Pages were allocated during the secondary bootstrap for the
793 * stacks for different CPU modes.
794 * We must now set the r13 registers in the different CPU modes to
795 * point to these stacks.
796 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
797 * of the stack memory.
798 */
799 printf("init subsystems: stacks ");
800
801 set_stackptr(PSR_IRQ32_MODE,
802 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
803 set_stackptr(PSR_ABT32_MODE,
804 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
805 set_stackptr(PSR_UND32_MODE,
806 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
807
808 LEDSTEP();
809
810 /*
811 * Well we should set a data abort handler.
812 * Once things get going this will change as we will need a proper
813 * handler.
814 * Until then we will use a handler that just panics but tells us
815 * why.
816 * Initialisation of the vectors will just panic on a data abort.
817 * This just fills in a slighly better one.
818 */
819 printf("vectors ");
820 data_abort_handler_address = (u_int)data_abort_handler;
821 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
822 undefined_handler_address = (u_int)undefinedinstruction_bounce;
823
824 /* Initialise the undefined instruction handlers */
825 printf("undefined ");
826 undefined_init();
827
828 LEDSTEP();
829
830 /* Load memory into UVM. */
831 printf("page ");
832 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
833 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
834 atop(physical_freestart), atop(physical_freeend),
835 VM_FREELIST_DEFAULT);
836
837 LEDSTEP();
838 /* Boot strap pmap telling it where the kernel page table is */
839 printf("pmap ");
840 pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
841 KERNEL_VM_BASE + KERNEL_VM_SIZE);
842
843 LEDSTEP();
844
845 /* Setup the IRQ system */
846 printf("irq ");
847 /* XXX irq_init(); */
848
849 printf("done.\n");
850
851 #ifdef BOOTHOWTO_INIT
852 boothowto |= BOOTHOWTO_INIT;
853 #endif
854 {
855 uint8_t gpio = ~gpio_read8(GPIO_PDATF);
856
857 if (gpio & (1<<5)) /* SW3 */
858 boothowto ^= RB_SINGLE;
859 if (gpio & (1<<7)) /* SW7 */
860 boothowto ^= RB_KDB;
861 printf( "sw: %x boothowto: %x\n", gpio, boothowto );
862 }
863
864 #ifdef IPKDB
865 /* Initialise ipkdb */
866 ipkdb_init();
867 if (boothowto & RB_KDB)
868 ipkdb_connect(0);
869 #endif
870
871 #ifdef KGDB
872 if (boothowto & RB_KDB) {
873 kgdb_debug_init = 1;
874 kgdb_connect(1);
875 }
876 #endif
877
878 #if NKSYMS || defined(DDB) || defined(LKM)
879 /* Firmware doesn't load symbols. */
880 ksyms_init(0, NULL, NULL);
881 #endif
882
883 #ifdef DDB
884 db_machine_init();
885 if (boothowto & RB_KDB)
886 Debugger();
887 #endif
888
889 /* We return the new stack pointer address */
890 return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
891 }
892
893 void
894 consinit(void)
895 {
896 static int consinit_done = 0;
897 bus_space_tag_t iot = s3c2xx0_softc->sc_iot;
898 int pclk = s3c2xx0_softc->sc_pclk;
899
900 if (consinit_done != 0)
901 return;
902
903 consinit_done = 1;
904
905 #if NSSCOM > 0
906 #ifdef SSCOM0CONSOLE
907 if (0 == s3c2800_sscom_cnattach(iot, 0, comcnspeed,
908 pclk, comcnmode))
909 return;
910 #endif
911 #ifdef SSCOM1CONSOLE
912 if (0 == s3c2800_sscom_cnattach(iot, 1, comcnspeed,
913 pclk, comcnmode))
914 return;
915 #endif
916 #endif /* NSSCOM */
917 #if NCOM>0 && defined(CONCOMADDR)
918 if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
919 COM_FREQ, comcnmode))
920 panic("can't init serial console @%x", CONCOMADDR);
921 return;
922 #endif
923
924 consinit_done = 0;
925 }
926
927
928 #ifdef KGDB
929
930 #if (NSSCOM > 0)
931
932 #ifdef KGDB_DEVNAME
933 const char kgdb_devname[] = KGDB_DEVNAME;
934 #else
935 const char kgdb_devname[] = "";
936 #endif
937
938 #ifndef KGDB_DEVMODE
939 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */
940 #endif
941 int kgdb_sscom_mode = KGDB_DEVMODE;
942
943 #endif /* NSSCOM */
944
945 void
946 kgdb_port_init(void)
947 {
948 #if (NSSCOM > 0)
949 int unit = -1;
950 int pclk = s3c2xx0_softc->sc_pclk;
951
952 if (strcmp(kgdb_devname, "sscom0") == 0)
953 unit = 0;
954 else if (strcmp(kgdb_devname, "sscom1") == 0)
955 unit = 1;
956
957 if (unit >= 0) {
958 s3c2800_sscom_kgdb_attach(s3c2xx0_softc->sc_iot,
959 unit, kgdb_rate, pclk, kgdb_sscom_mode);
960 }
961 #endif
962 }
963 #endif
964
965 static __inline
966 pd_entry_t *
967 read_ttb(void)
968 {
969 long ttb;
970
971 __asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(ttb));
972
973
974 return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
975 }
976
977
978 static __inline void
979 writeback_dcache_line(vaddr_t va)
980 {
981 /* writeback Dcache line */
982 /* we can't use cpu_dcache_wb_range() here, because cpufuncs for ARM9
983 * assume write-through cache, and always flush Dcache instead of
984 * cleaning it. Since Boot loader maps page table with write-back
985 * cached, we really need to clean Dcache. */
986 asm("mcr p15, 0, %0, c7, c10, 1"
987 : : "r"(va));
988 }
989
990 static __inline void
991 clean_dcache_line(vaddr_t va)
992 {
993 /* writeback and invalidate Dcache line */
994 asm("mcr p15, 0, %0, c7, c14, 1"
995 : : "r"(va));
996 }
997
998 static vaddr_t section_free = SMDK2800_VBASE_FREE;
999
1000 static void
1001 map_builtin_peripherals(void)
1002 {
1003 pd_entry_t *pagedir = read_ttb();
1004 int i, sec;
1005
1006 for (i=0; i < 2; ++i) {
1007
1008 pmap_map_section((vaddr_t)pagedir,
1009 SMDK2800_IO_AREA_VBASE + (i <<L1_S_SHIFT),
1010 S3C2800_PERIPHERALS + (i << L1_S_SHIFT),
1011 VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
1012
1013 sec = (SMDK2800_IO_AREA_VBASE >> L1_S_SHIFT) + i;
1014 writeback_dcache_line((vaddr_t)&pagedir[sec]);
1015 }
1016
1017 cpu_drain_writebuf();
1018 cpu_tlb_flushD();
1019 }
1020
1021 /*
1022 * simple memory mapping function used in early bootstrap stage
1023 * before pmap is initialized.
1024 * This assumes only peripheral registers to map. they are mapped to
1025 * fixed address with section mapping.
1026 */
1027 static int
1028 bootstrap_bs_map(void *t, bus_addr_t bpa, bus_size_t size,
1029 int flag, bus_space_handle_t * bshp)
1030 {
1031 long offset;
1032 int modified = 0;
1033 pd_entry_t *pagedir = read_ttb();
1034 /* This assumes PA==VA for page directory */
1035
1036 if (S3C2800_PERIPHERALS <= bpa && bpa < S3C2800_PERIPHERALS + 0x200000) {
1037 offset = bpa - S3C2800_PERIPHERALS;
1038 if (offset < 0 || 2 * L1_S_SIZE < offset)
1039 panic("bootstrap_bs_map: can't map");
1040 *bshp = (bus_space_handle_t)(SMDK2800_IO_AREA_VBASE + offset);
1041 } else {
1042 vaddr_t va;
1043 bus_addr_t pa;
1044 int cacheable = flag & BUS_SPACE_MAP_CACHEABLE;
1045
1046
1047 size = (size + L1_S_OFFSET) & ~L1_S_OFFSET;
1048 pa = bpa & ~L1_S_OFFSET;
1049 offset = bpa - pa;
1050
1051 va = section_free;
1052 while (size) {
1053 pmap_map_section((vaddr_t)pagedir, va,
1054 pa, VM_PROT_READ | VM_PROT_WRITE,
1055 cacheable ? PTE_CACHE : PTE_NOCACHE);
1056 writeback_dcache_line((vaddr_t)& pagedir[va >> L1_S_SHIFT]);
1057 va += L1_S_SIZE;
1058 pa += L1_S_SIZE;
1059 size -= L1_S_SIZE;
1060 }
1061
1062 *bshp = (bus_space_handle_t)(section_free + offset);
1063 section_free = va;
1064 }
1065
1066
1067 if (modified) {
1068
1069 cpu_drain_writebuf();
1070 cpu_tlb_flushD();
1071 }
1072 return (0);
1073 }
1074
1075 static void
1076 copy_io_area_map(pd_entry_t * new_pd)
1077 {
1078 pd_entry_t *cur_pd = read_ttb();
1079 int sec;
1080
1081 for (sec = SMDK2800_IO_AREA_VBASE >> L1_S_SHIFT;
1082 sec < (section_free >> L1_S_SHIFT); ++sec) {
1083 new_pd[sec] = cur_pd[sec];
1084 }
1085 }
1086