1 1.37 andvar /* $NetBSD: tsarm_machdep.c,v 1.37 2024/02/20 23:36:01 andvar Exp $ */ 2 1.1 joff 3 1.1 joff /* 4 1.1 joff * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc. 5 1.1 joff * All rights reserved. 6 1.1 joff * 7 1.1 joff * Based on code written by Jason R. Thorpe and Steve C. Woodford for 8 1.1 joff * Wasabi Systems, Inc. 9 1.1 joff * 10 1.1 joff * Redistribution and use in source and binary forms, with or without 11 1.1 joff * modification, are permitted provided that the following conditions 12 1.1 joff * are met: 13 1.1 joff * 1. Redistributions of source code must retain the above copyright 14 1.1 joff * notice, this list of conditions and the following disclaimer. 15 1.1 joff * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 joff * notice, this list of conditions and the following disclaimer in the 17 1.1 joff * documentation and/or other materials provided with the distribution. 18 1.1 joff * 3. All advertising materials mentioning features or use of this software 19 1.1 joff * must display the following acknowledgement: 20 1.1 joff * This product includes software developed for the NetBSD Project by 21 1.1 joff * Wasabi Systems, Inc. 22 1.1 joff * 4. The name of Wasabi Systems, Inc. may not be used to endorse 23 1.1 joff * or promote products derived from this software without specific prior 24 1.1 joff * written permission. 25 1.1 joff * 26 1.1 joff * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 27 1.1 joff * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 1.1 joff * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 1.1 joff * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 30 1.1 joff * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 1.1 joff * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 1.1 joff * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 1.1 joff * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 1.1 joff * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 1.1 joff * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 1.1 joff * POSSIBILITY OF SUCH DAMAGE. 37 1.1 joff */ 38 1.1 joff 39 1.1 joff /* 40 1.1 joff * Copyright (c) 1997,1998 Mark Brinicombe. 41 1.1 joff * Copyright (c) 1997,1998 Causality Limited. 42 1.1 joff * All rights reserved. 43 1.1 joff * 44 1.1 joff * Redistribution and use in source and binary forms, with or without 45 1.1 joff * modification, are permitted provided that the following conditions 46 1.1 joff * are met: 47 1.1 joff * 1. Redistributions of source code must retain the above copyright 48 1.1 joff * notice, this list of conditions and the following disclaimer. 49 1.1 joff * 2. Redistributions in binary form must reproduce the above copyright 50 1.1 joff * notice, this list of conditions and the following disclaimer in the 51 1.1 joff * documentation and/or other materials provided with the distribution. 52 1.1 joff * 3. All advertising materials mentioning features or use of this software 53 1.1 joff * must display the following acknowledgement: 54 1.1 joff * This product includes software developed by Mark Brinicombe 55 1.1 joff * for the NetBSD Project. 56 1.1 joff * 4. The name of the company nor the name of the author may be used to 57 1.1 joff * endorse or promote products derived from this software without specific 58 1.1 joff * prior written permission. 59 1.1 joff * 60 1.1 joff * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 61 1.1 joff * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 62 1.1 joff * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 63 1.1 joff * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 64 1.1 joff * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 65 1.1 joff * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 66 1.1 joff * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 67 1.1 joff * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 68 1.1 joff * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 69 1.1 joff * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 70 1.1 joff * SUCH DAMAGE. 71 1.1 joff * 72 1.15 wiz * Machine dependent functions for kernel setup for Iyonix. 73 1.1 joff */ 74 1.1 joff 75 1.1 joff #include <sys/cdefs.h> 76 1.37 andvar __KERNEL_RCSID(0, "$NetBSD: tsarm_machdep.c,v 1.37 2024/02/20 23:36:01 andvar Exp $"); 77 1.1 joff 78 1.25 skrll #include "opt_arm_debug.h" 79 1.26 skrll #include "opt_console.h" 80 1.1 joff #include "opt_ddb.h" 81 1.1 joff #include "opt_kgdb.h" 82 1.1 joff 83 1.1 joff #include <sys/param.h> 84 1.1 joff #include <sys/device.h> 85 1.1 joff #include <sys/systm.h> 86 1.1 joff #include <sys/kernel.h> 87 1.1 joff #include <sys/exec.h> 88 1.1 joff #include <sys/proc.h> 89 1.1 joff #include <sys/msgbuf.h> 90 1.1 joff #include <sys/reboot.h> 91 1.1 joff #include <sys/termios.h> 92 1.1 joff #include <sys/ksyms.h> 93 1.21 matt #include <sys/bus.h> 94 1.21 matt #include <sys/cpu.h> 95 1.1 joff 96 1.1 joff #include <uvm/uvm_extern.h> 97 1.1 joff 98 1.1 joff #include <dev/cons.h> 99 1.1 joff 100 1.1 joff #include <machine/db_machdep.h> 101 1.1 joff #include <ddb/db_sym.h> 102 1.1 joff #include <ddb/db_extern.h> 103 1.1 joff 104 1.1 joff #include <acorn32/include/bootconfig.h> 105 1.21 matt #include <arm/locore.h> 106 1.1 joff #include <arm/undefined.h> 107 1.1 joff 108 1.18 matt /* Define various stack sizes in pages */ 109 1.18 matt #define IRQ_STACK_SIZE 8 110 1.18 matt #define ABT_STACK_SIZE 8 111 1.18 matt #define UND_STACK_SIZE 8 112 1.18 matt 113 1.1 joff #include <arm/arm32/machdep.h> 114 1.1 joff 115 1.1 joff #include <arm/ep93xx/ep93xxreg.h> 116 1.1 joff #include <arm/ep93xx/ep93xxvar.h> 117 1.1 joff 118 1.1 joff #include <dev/ic/comreg.h> 119 1.1 joff #include <dev/ic/comvar.h> 120 1.1 joff 121 1.1 joff #include "epcom.h" 122 1.1 joff #if NEPCOM > 0 123 1.1 joff #include <arm/ep93xx/epcomvar.h> 124 1.1 joff #endif 125 1.1 joff 126 1.1 joff #include "isa.h" 127 1.1 joff #if NISA > 0 128 1.1 joff #include <dev/isa/isareg.h> 129 1.1 joff #include <dev/isa/isavar.h> 130 1.1 joff #endif 131 1.1 joff 132 1.1 joff #include <machine/isa_machdep.h> 133 1.1 joff 134 1.1 joff #include <evbarm/tsarm/tsarmreg.h> 135 1.1 joff 136 1.1 joff #include "ksyms.h" 137 1.1 joff 138 1.1 joff /* Kernel text starts 2MB in from the bottom of the kernel address space. */ 139 1.1 joff #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000) 140 1.1 joff #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 141 1.1 joff 142 1.1 joff /* 143 1.1 joff * The range 0xc1000000 - 0xccffffff is available for kernel VM space 144 1.1 joff * Core-logic registers and I/O mappings occupy 0xf0000000 - 0xffffffff 145 1.1 joff */ 146 1.1 joff #define KERNEL_VM_SIZE 0x0C000000 147 1.1 joff 148 1.1 joff struct bootconfig bootconfig; /* Boot config storage */ 149 1.1 joff char *boot_args = NULL; 150 1.1 joff char *boot_file = NULL; 151 1.1 joff 152 1.23 matt vaddr_t physical_start; 153 1.23 matt vaddr_t physical_freestart; 154 1.23 matt vaddr_t physical_freeend; 155 1.23 matt vaddr_t physical_freeend_low; 156 1.23 matt vaddr_t physical_end; 157 1.1 joff u_int free_pages; 158 1.1 joff 159 1.23 matt paddr_t msgbufphys; 160 1.1 joff 161 1.1 joff static struct arm32_dma_range tsarm_dma_ranges[4]; 162 1.1 joff 163 1.1 joff #if NISA > 0 164 1.30 skrll extern void isa_tsarm_init(u_int, u_int); 165 1.1 joff #endif 166 1.1 joff 167 1.1 joff #define KERNEL_PT_SYS 0 /* L2 table for mapping vectors page */ 168 1.1 joff 169 1.1 joff #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */ 170 1.1 joff #define KERNEL_PT_KERNEL_NUM 4 171 1.30 skrll /* L2 tables for mapping kernel VM */ 172 1.1 joff #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM) 173 1.1 joff 174 1.1 joff #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 175 1.1 joff #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 176 1.1 joff 177 1.1 joff pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 178 1.1 joff 179 1.1 joff /* Prototypes */ 180 1.1 joff 181 1.1 joff void consinit(void); 182 1.1 joff /* 183 1.1 joff * Define the default console speed for the machine. 184 1.1 joff */ 185 1.1 joff #ifndef CONSPEED 186 1.1 joff #define CONSPEED B115200 187 1.1 joff #endif /* ! CONSPEED */ 188 1.1 joff 189 1.1 joff #ifndef CONMODE 190 1.1 joff #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 191 1.1 joff #endif 192 1.1 joff 193 1.1 joff int comcnspeed = CONSPEED; 194 1.1 joff int comcnmode = CONMODE; 195 1.1 joff 196 1.1 joff #if KGDB 197 1.1 joff #ifndef KGDB_DEVNAME 198 1.1 joff #error Must define KGDB_DEVNAME 199 1.1 joff #endif 200 1.1 joff const char kgdb_devname[] = KGDB_DEVNAME; 201 1.1 joff 202 1.1 joff #ifndef KGDB_DEVADDR 203 1.1 joff #error Must define KGDB_DEVADDR 204 1.1 joff #endif 205 1.1 joff unsigned long kgdb_devaddr = KGDB_DEVADDR; 206 1.1 joff 207 1.1 joff #ifndef KGDB_DEVRATE 208 1.1 joff #define KGDB_DEVRATE CONSPEED 209 1.1 joff #endif 210 1.1 joff int kgdb_devrate = KGDB_DEVRATE; 211 1.1 joff 212 1.1 joff #ifndef KGDB_DEVMODE 213 1.1 joff #define KGDB_DEVMODE CONMODE 214 1.1 joff #endif 215 1.1 joff int kgdb_devmode = KGDB_DEVMODE; 216 1.1 joff #endif /* KGDB */ 217 1.1 joff 218 1.1 joff /* 219 1.1 joff * void cpu_reboot(int howto, char *bootstr) 220 1.1 joff * 221 1.1 joff * Reboots the system 222 1.1 joff * 223 1.1 joff * Deal with any syncing, unmounting, dumping and shutdown hooks, 224 1.1 joff * then reset the CPU. 225 1.1 joff */ 226 1.1 joff void 227 1.1 joff cpu_reboot(int howto, char *bootstr) 228 1.1 joff { 229 1.1 joff 230 1.1 joff /* 231 1.1 joff * If we are still cold then hit the air brakes 232 1.1 joff * and crash to earth fast 233 1.1 joff */ 234 1.1 joff if (cold) { 235 1.1 joff doshutdownhooks(); 236 1.8 dyoung pmf_system_shutdown(boothowto); 237 1.1 joff printf("\r\n"); 238 1.1 joff printf("The operating system has halted.\r\n"); 239 1.1 joff printf("Please press any key to reboot.\r\n"); 240 1.1 joff cngetc(); 241 1.1 joff printf("\r\nrebooting...\r\n"); 242 1.1 joff goto reset; 243 1.1 joff } 244 1.1 joff 245 1.1 joff /* Disable console buffering */ 246 1.1 joff 247 1.1 joff /* 248 1.1 joff * If RB_NOSYNC was not specified sync the discs. 249 1.1 joff * Note: Unless cold is set to 1 here, syslogd will die during the 250 1.1 joff * unmount. It looks like syslogd is getting woken up only to find 251 1.1 joff * that it cannot page part of the binary in as the filesystem has 252 1.1 joff * been unmounted. 253 1.1 joff */ 254 1.1 joff if (!(howto & RB_NOSYNC)) 255 1.1 joff bootsync(); 256 1.1 joff 257 1.1 joff /* Say NO to interrupts */ 258 1.1 joff splhigh(); 259 1.1 joff 260 1.1 joff /* Do a dump if requested. */ 261 1.1 joff if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 262 1.1 joff dumpsys(); 263 1.30 skrll 264 1.1 joff /* Run any shutdown hooks */ 265 1.1 joff doshutdownhooks(); 266 1.1 joff 267 1.8 dyoung pmf_system_shutdown(boothowto); 268 1.8 dyoung 269 1.1 joff /* Make sure IRQ's are disabled */ 270 1.1 joff IRQdisable; 271 1.1 joff 272 1.1 joff if (howto & RB_HALT) { 273 1.1 joff printf("\r\n"); 274 1.1 joff printf("The operating system has halted.\r\n"); 275 1.1 joff printf("Please press any key to reboot.\r\n"); 276 1.1 joff cngetc(); 277 1.1 joff } 278 1.1 joff 279 1.1 joff printf("\r\nrebooting...\r\n"); 280 1.1 joff reset: 281 1.1 joff /* 282 1.1 joff * Make really really sure that all interrupts are disabled, 283 1.1 joff * and poke the Internal Bus and Peripheral Bus reset lines. 284 1.1 joff */ 285 1.1 joff (void) disable_interrupts(I32_bit|F32_bit); 286 1.1 joff 287 1.1 joff { 288 1.20 skrll uint32_t feed, ctrl; 289 1.1 joff 290 1.1 joff feed = TS7XXX_IO16_VBASE + TS7XXX_WDOGFEED; 291 1.1 joff ctrl = TS7XXX_IO16_VBASE + TS7XXX_WDOGCTRL; 292 1.1 joff 293 1.3 perry __asm volatile ( 294 1.1 joff "mov r0, #0x5\n" 295 1.1 joff "mov r1, #0x1\n" 296 1.1 joff "strh r0, [%0]\n" 297 1.1 joff "strh r1, [%1]\n" 298 1.30 skrll : 299 1.1 joff : "r" (feed), "r" (ctrl) 300 1.1 joff : "r0", "r1" 301 1.1 joff ); 302 1.1 joff } 303 1.1 joff 304 1.1 joff for (;;); 305 1.1 joff } 306 1.1 joff 307 1.1 joff /* Static device mappings. */ 308 1.1 joff static const struct pmap_devmap tsarm_devmap[] = { 309 1.35 skrll DEVMAP_ENTRY( 310 1.1 joff EP93XX_AHB_VBASE, 311 1.1 joff EP93XX_AHB_HWBASE, 312 1.35 skrll EP93XX_AHB_SIZE 313 1.35 skrll ), 314 1.1 joff 315 1.35 skrll DEVMAP_ENTRY( 316 1.1 joff EP93XX_APB_VBASE, 317 1.1 joff EP93XX_APB_HWBASE, 318 1.35 skrll EP93XX_APB_SIZE 319 1.35 skrll ), 320 1.1 joff 321 1.1 joff /* 322 1.1 joff * IO8 and IO16 space *must* be mapped contiguously with 323 1.1 joff * IO8_VA == IO16_VA - 64 Mbytes. ISA busmap driver depends 324 1.1 joff * on that! 325 1.1 joff */ 326 1.35 skrll DEVMAP_ENTRY( 327 1.1 joff TS7XXX_IO8_VBASE, 328 1.1 joff TS7XXX_IO8_HWBASE, 329 1.35 skrll TS7XXX_IO8_SIZE 330 1.35 skrll ), 331 1.1 joff 332 1.35 skrll DEVMAP_ENTRY( 333 1.1 joff TS7XXX_IO16_VBASE, 334 1.1 joff TS7XXX_IO16_HWBASE, 335 1.35 skrll TS7XXX_IO16_SIZE 336 1.35 skrll ), 337 1.35 skrll 338 1.35 skrll DEVMAP_ENTRY_END 339 1.1 joff }; 340 1.1 joff 341 1.1 joff /* 342 1.29 skrll * vaddr_t initarm(...) 343 1.1 joff * 344 1.1 joff * Initial entry point on startup. This gets called before main() is 345 1.1 joff * entered. 346 1.1 joff * It should be responsible for setting up everything that must be 347 1.1 joff * in place when main is called. 348 1.1 joff * This includes 349 1.1 joff * Taking a copy of the boot configuration structure. 350 1.1 joff * Initialising the physical console so characters can be printed. 351 1.1 joff * Setting up page tables for the kernel 352 1.1 joff * Initialising interrupt controllers to a sane default state 353 1.1 joff */ 354 1.29 skrll vaddr_t 355 1.1 joff initarm(void *arg) 356 1.1 joff { 357 1.1 joff #ifdef FIXME 358 1.1 joff struct bootconfig *passed_bootconfig = arg; 359 1.1 joff extern char _end[]; 360 1.1 joff #endif 361 1.1 joff int loop; 362 1.1 joff int loop1; 363 1.1 joff u_int l1pagetable; 364 1.22 skrll 365 1.22 skrll #ifdef FIXME 366 1.1 joff paddr_t memstart; 367 1.1 joff psize_t memsize; 368 1.1 joff 369 1.1 joff /* Calibrate the delay loop. */ 370 1.1 joff i80321_calibrate_delay(); 371 1.1 joff #endif 372 1.1 joff 373 1.1 joff /* 374 1.1 joff * Since we map the on-board devices VA==PA, and the kernel 375 1.1 joff * is running VA==PA, it's possible for us to initialize 376 1.1 joff * the console now. 377 1.1 joff */ 378 1.1 joff consinit(); 379 1.1 joff 380 1.1 joff #ifdef VERBOSE_INIT_ARM 381 1.1 joff /* Talk to the user */ 382 1.1 joff printf("\nNetBSD/tsarm booting ...\n"); 383 1.1 joff #endif 384 1.1 joff 385 1.1 joff /* 386 1.1 joff * Heads up ... Setup the CPU / MMU / TLB functions 387 1.1 joff */ 388 1.1 joff if (set_cpufuncs()) 389 1.1 joff panic("cpu not recognized!"); 390 1.1 joff 391 1.1 joff /* 392 1.1 joff * We are currently running with the MMU enabled 393 1.1 joff */ 394 1.1 joff 395 1.30 skrll #ifdef FIXME 396 1.1 joff /* 397 1.1 joff * Fetch the SDRAM start/size from the i80321 SDRAM configuration 398 1.1 joff * registers. 399 1.1 joff */ 400 1.1 joff i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE, 401 1.1 joff &memstart, &memsize); 402 1.22 skrll 403 1.1 joff memstart = 0x0; 404 1.1 joff memsize = 0x2000000; 405 1.1 joff #endif 406 1.1 joff 407 1.1 joff #ifdef VERBOSE_INIT_ARM 408 1.1 joff printf("initarm: Configuring system ...\n"); 409 1.1 joff #endif 410 1.1 joff 411 1.1 joff /* Fake bootconfig structure for the benefit of pmap.c */ 412 1.5 wiz /* XXX must make the memory description h/w independent */ 413 1.1 joff bootconfig.dramblocks = 4; 414 1.1 joff bootconfig.dram[0].address = 0x0UL; 415 1.1 joff bootconfig.dram[0].pages = 0x800000UL / PAGE_SIZE; 416 1.1 joff bootconfig.dram[1].address = 0x1000000UL; 417 1.1 joff bootconfig.dram[1].pages = 0x800000UL / PAGE_SIZE; 418 1.1 joff bootconfig.dram[2].address = 0x4000000UL; 419 1.1 joff bootconfig.dram[2].pages = 0x800000UL / PAGE_SIZE; 420 1.1 joff bootconfig.dram[3].address = 0x5000000UL; 421 1.1 joff bootconfig.dram[3].pages = 0x800000UL / PAGE_SIZE; 422 1.1 joff 423 1.1 joff /* 424 1.32 andvar * Set up the variables that define the availability of 425 1.1 joff * physical memory. For now, we're going to set 426 1.1 joff * physical_freestart to 0x00200000 (where the kernel 427 1.1 joff * was loaded), and allocate the memory we need downwards. 428 1.1 joff * If we get too close to the L1 table that we set up, we 429 1.1 joff * will panic. We will update physical_freestart and 430 1.1 joff * physical_freeend later to reflect what pmap_bootstrap() 431 1.1 joff * wants to see. 432 1.1 joff * 433 1.1 joff * XXX pmap_bootstrap() needs an enema. 434 1.1 joff */ 435 1.1 joff physical_start = bootconfig.dram[0].address; 436 1.30 skrll physical_end = bootconfig.dram[0].address + 437 1.1 joff (bootconfig.dram[0].pages * PAGE_SIZE); 438 1.1 joff 439 1.1 joff physical_freestart = 0x00009000UL; 440 1.1 joff physical_freeend = 0x00200000UL; 441 1.1 joff 442 1.1 joff physmem = (physical_end - physical_start) / PAGE_SIZE; 443 1.1 joff 444 1.1 joff #ifdef VERBOSE_INIT_ARM 445 1.1 joff /* Tell the user about the memory */ 446 1.37 andvar printf("physmemory: 0x%"PRIxPSIZE" pages at 0x%08lx -> 0x%08lx\n", physmem, 447 1.1 joff physical_start, physical_end - 1); 448 1.1 joff #endif 449 1.1 joff 450 1.1 joff /* 451 1.1 joff * Okay, the kernel starts 2MB in from the bottom of physical 452 1.1 joff * memory. We are going to allocate our bootstrap pages downwards 453 1.1 joff * from there. 454 1.1 joff * 455 1.1 joff * We need to allocate some fixed page tables to get the kernel 456 1.1 joff * going. We allocate one page directory and a number of page 457 1.1 joff * tables and store the physical addresses in the kernel_pt_table 458 1.1 joff * array. 459 1.1 joff * 460 1.1 joff * The kernel page directory must be on a 16K boundary. The page 461 1.34 andvar * tables must be on 4K boundaries. What we do is allocate the 462 1.1 joff * page directory on the first 16K boundary that we encounter, and 463 1.1 joff * the page tables on 4K boundaries otherwise. Since we allocate 464 1.1 joff * at least 3 L2 page tables, we are guaranteed to encounter at 465 1.1 joff * least one 16K aligned region. 466 1.1 joff */ 467 1.1 joff 468 1.1 joff #ifdef VERBOSE_INIT_ARM 469 1.1 joff printf("Allocating page tables\n"); 470 1.1 joff #endif 471 1.1 joff 472 1.1 joff free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; 473 1.1 joff 474 1.1 joff #ifdef VERBOSE_INIT_ARM 475 1.1 joff printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", 476 1.1 joff physical_freestart, free_pages, free_pages); 477 1.1 joff #endif 478 1.1 joff 479 1.1 joff /* Define a macro to simplify memory allocation */ 480 1.1 joff #define valloc_pages(var, np) \ 481 1.1 joff alloc_pages((var).pv_pa, (np)); \ 482 1.1 joff (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; 483 1.1 joff 484 1.1 joff #define alloc_pages(var, np) \ 485 1.1 joff physical_freeend -= ((np) * PAGE_SIZE); \ 486 1.1 joff if (physical_freeend < physical_freestart) \ 487 1.1 joff panic("initarm: out of memory"); \ 488 1.1 joff (var) = physical_freeend; \ 489 1.1 joff free_pages -= (np); \ 490 1.1 joff memset((char *)(var), 0, ((np) * PAGE_SIZE)); 491 1.1 joff 492 1.1 joff loop1 = 0; 493 1.1 joff for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 494 1.1 joff /* Are we 16KB aligned for an L1 ? */ 495 1.1 joff if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 496 1.1 joff && kernel_l1pt.pv_pa == 0) { 497 1.1 joff valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 498 1.1 joff } else { 499 1.1 joff valloc_pages(kernel_pt_table[loop1], 500 1.1 joff L2_TABLE_SIZE / PAGE_SIZE); 501 1.1 joff ++loop1; 502 1.1 joff } 503 1.1 joff } 504 1.1 joff 505 1.1 joff /* This should never be able to happen but better confirm that. */ 506 1.1 joff if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) 507 1.1 joff panic("initarm: Failed to align the kernel page directory"); 508 1.1 joff 509 1.1 joff /* 510 1.1 joff * Allocate a page for the system vectors page 511 1.1 joff */ 512 1.1 joff alloc_pages(systempage.pv_pa, 1); 513 1.1 joff 514 1.1 joff /* Allocate stacks for all modes */ 515 1.1 joff valloc_pages(irqstack, IRQ_STACK_SIZE); 516 1.1 joff valloc_pages(abtstack, ABT_STACK_SIZE); 517 1.1 joff valloc_pages(undstack, UND_STACK_SIZE); 518 1.1 joff valloc_pages(kernelstack, UPAGES); 519 1.1 joff 520 1.1 joff #ifdef VERBOSE_INIT_ARM 521 1.1 joff printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, 522 1.30 skrll irqstack.pv_va); 523 1.1 joff printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, 524 1.30 skrll abtstack.pv_va); 525 1.1 joff printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, 526 1.30 skrll undstack.pv_va); 527 1.1 joff printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, 528 1.30 skrll kernelstack.pv_va); 529 1.1 joff #endif 530 1.1 joff 531 1.1 joff alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); 532 1.1 joff 533 1.1 joff /* 534 1.1 joff * Ok we have allocated physical pages for the primary kernel 535 1.30 skrll * page tables. Save physical_freeend for when we give whats left 536 1.1 joff * of memory below 2Mbyte to UVM. 537 1.1 joff */ 538 1.1 joff 539 1.1 joff physical_freeend_low = physical_freeend; 540 1.1 joff 541 1.1 joff #ifdef VERBOSE_INIT_ARM 542 1.1 joff printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 543 1.1 joff #endif 544 1.1 joff 545 1.1 joff /* 546 1.1 joff * Now we start construction of the L1 page table 547 1.1 joff * We start by mapping the L2 page tables into the L1. 548 1.1 joff * This means that we can replace L1 mappings later on if necessary 549 1.1 joff */ 550 1.1 joff l1pagetable = kernel_l1pt.pv_pa; 551 1.1 joff 552 1.1 joff /* Map the L2 pages tables in the L1 page table */ 553 1.1 joff pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1), 554 1.1 joff &kernel_pt_table[KERNEL_PT_SYS]); 555 1.1 joff for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 556 1.1 joff pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, 557 1.1 joff &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 558 1.1 joff for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 559 1.1 joff pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, 560 1.1 joff &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 561 1.1 joff 562 1.1 joff /* update the top of the kernel VM */ 563 1.1 joff pmap_curmaxkvaddr = 564 1.1 joff KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 565 1.1 joff 566 1.1 joff #ifdef VERBOSE_INIT_ARM 567 1.1 joff printf("Mapping kernel\n"); 568 1.1 joff #endif 569 1.1 joff 570 1.1 joff /* Now we fill in the L2 pagetable for the kernel static code/data */ 571 1.1 joff { 572 1.1 joff extern char etext[], _end[]; 573 1.1 joff size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; 574 1.1 joff size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; 575 1.1 joff u_int logical; 576 1.1 joff 577 1.1 joff textsize = (textsize + PGOFSET) & ~PGOFSET; 578 1.1 joff totalsize = (totalsize + PGOFSET) & ~PGOFSET; 579 1.30 skrll 580 1.1 joff logical = 0x00200000; /* offset of kernel in RAM */ 581 1.1 joff logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 582 1.1 joff physical_start + logical, textsize, 583 1.1 joff VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 584 1.1 joff logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 585 1.1 joff physical_start + logical, totalsize - textsize, 586 1.1 joff VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 587 1.1 joff } 588 1.1 joff 589 1.1 joff #ifdef VERBOSE_INIT_ARM 590 1.1 joff printf("Constructing L2 page tables\n"); 591 1.1 joff #endif 592 1.1 joff 593 1.1 joff /* Map the stack pages */ 594 1.1 joff pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, 595 1.1 joff IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 596 1.1 joff pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, 597 1.1 joff ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 598 1.1 joff pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, 599 1.1 joff UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 600 1.1 joff pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, 601 1.1 joff UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 602 1.1 joff 603 1.1 joff pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 604 1.1 joff L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 605 1.1 joff 606 1.1 joff for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 607 1.1 joff pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, 608 1.1 joff kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 609 1.1 joff VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 610 1.1 joff } 611 1.1 joff 612 1.1 joff /* Map the vector page. */ 613 1.1 joff pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, 614 1.1 joff VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 615 1.1 joff 616 1.1 joff /* Map the statically mapped devices. */ 617 1.1 joff pmap_devmap_bootstrap(l1pagetable, tsarm_devmap); 618 1.1 joff 619 1.1 joff /* 620 1.1 joff * Update the physical_freestart/physical_freeend/free_pages 621 1.1 joff * variables. 622 1.1 joff */ 623 1.1 joff { 624 1.1 joff extern char _end[]; 625 1.1 joff 626 1.1 joff physical_freestart = physical_start + 627 1.1 joff (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - 628 1.1 joff KERNEL_BASE); 629 1.1 joff physical_freeend = physical_end; 630 1.1 joff free_pages = 631 1.1 joff (physical_freeend - physical_freestart) / PAGE_SIZE; 632 1.1 joff } 633 1.1 joff 634 1.1 joff /* 635 1.1 joff * Now we have the real page tables in place so we can switch to them. 636 1.1 joff * Once this is done we will be running with the REAL kernel page 637 1.1 joff * tables. 638 1.1 joff */ 639 1.1 joff 640 1.1 joff /* Switch tables */ 641 1.1 joff #ifdef VERBOSE_INIT_ARM 642 1.1 joff printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", 643 1.1 joff physical_freestart, free_pages, free_pages); 644 1.1 joff printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); 645 1.1 joff #endif 646 1.1 joff cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 647 1.19 matt cpu_setttb(kernel_l1pt.pv_pa, true); 648 1.1 joff cpu_tlb_flushID(); 649 1.1 joff cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 650 1.1 joff 651 1.1 joff /* 652 1.1 joff * Moved from cpu_startup() as data_abort_handler() references 653 1.1 joff * this during uvm init 654 1.1 joff */ 655 1.13 rmind uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); 656 1.1 joff 657 1.1 joff #ifdef VERBOSE_INIT_ARM 658 1.1 joff printf("done!\n"); 659 1.1 joff #endif 660 1.1 joff 661 1.1 joff #ifdef VERBOSE_INIT_ARM 662 1.1 joff printf("bootstrap done.\n"); 663 1.1 joff #endif 664 1.1 joff 665 1.1 joff arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); 666 1.1 joff 667 1.1 joff /* 668 1.1 joff * Pages were allocated during the secondary bootstrap for the 669 1.1 joff * stacks for different CPU modes. 670 1.1 joff * We must now set the r13 registers in the different CPU modes to 671 1.1 joff * point to these stacks. 672 1.1 joff * Since the ARM stacks use STMFD etc. we must set r13 to the top end 673 1.1 joff * of the stack memory. 674 1.1 joff */ 675 1.1 joff #ifdef VERBOSE_INIT_ARM 676 1.1 joff printf("init subsystems: stacks "); 677 1.1 joff #endif 678 1.1 joff 679 1.1 joff set_stackptr(PSR_IRQ32_MODE, 680 1.1 joff irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 681 1.1 joff set_stackptr(PSR_ABT32_MODE, 682 1.1 joff abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 683 1.1 joff set_stackptr(PSR_UND32_MODE, 684 1.1 joff undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 685 1.1 joff 686 1.1 joff /* 687 1.1 joff * Well we should set a data abort handler. 688 1.1 joff * Once things get going this will change as we will need a proper 689 1.1 joff * handler. 690 1.1 joff * Until then we will use a handler that just panics but tells us 691 1.1 joff * why. 692 1.1 joff * Initialisation of the vectors will just panic on a data abort. 693 1.1 joff * This just fills in a slightly better one. 694 1.1 joff */ 695 1.1 joff #ifdef VERBOSE_INIT_ARM 696 1.1 joff printf("vectors "); 697 1.1 joff #endif 698 1.1 joff data_abort_handler_address = (u_int)data_abort_handler; 699 1.1 joff prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 700 1.1 joff undefined_handler_address = (u_int)undefinedinstruction_bounce; 701 1.1 joff 702 1.1 joff /* Initialise the undefined instruction handlers */ 703 1.1 joff #ifdef VERBOSE_INIT_ARM 704 1.1 joff printf("undefined "); 705 1.1 joff #endif 706 1.1 joff undefined_init(); 707 1.1 joff 708 1.1 joff /* Load memory into UVM. */ 709 1.1 joff #ifdef VERBOSE_INIT_ARM 710 1.1 joff printf("page "); 711 1.1 joff #endif 712 1.24 cherry uvm_md_init(); 713 1.1 joff uvm_page_physload(atop(physical_freestart), atop(physical_freeend), 714 1.1 joff atop(physical_freestart), atop(physical_freeend), 715 1.1 joff VM_FREELIST_DEFAULT); 716 1.1 joff uvm_page_physload(0, atop(physical_freeend_low), 717 1.1 joff 0, atop(physical_freeend_low), 718 1.1 joff VM_FREELIST_DEFAULT); 719 1.1 joff /* 720 1.30 skrll * There is 32 Mb of memory on the TS-7200 in 4 8Mb chunks, so far 721 1.30 skrll * we've only been working with the first one mapped at 0x0. Tell 722 1.30 skrll * UVM about the others. 723 1.1 joff */ 724 1.1 joff uvm_page_physload(atop(0x1000000), atop(0x1800000), 725 1.1 joff atop(0x1000000), atop(0x1800000), 726 1.1 joff VM_FREELIST_DEFAULT); 727 1.1 joff uvm_page_physload(atop(0x4000000), atop(0x4800000), 728 1.1 joff atop(0x4000000), atop(0x4800000), 729 1.1 joff VM_FREELIST_DEFAULT); 730 1.1 joff uvm_page_physload(atop(0x5000000), atop(0x5800000), 731 1.1 joff atop(0x5000000), atop(0x5800000), 732 1.1 joff VM_FREELIST_DEFAULT); 733 1.1 joff 734 1.1 joff physmem = 0x2000000 / PAGE_SIZE; 735 1.30 skrll 736 1.1 joff 737 1.27 skrll /* Boot strap pmap telling it where managed kernel virtual memory is */ 738 1.1 joff #ifdef VERBOSE_INIT_ARM 739 1.1 joff printf("pmap "); 740 1.1 joff #endif 741 1.7 matt pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 742 1.1 joff 743 1.1 joff /* Setup the IRQ system */ 744 1.1 joff #ifdef VERBOSE_INIT_ARM 745 1.1 joff printf("irq "); 746 1.1 joff #endif 747 1.1 joff ep93xx_intr_init(); 748 1.1 joff #if NISA > 0 749 1.1 joff isa_intr_init(); 750 1.1 joff 751 1.1 joff #ifdef VERBOSE_INIT_ARM 752 1.1 joff printf("isa "); 753 1.1 joff #endif 754 1.1 joff isa_tsarm_init(TS7XXX_IO16_VBASE + TS7XXX_ISAIO, 755 1.30 skrll TS7XXX_IO16_VBASE + TS7XXX_ISAMEM); 756 1.1 joff #endif 757 1.1 joff 758 1.1 joff #ifdef VERBOSE_INIT_ARM 759 1.1 joff printf("done.\n"); 760 1.1 joff #endif 761 1.1 joff 762 1.1 joff #ifdef BOOTHOWTO 763 1.1 joff boothowto = BOOTHOWTO; 764 1.1 joff #endif 765 1.1 joff 766 1.1 joff #ifdef DDB 767 1.1 joff db_machine_init(); 768 1.1 joff if (boothowto & RB_KDB) 769 1.1 joff Debugger(); 770 1.1 joff #endif 771 1.1 joff 772 1.1 joff /* We return the new stack pointer address */ 773 1.28 skrll return kernelstack.pv_va + USPACE_SVC_STACK_TOP; 774 1.1 joff } 775 1.1 joff 776 1.1 joff void 777 1.1 joff consinit(void) 778 1.1 joff { 779 1.1 joff static int consinit_called; 780 1.1 joff bus_space_handle_t ioh; 781 1.1 joff 782 1.1 joff if (consinit_called != 0) 783 1.1 joff return; 784 1.1 joff 785 1.1 joff consinit_called = 1; 786 1.1 joff 787 1.1 joff /* 788 1.1 joff * Console devices are already mapped in VA. Our devmap reflects 789 1.1 joff * this, so register it now so drivers can map the console 790 1.1 joff * device. 791 1.1 joff */ 792 1.1 joff pmap_devmap_register(tsarm_devmap); 793 1.1 joff #if 0 794 1.1 joff isa_tsarm_init(TS7XXX_IO16_VBASE + TS7XXX_ISAIO, 795 1.30 skrll TS7XXX_IO16_VBASE + TS7XXX_ISAMEM); 796 1.1 joff 797 1.1 joff if (comcnattach(&isa_io_bs_tag, 0x3e8, comcnspeed, 798 1.1 joff COM_FREQ, COM_TYPE_NORMAL, comcnmode)) 799 1.1 joff { 800 1.1 joff panic("can't init serial console"); 801 1.1 joff } 802 1.1 joff #endif 803 1.1 joff 804 1.1 joff #if NEPCOM > 0 805 1.30 skrll bus_space_map(&ep93xx_bs_tag, EP93XX_APB_HWBASE + EP93XX_APB_UART1, 806 1.1 joff EP93XX_APB_UART_SIZE, 0, &ioh); 807 1.30 skrll if (epcomcnattach(&ep93xx_bs_tag, EP93XX_APB_HWBASE + EP93XX_APB_UART1, 808 1.1 joff ioh, comcnspeed, comcnmode)) 809 1.1 joff { 810 1.1 joff panic("can't init serial console"); 811 1.1 joff } 812 1.1 joff #else 813 1.1 joff panic("serial console not configured"); 814 1.1 joff #endif 815 1.1 joff #if KGDB 816 1.1 joff #if NEPCOM > 0 817 1.1 joff if (strcmp(kgdb_devname, "epcom") == 0) { 818 1.33 skrll epcom_kgdb_attach(&ep93xx_bs_tag, kgdb_devaddr, kgdb_devrate, 819 1.33 skrll kgdb_devmode); 820 1.1 joff } 821 1.1 joff #endif /* NEPCOM > 0 */ 822 1.1 joff #endif /* KGDB */ 823 1.1 joff } 824 1.1 joff 825 1.1 joff 826 1.1 joff bus_dma_tag_t 827 1.1 joff ep93xx_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template) 828 1.1 joff { 829 1.1 joff int i; 830 1.1 joff struct arm32_bus_dma_tag *dmat; 831 1.1 joff 832 1.1 joff for (i = 0; i < bootconfig.dramblocks; i++) { 833 1.1 joff tsarm_dma_ranges[i].dr_sysbase = bootconfig.dram[i].address; 834 1.1 joff tsarm_dma_ranges[i].dr_busbase = bootconfig.dram[i].address; 835 1.30 skrll tsarm_dma_ranges[i].dr_len = bootconfig.dram[i].pages * 836 1.1 joff PAGE_SIZE; 837 1.1 joff } 838 1.1 joff 839 1.1 joff dmat = dma_tag_template; 840 1.1 joff 841 1.1 joff dmat->_ranges = tsarm_dma_ranges; 842 1.1 joff dmat->_nranges = bootconfig.dramblocks; 843 1.1 joff 844 1.1 joff return dmat; 845 1.1 joff } 846 1.36 jmcneill 847 1.36 jmcneill void 848 1.36 jmcneill cpu_startup_hook(void) 849 1.36 jmcneill { 850 1.36 jmcneill ep93xx_intr_evcnt_attach(); 851 1.36 jmcneill } 852