Home | History | Annotate | Line # | Download | only in tsarm
      1  1.37    andvar /*	$NetBSD: tsarm_machdep.c,v 1.37 2024/02/20 23:36:01 andvar Exp $ */
      2   1.1      joff 
      3   1.1      joff /*
      4   1.1      joff  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
      5   1.1      joff  * All rights reserved.
      6   1.1      joff  *
      7   1.1      joff  * Based on code written by Jason R. Thorpe and Steve C. Woodford for
      8   1.1      joff  * Wasabi Systems, Inc.
      9   1.1      joff  *
     10   1.1      joff  * Redistribution and use in source and binary forms, with or without
     11   1.1      joff  * modification, are permitted provided that the following conditions
     12   1.1      joff  * are met:
     13   1.1      joff  * 1. Redistributions of source code must retain the above copyright
     14   1.1      joff  *    notice, this list of conditions and the following disclaimer.
     15   1.1      joff  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1      joff  *    notice, this list of conditions and the following disclaimer in the
     17   1.1      joff  *    documentation and/or other materials provided with the distribution.
     18   1.1      joff  * 3. All advertising materials mentioning features or use of this software
     19   1.1      joff  *    must display the following acknowledgement:
     20   1.1      joff  *	This product includes software developed for the NetBSD Project by
     21   1.1      joff  *	Wasabi Systems, Inc.
     22   1.1      joff  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     23   1.1      joff  *    or promote products derived from this software without specific prior
     24   1.1      joff  *    written permission.
     25   1.1      joff  *
     26   1.1      joff  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     27   1.1      joff  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.1      joff  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.1      joff  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     30   1.1      joff  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.1      joff  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.1      joff  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.1      joff  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.1      joff  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.1      joff  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.1      joff  * POSSIBILITY OF SUCH DAMAGE.
     37   1.1      joff  */
     38   1.1      joff 
     39   1.1      joff /*
     40   1.1      joff  * Copyright (c) 1997,1998 Mark Brinicombe.
     41   1.1      joff  * Copyright (c) 1997,1998 Causality Limited.
     42   1.1      joff  * All rights reserved.
     43   1.1      joff  *
     44   1.1      joff  * Redistribution and use in source and binary forms, with or without
     45   1.1      joff  * modification, are permitted provided that the following conditions
     46   1.1      joff  * are met:
     47   1.1      joff  * 1. Redistributions of source code must retain the above copyright
     48   1.1      joff  *    notice, this list of conditions and the following disclaimer.
     49   1.1      joff  * 2. Redistributions in binary form must reproduce the above copyright
     50   1.1      joff  *    notice, this list of conditions and the following disclaimer in the
     51   1.1      joff  *    documentation and/or other materials provided with the distribution.
     52   1.1      joff  * 3. All advertising materials mentioning features or use of this software
     53   1.1      joff  *    must display the following acknowledgement:
     54   1.1      joff  *	This product includes software developed by Mark Brinicombe
     55   1.1      joff  *	for the NetBSD Project.
     56   1.1      joff  * 4. The name of the company nor the name of the author may be used to
     57   1.1      joff  *    endorse or promote products derived from this software without specific
     58   1.1      joff  *    prior written permission.
     59   1.1      joff  *
     60   1.1      joff  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     61   1.1      joff  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     62   1.1      joff  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     63   1.1      joff  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     64   1.1      joff  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     65   1.1      joff  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     66   1.1      joff  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     67   1.1      joff  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     68   1.1      joff  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     69   1.1      joff  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     70   1.1      joff  * SUCH DAMAGE.
     71   1.1      joff  *
     72  1.15       wiz  * Machine dependent functions for kernel setup for Iyonix.
     73   1.1      joff  */
     74   1.1      joff 
     75   1.1      joff #include <sys/cdefs.h>
     76  1.37    andvar __KERNEL_RCSID(0, "$NetBSD: tsarm_machdep.c,v 1.37 2024/02/20 23:36:01 andvar Exp $");
     77   1.1      joff 
     78  1.25     skrll #include "opt_arm_debug.h"
     79  1.26     skrll #include "opt_console.h"
     80   1.1      joff #include "opt_ddb.h"
     81   1.1      joff #include "opt_kgdb.h"
     82   1.1      joff 
     83   1.1      joff #include <sys/param.h>
     84   1.1      joff #include <sys/device.h>
     85   1.1      joff #include <sys/systm.h>
     86   1.1      joff #include <sys/kernel.h>
     87   1.1      joff #include <sys/exec.h>
     88   1.1      joff #include <sys/proc.h>
     89   1.1      joff #include <sys/msgbuf.h>
     90   1.1      joff #include <sys/reboot.h>
     91   1.1      joff #include <sys/termios.h>
     92   1.1      joff #include <sys/ksyms.h>
     93  1.21      matt #include <sys/bus.h>
     94  1.21      matt #include <sys/cpu.h>
     95   1.1      joff 
     96   1.1      joff #include <uvm/uvm_extern.h>
     97   1.1      joff 
     98   1.1      joff #include <dev/cons.h>
     99   1.1      joff 
    100   1.1      joff #include <machine/db_machdep.h>
    101   1.1      joff #include <ddb/db_sym.h>
    102   1.1      joff #include <ddb/db_extern.h>
    103   1.1      joff 
    104   1.1      joff #include <acorn32/include/bootconfig.h>
    105  1.21      matt #include <arm/locore.h>
    106   1.1      joff #include <arm/undefined.h>
    107   1.1      joff 
    108  1.18      matt /* Define various stack sizes in pages */
    109  1.18      matt #define IRQ_STACK_SIZE	8
    110  1.18      matt #define ABT_STACK_SIZE	8
    111  1.18      matt #define UND_STACK_SIZE	8
    112  1.18      matt 
    113   1.1      joff #include <arm/arm32/machdep.h>
    114   1.1      joff 
    115   1.1      joff #include <arm/ep93xx/ep93xxreg.h>
    116   1.1      joff #include <arm/ep93xx/ep93xxvar.h>
    117   1.1      joff 
    118   1.1      joff #include <dev/ic/comreg.h>
    119   1.1      joff #include <dev/ic/comvar.h>
    120   1.1      joff 
    121   1.1      joff #include "epcom.h"
    122   1.1      joff #if NEPCOM > 0
    123   1.1      joff #include <arm/ep93xx/epcomvar.h>
    124   1.1      joff #endif
    125   1.1      joff 
    126   1.1      joff #include "isa.h"
    127   1.1      joff #if NISA > 0
    128   1.1      joff #include <dev/isa/isareg.h>
    129   1.1      joff #include <dev/isa/isavar.h>
    130   1.1      joff #endif
    131   1.1      joff 
    132   1.1      joff #include <machine/isa_machdep.h>
    133   1.1      joff 
    134   1.1      joff #include <evbarm/tsarm/tsarmreg.h>
    135   1.1      joff 
    136   1.1      joff #include "ksyms.h"
    137   1.1      joff 
    138   1.1      joff /* Kernel text starts 2MB in from the bottom of the kernel address space. */
    139   1.1      joff #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
    140   1.1      joff #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    141   1.1      joff 
    142   1.1      joff /*
    143   1.1      joff  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
    144   1.1      joff  * Core-logic registers and I/O mappings occupy 0xf0000000 - 0xffffffff
    145   1.1      joff  */
    146   1.1      joff #define KERNEL_VM_SIZE		0x0C000000
    147   1.1      joff 
    148   1.1      joff struct bootconfig bootconfig;		/* Boot config storage */
    149   1.1      joff char *boot_args = NULL;
    150   1.1      joff char *boot_file = NULL;
    151   1.1      joff 
    152  1.23      matt vaddr_t physical_start;
    153  1.23      matt vaddr_t physical_freestart;
    154  1.23      matt vaddr_t physical_freeend;
    155  1.23      matt vaddr_t physical_freeend_low;
    156  1.23      matt vaddr_t physical_end;
    157   1.1      joff u_int free_pages;
    158   1.1      joff 
    159  1.23      matt paddr_t msgbufphys;
    160   1.1      joff 
    161   1.1      joff static struct arm32_dma_range tsarm_dma_ranges[4];
    162   1.1      joff 
    163   1.1      joff #if NISA > 0
    164  1.30     skrll extern void isa_tsarm_init(u_int, u_int);
    165   1.1      joff #endif
    166   1.1      joff 
    167   1.1      joff #define KERNEL_PT_SYS		0	/* L2 table for mapping vectors page */
    168   1.1      joff 
    169   1.1      joff #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
    170   1.1      joff #define	KERNEL_PT_KERNEL_NUM	4
    171  1.30     skrll 					/* L2 tables for mapping kernel VM */
    172   1.1      joff #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
    173   1.1      joff 
    174   1.1      joff #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    175   1.1      joff #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    176   1.1      joff 
    177   1.1      joff pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    178   1.1      joff 
    179   1.1      joff /* Prototypes */
    180   1.1      joff 
    181   1.1      joff void	consinit(void);
    182   1.1      joff /*
    183   1.1      joff  * Define the default console speed for the machine.
    184   1.1      joff  */
    185   1.1      joff #ifndef CONSPEED
    186   1.1      joff #define CONSPEED B115200
    187   1.1      joff #endif /* ! CONSPEED */
    188   1.1      joff 
    189   1.1      joff #ifndef CONMODE
    190   1.1      joff #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    191   1.1      joff #endif
    192   1.1      joff 
    193   1.1      joff int comcnspeed = CONSPEED;
    194   1.1      joff int comcnmode = CONMODE;
    195   1.1      joff 
    196   1.1      joff #if KGDB
    197   1.1      joff #ifndef KGDB_DEVNAME
    198   1.1      joff #error Must define KGDB_DEVNAME
    199   1.1      joff #endif
    200   1.1      joff const char kgdb_devname[] = KGDB_DEVNAME;
    201   1.1      joff 
    202   1.1      joff #ifndef KGDB_DEVADDR
    203   1.1      joff #error Must define KGDB_DEVADDR
    204   1.1      joff #endif
    205   1.1      joff unsigned long kgdb_devaddr = KGDB_DEVADDR;
    206   1.1      joff 
    207   1.1      joff #ifndef KGDB_DEVRATE
    208   1.1      joff #define KGDB_DEVRATE	CONSPEED
    209   1.1      joff #endif
    210   1.1      joff int kgdb_devrate = KGDB_DEVRATE;
    211   1.1      joff 
    212   1.1      joff #ifndef KGDB_DEVMODE
    213   1.1      joff #define KGDB_DEVMODE	CONMODE
    214   1.1      joff #endif
    215   1.1      joff int kgdb_devmode = KGDB_DEVMODE;
    216   1.1      joff #endif /* KGDB */
    217   1.1      joff 
    218   1.1      joff /*
    219   1.1      joff  * void cpu_reboot(int howto, char *bootstr)
    220   1.1      joff  *
    221   1.1      joff  * Reboots the system
    222   1.1      joff  *
    223   1.1      joff  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    224   1.1      joff  * then reset the CPU.
    225   1.1      joff  */
    226   1.1      joff void
    227   1.1      joff cpu_reboot(int howto, char *bootstr)
    228   1.1      joff {
    229   1.1      joff 
    230   1.1      joff 	/*
    231   1.1      joff 	 * If we are still cold then hit the air brakes
    232   1.1      joff 	 * and crash to earth fast
    233   1.1      joff 	 */
    234   1.1      joff 	if (cold) {
    235   1.1      joff 		doshutdownhooks();
    236   1.8    dyoung 		pmf_system_shutdown(boothowto);
    237   1.1      joff 		printf("\r\n");
    238   1.1      joff 		printf("The operating system has halted.\r\n");
    239   1.1      joff 		printf("Please press any key to reboot.\r\n");
    240   1.1      joff 		cngetc();
    241   1.1      joff 		printf("\r\nrebooting...\r\n");
    242   1.1      joff 		goto reset;
    243   1.1      joff 	}
    244   1.1      joff 
    245   1.1      joff 	/* Disable console buffering */
    246   1.1      joff 
    247   1.1      joff 	/*
    248   1.1      joff 	 * If RB_NOSYNC was not specified sync the discs.
    249   1.1      joff 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    250   1.1      joff 	 * unmount.  It looks like syslogd is getting woken up only to find
    251   1.1      joff 	 * that it cannot page part of the binary in as the filesystem has
    252   1.1      joff 	 * been unmounted.
    253   1.1      joff 	 */
    254   1.1      joff 	if (!(howto & RB_NOSYNC))
    255   1.1      joff 		bootsync();
    256   1.1      joff 
    257   1.1      joff 	/* Say NO to interrupts */
    258   1.1      joff 	splhigh();
    259   1.1      joff 
    260   1.1      joff 	/* Do a dump if requested. */
    261   1.1      joff 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    262   1.1      joff 		dumpsys();
    263  1.30     skrll 
    264   1.1      joff 	/* Run any shutdown hooks */
    265   1.1      joff 	doshutdownhooks();
    266   1.1      joff 
    267   1.8    dyoung 	pmf_system_shutdown(boothowto);
    268   1.8    dyoung 
    269   1.1      joff 	/* Make sure IRQ's are disabled */
    270   1.1      joff 	IRQdisable;
    271   1.1      joff 
    272   1.1      joff 	if (howto & RB_HALT) {
    273   1.1      joff 		printf("\r\n");
    274   1.1      joff 		printf("The operating system has halted.\r\n");
    275   1.1      joff 		printf("Please press any key to reboot.\r\n");
    276   1.1      joff 		cngetc();
    277   1.1      joff 	}
    278   1.1      joff 
    279   1.1      joff 	printf("\r\nrebooting...\r\n");
    280   1.1      joff  reset:
    281   1.1      joff 	/*
    282   1.1      joff 	 * Make really really sure that all interrupts are disabled,
    283   1.1      joff 	 * and poke the Internal Bus and Peripheral Bus reset lines.
    284   1.1      joff 	 */
    285   1.1      joff 	(void) disable_interrupts(I32_bit|F32_bit);
    286   1.1      joff 
    287   1.1      joff 	{
    288  1.20     skrll 		uint32_t feed, ctrl;
    289   1.1      joff 
    290   1.1      joff 		feed = TS7XXX_IO16_VBASE + TS7XXX_WDOGFEED;
    291   1.1      joff 		ctrl = TS7XXX_IO16_VBASE + TS7XXX_WDOGCTRL;
    292   1.1      joff 
    293   1.3     perry 		__asm volatile (
    294   1.1      joff 			"mov r0, #0x5\n"
    295   1.1      joff 			"mov r1, #0x1\n"
    296   1.1      joff 			"strh r0, [%0]\n"
    297   1.1      joff 			"strh r1, [%1]\n"
    298  1.30     skrll 			:
    299   1.1      joff 			: "r" (feed), "r" (ctrl)
    300   1.1      joff 			: "r0", "r1"
    301   1.1      joff 		);
    302   1.1      joff 	}
    303   1.1      joff 
    304   1.1      joff 	for (;;);
    305   1.1      joff }
    306   1.1      joff 
    307   1.1      joff /* Static device mappings. */
    308   1.1      joff static const struct pmap_devmap tsarm_devmap[] = {
    309  1.35     skrll     DEVMAP_ENTRY(
    310   1.1      joff 	EP93XX_AHB_VBASE,
    311   1.1      joff 	EP93XX_AHB_HWBASE,
    312  1.35     skrll 	EP93XX_AHB_SIZE
    313  1.35     skrll     ),
    314   1.1      joff 
    315  1.35     skrll     DEVMAP_ENTRY(
    316   1.1      joff 	EP93XX_APB_VBASE,
    317   1.1      joff 	EP93XX_APB_HWBASE,
    318  1.35     skrll 	EP93XX_APB_SIZE
    319  1.35     skrll     ),
    320   1.1      joff 
    321   1.1      joff 	/*
    322   1.1      joff 	 * IO8 and IO16 space *must* be mapped contiguously with
    323   1.1      joff 	 * IO8_VA == IO16_VA - 64 Mbytes.  ISA busmap driver depends
    324   1.1      joff 	 * on that!
    325   1.1      joff 	 */
    326  1.35     skrll     DEVMAP_ENTRY(
    327   1.1      joff 	TS7XXX_IO8_VBASE,
    328   1.1      joff 	TS7XXX_IO8_HWBASE,
    329  1.35     skrll 	TS7XXX_IO8_SIZE
    330  1.35     skrll     ),
    331   1.1      joff 
    332  1.35     skrll     DEVMAP_ENTRY(
    333   1.1      joff 	TS7XXX_IO16_VBASE,
    334   1.1      joff 	TS7XXX_IO16_HWBASE,
    335  1.35     skrll 	TS7XXX_IO16_SIZE
    336  1.35     skrll     ),
    337  1.35     skrll 
    338  1.35     skrll     DEVMAP_ENTRY_END
    339   1.1      joff };
    340   1.1      joff 
    341   1.1      joff /*
    342  1.29     skrll  * vaddr_t initarm(...)
    343   1.1      joff  *
    344   1.1      joff  * Initial entry point on startup. This gets called before main() is
    345   1.1      joff  * entered.
    346   1.1      joff  * It should be responsible for setting up everything that must be
    347   1.1      joff  * in place when main is called.
    348   1.1      joff  * This includes
    349   1.1      joff  *   Taking a copy of the boot configuration structure.
    350   1.1      joff  *   Initialising the physical console so characters can be printed.
    351   1.1      joff  *   Setting up page tables for the kernel
    352   1.1      joff  *   Initialising interrupt controllers to a sane default state
    353   1.1      joff  */
    354  1.29     skrll vaddr_t
    355   1.1      joff initarm(void *arg)
    356   1.1      joff {
    357   1.1      joff #ifdef FIXME
    358   1.1      joff 	struct bootconfig *passed_bootconfig = arg;
    359   1.1      joff 	extern char _end[];
    360   1.1      joff #endif
    361   1.1      joff 	int loop;
    362   1.1      joff 	int loop1;
    363   1.1      joff 	u_int l1pagetable;
    364  1.22     skrll 
    365  1.22     skrll #ifdef FIXME
    366   1.1      joff 	paddr_t memstart;
    367   1.1      joff 	psize_t memsize;
    368   1.1      joff 
    369   1.1      joff 	/* Calibrate the delay loop. */
    370   1.1      joff 	i80321_calibrate_delay();
    371   1.1      joff #endif
    372   1.1      joff 
    373   1.1      joff 	/*
    374   1.1      joff 	 * Since we map the on-board devices VA==PA, and the kernel
    375   1.1      joff 	 * is running VA==PA, it's possible for us to initialize
    376   1.1      joff 	 * the console now.
    377   1.1      joff 	 */
    378   1.1      joff 	consinit();
    379   1.1      joff 
    380   1.1      joff #ifdef VERBOSE_INIT_ARM
    381   1.1      joff 	/* Talk to the user */
    382   1.1      joff 	printf("\nNetBSD/tsarm booting ...\n");
    383   1.1      joff #endif
    384   1.1      joff 
    385   1.1      joff 	/*
    386   1.1      joff 	 * Heads up ... Setup the CPU / MMU / TLB functions
    387   1.1      joff 	 */
    388   1.1      joff 	if (set_cpufuncs())
    389   1.1      joff 		panic("cpu not recognized!");
    390   1.1      joff 
    391   1.1      joff 	/*
    392   1.1      joff 	 * We are currently running with the MMU enabled
    393   1.1      joff 	 */
    394   1.1      joff 
    395  1.30     skrll #ifdef FIXME
    396   1.1      joff 	/*
    397   1.1      joff 	 * Fetch the SDRAM start/size from the i80321 SDRAM configuration
    398   1.1      joff 	 * registers.
    399   1.1      joff 	 */
    400   1.1      joff 	i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE,
    401   1.1      joff 	    &memstart, &memsize);
    402  1.22     skrll 
    403   1.1      joff 	memstart = 0x0;
    404   1.1      joff 	memsize = 0x2000000;
    405   1.1      joff #endif
    406   1.1      joff 
    407   1.1      joff #ifdef VERBOSE_INIT_ARM
    408   1.1      joff 	printf("initarm: Configuring system ...\n");
    409   1.1      joff #endif
    410   1.1      joff 
    411   1.1      joff 	/* Fake bootconfig structure for the benefit of pmap.c */
    412   1.5       wiz 	/* XXX must make the memory description h/w independent */
    413   1.1      joff 	bootconfig.dramblocks = 4;
    414   1.1      joff 	bootconfig.dram[0].address = 0x0UL;
    415   1.1      joff 	bootconfig.dram[0].pages = 0x800000UL / PAGE_SIZE;
    416   1.1      joff 	bootconfig.dram[1].address = 0x1000000UL;
    417   1.1      joff 	bootconfig.dram[1].pages = 0x800000UL / PAGE_SIZE;
    418   1.1      joff 	bootconfig.dram[2].address = 0x4000000UL;
    419   1.1      joff 	bootconfig.dram[2].pages = 0x800000UL / PAGE_SIZE;
    420   1.1      joff 	bootconfig.dram[3].address = 0x5000000UL;
    421   1.1      joff 	bootconfig.dram[3].pages = 0x800000UL / PAGE_SIZE;
    422   1.1      joff 
    423   1.1      joff 	/*
    424  1.32    andvar 	 * Set up the variables that define the availability of
    425   1.1      joff 	 * physical memory.  For now, we're going to set
    426   1.1      joff 	 * physical_freestart to 0x00200000 (where the kernel
    427   1.1      joff 	 * was loaded), and allocate the memory we need downwards.
    428   1.1      joff 	 * If we get too close to the L1 table that we set up, we
    429   1.1      joff 	 * will panic.  We will update physical_freestart and
    430   1.1      joff 	 * physical_freeend later to reflect what pmap_bootstrap()
    431   1.1      joff 	 * wants to see.
    432   1.1      joff 	 *
    433   1.1      joff 	 * XXX pmap_bootstrap() needs an enema.
    434   1.1      joff 	 */
    435   1.1      joff 	physical_start = bootconfig.dram[0].address;
    436  1.30     skrll 	physical_end = bootconfig.dram[0].address +
    437   1.1      joff 		(bootconfig.dram[0].pages * PAGE_SIZE);
    438   1.1      joff 
    439   1.1      joff 	physical_freestart = 0x00009000UL;
    440   1.1      joff 	physical_freeend = 0x00200000UL;
    441   1.1      joff 
    442   1.1      joff 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    443   1.1      joff 
    444   1.1      joff #ifdef VERBOSE_INIT_ARM
    445   1.1      joff 	/* Tell the user about the memory */
    446  1.37    andvar 	printf("physmemory: 0x%"PRIxPSIZE" pages at 0x%08lx -> 0x%08lx\n", physmem,
    447   1.1      joff 	    physical_start, physical_end - 1);
    448   1.1      joff #endif
    449   1.1      joff 
    450   1.1      joff 	/*
    451   1.1      joff 	 * Okay, the kernel starts 2MB in from the bottom of physical
    452   1.1      joff 	 * memory.  We are going to allocate our bootstrap pages downwards
    453   1.1      joff 	 * from there.
    454   1.1      joff 	 *
    455   1.1      joff 	 * We need to allocate some fixed page tables to get the kernel
    456   1.1      joff 	 * going.  We allocate one page directory and a number of page
    457   1.1      joff 	 * tables and store the physical addresses in the kernel_pt_table
    458   1.1      joff 	 * array.
    459   1.1      joff 	 *
    460   1.1      joff 	 * The kernel page directory must be on a 16K boundary.  The page
    461  1.34    andvar 	 * tables must be on 4K boundaries.  What we do is allocate the
    462   1.1      joff 	 * page directory on the first 16K boundary that we encounter, and
    463   1.1      joff 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    464   1.1      joff 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    465   1.1      joff 	 * least one 16K aligned region.
    466   1.1      joff 	 */
    467   1.1      joff 
    468   1.1      joff #ifdef VERBOSE_INIT_ARM
    469   1.1      joff 	printf("Allocating page tables\n");
    470   1.1      joff #endif
    471   1.1      joff 
    472   1.1      joff 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    473   1.1      joff 
    474   1.1      joff #ifdef VERBOSE_INIT_ARM
    475   1.1      joff 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    476   1.1      joff 	       physical_freestart, free_pages, free_pages);
    477   1.1      joff #endif
    478   1.1      joff 
    479   1.1      joff 	/* Define a macro to simplify memory allocation */
    480   1.1      joff #define	valloc_pages(var, np)				\
    481   1.1      joff 	alloc_pages((var).pv_pa, (np));			\
    482   1.1      joff 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    483   1.1      joff 
    484   1.1      joff #define alloc_pages(var, np)				\
    485   1.1      joff 	physical_freeend -= ((np) * PAGE_SIZE);		\
    486   1.1      joff 	if (physical_freeend < physical_freestart)	\
    487   1.1      joff 		panic("initarm: out of memory");	\
    488   1.1      joff 	(var) = physical_freeend;			\
    489   1.1      joff 	free_pages -= (np);				\
    490   1.1      joff 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    491   1.1      joff 
    492   1.1      joff 	loop1 = 0;
    493   1.1      joff 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    494   1.1      joff 		/* Are we 16KB aligned for an L1 ? */
    495   1.1      joff 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
    496   1.1      joff 		    && kernel_l1pt.pv_pa == 0) {
    497   1.1      joff 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    498   1.1      joff 		} else {
    499   1.1      joff 			valloc_pages(kernel_pt_table[loop1],
    500   1.1      joff 			    L2_TABLE_SIZE / PAGE_SIZE);
    501   1.1      joff 			++loop1;
    502   1.1      joff 		}
    503   1.1      joff 	}
    504   1.1      joff 
    505   1.1      joff 	/* This should never be able to happen but better confirm that. */
    506   1.1      joff 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
    507   1.1      joff 		panic("initarm: Failed to align the kernel page directory");
    508   1.1      joff 
    509   1.1      joff 	/*
    510   1.1      joff 	 * Allocate a page for the system vectors page
    511   1.1      joff 	 */
    512   1.1      joff 	alloc_pages(systempage.pv_pa, 1);
    513   1.1      joff 
    514   1.1      joff 	/* Allocate stacks for all modes */
    515   1.1      joff 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    516   1.1      joff 	valloc_pages(abtstack, ABT_STACK_SIZE);
    517   1.1      joff 	valloc_pages(undstack, UND_STACK_SIZE);
    518   1.1      joff 	valloc_pages(kernelstack, UPAGES);
    519   1.1      joff 
    520   1.1      joff #ifdef VERBOSE_INIT_ARM
    521   1.1      joff 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    522  1.30     skrll 	    irqstack.pv_va);
    523   1.1      joff 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    524  1.30     skrll 	    abtstack.pv_va);
    525   1.1      joff 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    526  1.30     skrll 	    undstack.pv_va);
    527   1.1      joff 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    528  1.30     skrll 	    kernelstack.pv_va);
    529   1.1      joff #endif
    530   1.1      joff 
    531   1.1      joff 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    532   1.1      joff 
    533   1.1      joff 	/*
    534   1.1      joff 	 * Ok we have allocated physical pages for the primary kernel
    535  1.30     skrll 	 * page tables.  Save physical_freeend for when we give whats left
    536   1.1      joff 	 * of memory below 2Mbyte to UVM.
    537   1.1      joff 	 */
    538   1.1      joff 
    539   1.1      joff 	physical_freeend_low = physical_freeend;
    540   1.1      joff 
    541   1.1      joff #ifdef VERBOSE_INIT_ARM
    542   1.1      joff 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    543   1.1      joff #endif
    544   1.1      joff 
    545   1.1      joff 	/*
    546   1.1      joff 	 * Now we start construction of the L1 page table
    547   1.1      joff 	 * We start by mapping the L2 page tables into the L1.
    548   1.1      joff 	 * This means that we can replace L1 mappings later on if necessary
    549   1.1      joff 	 */
    550   1.1      joff 	l1pagetable = kernel_l1pt.pv_pa;
    551   1.1      joff 
    552   1.1      joff 	/* Map the L2 pages tables in the L1 page table */
    553   1.1      joff 	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
    554   1.1      joff 	    &kernel_pt_table[KERNEL_PT_SYS]);
    555   1.1      joff 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    556   1.1      joff 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    557   1.1      joff 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    558   1.1      joff 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    559   1.1      joff 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    560   1.1      joff 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    561   1.1      joff 
    562   1.1      joff 	/* update the top of the kernel VM */
    563   1.1      joff 	pmap_curmaxkvaddr =
    564   1.1      joff 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    565   1.1      joff 
    566   1.1      joff #ifdef VERBOSE_INIT_ARM
    567   1.1      joff 	printf("Mapping kernel\n");
    568   1.1      joff #endif
    569   1.1      joff 
    570   1.1      joff 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    571   1.1      joff 	{
    572   1.1      joff 		extern char etext[], _end[];
    573   1.1      joff 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    574   1.1      joff 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    575   1.1      joff 		u_int logical;
    576   1.1      joff 
    577   1.1      joff 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    578   1.1      joff 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    579  1.30     skrll 
    580   1.1      joff 		logical = 0x00200000;	/* offset of kernel in RAM */
    581   1.1      joff 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    582   1.1      joff 		    physical_start + logical, textsize,
    583   1.1      joff 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    584   1.1      joff 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    585   1.1      joff 		    physical_start + logical, totalsize - textsize,
    586   1.1      joff 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    587   1.1      joff 	}
    588   1.1      joff 
    589   1.1      joff #ifdef VERBOSE_INIT_ARM
    590   1.1      joff 	printf("Constructing L2 page tables\n");
    591   1.1      joff #endif
    592   1.1      joff 
    593   1.1      joff 	/* Map the stack pages */
    594   1.1      joff 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    595   1.1      joff 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    596   1.1      joff 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    597   1.1      joff 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    598   1.1      joff 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    599   1.1      joff 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    600   1.1      joff 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    601   1.1      joff 	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    602   1.1      joff 
    603   1.1      joff 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    604   1.1      joff 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    605   1.1      joff 
    606   1.1      joff 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    607   1.1      joff 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    608   1.1      joff 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    609   1.1      joff 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    610   1.1      joff 	}
    611   1.1      joff 
    612   1.1      joff 	/* Map the vector page. */
    613   1.1      joff 	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
    614   1.1      joff 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    615   1.1      joff 
    616   1.1      joff 	/* Map the statically mapped devices. */
    617   1.1      joff 	pmap_devmap_bootstrap(l1pagetable, tsarm_devmap);
    618   1.1      joff 
    619   1.1      joff 	/*
    620   1.1      joff 	 * Update the physical_freestart/physical_freeend/free_pages
    621   1.1      joff 	 * variables.
    622   1.1      joff 	 */
    623   1.1      joff 	{
    624   1.1      joff 		extern char _end[];
    625   1.1      joff 
    626   1.1      joff 		physical_freestart = physical_start +
    627   1.1      joff 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
    628   1.1      joff 		     KERNEL_BASE);
    629   1.1      joff 		physical_freeend = physical_end;
    630   1.1      joff 		free_pages =
    631   1.1      joff 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
    632   1.1      joff 	}
    633   1.1      joff 
    634   1.1      joff 	/*
    635   1.1      joff 	 * Now we have the real page tables in place so we can switch to them.
    636   1.1      joff 	 * Once this is done we will be running with the REAL kernel page
    637   1.1      joff 	 * tables.
    638   1.1      joff 	 */
    639   1.1      joff 
    640   1.1      joff 	/* Switch tables */
    641   1.1      joff #ifdef VERBOSE_INIT_ARM
    642   1.1      joff 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    643   1.1      joff 	       physical_freestart, free_pages, free_pages);
    644   1.1      joff 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    645   1.1      joff #endif
    646   1.1      joff 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    647  1.19      matt 	cpu_setttb(kernel_l1pt.pv_pa, true);
    648   1.1      joff 	cpu_tlb_flushID();
    649   1.1      joff 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    650   1.1      joff 
    651   1.1      joff 	/*
    652   1.1      joff 	 * Moved from cpu_startup() as data_abort_handler() references
    653   1.1      joff 	 * this during uvm init
    654   1.1      joff 	 */
    655  1.13     rmind 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
    656   1.1      joff 
    657   1.1      joff #ifdef VERBOSE_INIT_ARM
    658   1.1      joff 	printf("done!\n");
    659   1.1      joff #endif
    660   1.1      joff 
    661   1.1      joff #ifdef VERBOSE_INIT_ARM
    662   1.1      joff 	printf("bootstrap done.\n");
    663   1.1      joff #endif
    664   1.1      joff 
    665   1.1      joff 	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
    666   1.1      joff 
    667   1.1      joff 	/*
    668   1.1      joff 	 * Pages were allocated during the secondary bootstrap for the
    669   1.1      joff 	 * stacks for different CPU modes.
    670   1.1      joff 	 * We must now set the r13 registers in the different CPU modes to
    671   1.1      joff 	 * point to these stacks.
    672   1.1      joff 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    673   1.1      joff 	 * of the stack memory.
    674   1.1      joff 	 */
    675   1.1      joff #ifdef VERBOSE_INIT_ARM
    676   1.1      joff 	printf("init subsystems: stacks ");
    677   1.1      joff #endif
    678   1.1      joff 
    679   1.1      joff 	set_stackptr(PSR_IRQ32_MODE,
    680   1.1      joff 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    681   1.1      joff 	set_stackptr(PSR_ABT32_MODE,
    682   1.1      joff 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    683   1.1      joff 	set_stackptr(PSR_UND32_MODE,
    684   1.1      joff 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    685   1.1      joff 
    686   1.1      joff 	/*
    687   1.1      joff 	 * Well we should set a data abort handler.
    688   1.1      joff 	 * Once things get going this will change as we will need a proper
    689   1.1      joff 	 * handler.
    690   1.1      joff 	 * Until then we will use a handler that just panics but tells us
    691   1.1      joff 	 * why.
    692   1.1      joff 	 * Initialisation of the vectors will just panic on a data abort.
    693   1.1      joff 	 * This just fills in a slightly better one.
    694   1.1      joff 	 */
    695   1.1      joff #ifdef VERBOSE_INIT_ARM
    696   1.1      joff 	printf("vectors ");
    697   1.1      joff #endif
    698   1.1      joff 	data_abort_handler_address = (u_int)data_abort_handler;
    699   1.1      joff 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    700   1.1      joff 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    701   1.1      joff 
    702   1.1      joff 	/* Initialise the undefined instruction handlers */
    703   1.1      joff #ifdef VERBOSE_INIT_ARM
    704   1.1      joff 	printf("undefined ");
    705   1.1      joff #endif
    706   1.1      joff 	undefined_init();
    707   1.1      joff 
    708   1.1      joff 	/* Load memory into UVM. */
    709   1.1      joff #ifdef VERBOSE_INIT_ARM
    710   1.1      joff 	printf("page ");
    711   1.1      joff #endif
    712  1.24    cherry 	uvm_md_init();
    713   1.1      joff 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    714   1.1      joff 	    atop(physical_freestart), atop(physical_freeend),
    715   1.1      joff 	    VM_FREELIST_DEFAULT);
    716   1.1      joff 	uvm_page_physload(0, atop(physical_freeend_low),
    717   1.1      joff 	    0, atop(physical_freeend_low),
    718   1.1      joff 	    VM_FREELIST_DEFAULT);
    719   1.1      joff 	/*
    720  1.30     skrll 	 * There is 32 Mb of memory on the TS-7200 in 4 8Mb chunks, so far
    721  1.30     skrll 	 * we've only been working with the first one mapped at 0x0.  Tell
    722  1.30     skrll 	 * UVM about the others.
    723   1.1      joff 	 */
    724   1.1      joff 	uvm_page_physload(atop(0x1000000), atop(0x1800000),
    725   1.1      joff 	    atop(0x1000000), atop(0x1800000),
    726   1.1      joff 	    VM_FREELIST_DEFAULT);
    727   1.1      joff 	uvm_page_physload(atop(0x4000000), atop(0x4800000),
    728   1.1      joff 	    atop(0x4000000), atop(0x4800000),
    729   1.1      joff 	    VM_FREELIST_DEFAULT);
    730   1.1      joff 	uvm_page_physload(atop(0x5000000), atop(0x5800000),
    731   1.1      joff 	    atop(0x5000000), atop(0x5800000),
    732   1.1      joff 	    VM_FREELIST_DEFAULT);
    733   1.1      joff 
    734   1.1      joff 	physmem = 0x2000000 / PAGE_SIZE;
    735  1.30     skrll 
    736   1.1      joff 
    737  1.27     skrll 	/* Boot strap pmap telling it where managed kernel virtual memory is */
    738   1.1      joff #ifdef VERBOSE_INIT_ARM
    739   1.1      joff 	printf("pmap ");
    740   1.1      joff #endif
    741   1.7      matt 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
    742   1.1      joff 
    743   1.1      joff 	/* Setup the IRQ system */
    744   1.1      joff #ifdef VERBOSE_INIT_ARM
    745   1.1      joff 	printf("irq ");
    746   1.1      joff #endif
    747   1.1      joff 	ep93xx_intr_init();
    748   1.1      joff #if NISA > 0
    749   1.1      joff 	isa_intr_init();
    750   1.1      joff 
    751   1.1      joff #ifdef VERBOSE_INIT_ARM
    752   1.1      joff 	printf("isa ");
    753   1.1      joff #endif
    754   1.1      joff 	isa_tsarm_init(TS7XXX_IO16_VBASE + TS7XXX_ISAIO,
    755  1.30     skrll 		TS7XXX_IO16_VBASE + TS7XXX_ISAMEM);
    756   1.1      joff #endif
    757   1.1      joff 
    758   1.1      joff #ifdef VERBOSE_INIT_ARM
    759   1.1      joff 	printf("done.\n");
    760   1.1      joff #endif
    761   1.1      joff 
    762   1.1      joff #ifdef BOOTHOWTO
    763   1.1      joff 	boothowto = BOOTHOWTO;
    764   1.1      joff #endif
    765   1.1      joff 
    766   1.1      joff #ifdef DDB
    767   1.1      joff 	db_machine_init();
    768   1.1      joff 	if (boothowto & RB_KDB)
    769   1.1      joff 		Debugger();
    770   1.1      joff #endif
    771   1.1      joff 
    772   1.1      joff 	/* We return the new stack pointer address */
    773  1.28     skrll 	return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
    774   1.1      joff }
    775   1.1      joff 
    776   1.1      joff void
    777   1.1      joff consinit(void)
    778   1.1      joff {
    779   1.1      joff 	static int consinit_called;
    780   1.1      joff 	bus_space_handle_t ioh;
    781   1.1      joff 
    782   1.1      joff 	if (consinit_called != 0)
    783   1.1      joff 		return;
    784   1.1      joff 
    785   1.1      joff 	consinit_called = 1;
    786   1.1      joff 
    787   1.1      joff 	/*
    788   1.1      joff 	 * Console devices are already mapped in VA.  Our devmap reflects
    789   1.1      joff 	 * this, so register it now so drivers can map the console
    790   1.1      joff 	 * device.
    791   1.1      joff 	 */
    792   1.1      joff 	pmap_devmap_register(tsarm_devmap);
    793   1.1      joff #if 0
    794   1.1      joff 	isa_tsarm_init(TS7XXX_IO16_VBASE + TS7XXX_ISAIO,
    795  1.30     skrll 		TS7XXX_IO16_VBASE + TS7XXX_ISAMEM);
    796   1.1      joff 
    797   1.1      joff         if (comcnattach(&isa_io_bs_tag, 0x3e8, comcnspeed,
    798   1.1      joff             COM_FREQ, COM_TYPE_NORMAL, comcnmode))
    799   1.1      joff         {
    800   1.1      joff                 panic("can't init serial console");
    801   1.1      joff         }
    802   1.1      joff #endif
    803   1.1      joff 
    804   1.1      joff #if NEPCOM > 0
    805  1.30     skrll 	bus_space_map(&ep93xx_bs_tag, EP93XX_APB_HWBASE + EP93XX_APB_UART1,
    806   1.1      joff 		EP93XX_APB_UART_SIZE, 0, &ioh);
    807  1.30     skrll         if (epcomcnattach(&ep93xx_bs_tag, EP93XX_APB_HWBASE + EP93XX_APB_UART1,
    808   1.1      joff 		ioh, comcnspeed, comcnmode))
    809   1.1      joff 	{
    810   1.1      joff 		panic("can't init serial console");
    811   1.1      joff 	}
    812   1.1      joff #else
    813   1.1      joff 	panic("serial console not configured");
    814   1.1      joff #endif
    815   1.1      joff #if KGDB
    816   1.1      joff #if NEPCOM > 0
    817   1.1      joff 	if (strcmp(kgdb_devname, "epcom") == 0) {
    818  1.33     skrll 		epcom_kgdb_attach(&ep93xx_bs_tag, kgdb_devaddr, kgdb_devrate,
    819  1.33     skrll 				  kgdb_devmode);
    820   1.1      joff 	}
    821   1.1      joff #endif	/* NEPCOM > 0 */
    822   1.1      joff #endif	/* KGDB */
    823   1.1      joff }
    824   1.1      joff 
    825   1.1      joff 
    826   1.1      joff bus_dma_tag_t
    827   1.1      joff ep93xx_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template)
    828   1.1      joff {
    829   1.1      joff 	int i;
    830   1.1      joff 	struct arm32_bus_dma_tag *dmat;
    831   1.1      joff 
    832   1.1      joff 	for (i = 0; i < bootconfig.dramblocks; i++) {
    833   1.1      joff 		tsarm_dma_ranges[i].dr_sysbase = bootconfig.dram[i].address;
    834   1.1      joff 		tsarm_dma_ranges[i].dr_busbase = bootconfig.dram[i].address;
    835  1.30     skrll 		tsarm_dma_ranges[i].dr_len = bootconfig.dram[i].pages *
    836   1.1      joff 			PAGE_SIZE;
    837   1.1      joff 	}
    838   1.1      joff 
    839   1.1      joff 	dmat = dma_tag_template;
    840   1.1      joff 
    841   1.1      joff 	dmat->_ranges = tsarm_dma_ranges;
    842   1.1      joff 	dmat->_nranges = bootconfig.dramblocks;
    843   1.1      joff 
    844   1.1      joff 	return dmat;
    845   1.1      joff }
    846  1.36  jmcneill 
    847  1.36  jmcneill void
    848  1.36  jmcneill cpu_startup_hook(void)
    849  1.36  jmcneill {
    850  1.36  jmcneill 	ep93xx_intr_evcnt_attach();
    851  1.36  jmcneill }
    852