tsarm_machdep.c revision 1.30 1 1.30 skrll /* $NetBSD: tsarm_machdep.c,v 1.30 2020/04/18 10:55:46 skrll Exp $ */
2 1.1 joff
3 1.1 joff /*
4 1.1 joff * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
5 1.1 joff * All rights reserved.
6 1.1 joff *
7 1.1 joff * Based on code written by Jason R. Thorpe and Steve C. Woodford for
8 1.1 joff * Wasabi Systems, Inc.
9 1.1 joff *
10 1.1 joff * Redistribution and use in source and binary forms, with or without
11 1.1 joff * modification, are permitted provided that the following conditions
12 1.1 joff * are met:
13 1.1 joff * 1. Redistributions of source code must retain the above copyright
14 1.1 joff * notice, this list of conditions and the following disclaimer.
15 1.1 joff * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 joff * notice, this list of conditions and the following disclaimer in the
17 1.1 joff * documentation and/or other materials provided with the distribution.
18 1.1 joff * 3. All advertising materials mentioning features or use of this software
19 1.1 joff * must display the following acknowledgement:
20 1.1 joff * This product includes software developed for the NetBSD Project by
21 1.1 joff * Wasabi Systems, Inc.
22 1.1 joff * 4. The name of Wasabi Systems, Inc. may not be used to endorse
23 1.1 joff * or promote products derived from this software without specific prior
24 1.1 joff * written permission.
25 1.1 joff *
26 1.1 joff * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
27 1.1 joff * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 joff * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 joff * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
30 1.1 joff * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 joff * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 joff * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 joff * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 joff * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 joff * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 joff * POSSIBILITY OF SUCH DAMAGE.
37 1.1 joff */
38 1.1 joff
39 1.1 joff /*
40 1.1 joff * Copyright (c) 1997,1998 Mark Brinicombe.
41 1.1 joff * Copyright (c) 1997,1998 Causality Limited.
42 1.1 joff * All rights reserved.
43 1.1 joff *
44 1.1 joff * Redistribution and use in source and binary forms, with or without
45 1.1 joff * modification, are permitted provided that the following conditions
46 1.1 joff * are met:
47 1.1 joff * 1. Redistributions of source code must retain the above copyright
48 1.1 joff * notice, this list of conditions and the following disclaimer.
49 1.1 joff * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 joff * notice, this list of conditions and the following disclaimer in the
51 1.1 joff * documentation and/or other materials provided with the distribution.
52 1.1 joff * 3. All advertising materials mentioning features or use of this software
53 1.1 joff * must display the following acknowledgement:
54 1.1 joff * This product includes software developed by Mark Brinicombe
55 1.1 joff * for the NetBSD Project.
56 1.1 joff * 4. The name of the company nor the name of the author may be used to
57 1.1 joff * endorse or promote products derived from this software without specific
58 1.1 joff * prior written permission.
59 1.1 joff *
60 1.1 joff * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
61 1.1 joff * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
62 1.1 joff * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 1.1 joff * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
64 1.1 joff * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
65 1.1 joff * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
66 1.1 joff * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 1.1 joff * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 1.1 joff * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 1.1 joff * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 1.1 joff * SUCH DAMAGE.
71 1.1 joff *
72 1.15 wiz * Machine dependent functions for kernel setup for Iyonix.
73 1.1 joff */
74 1.1 joff
75 1.1 joff #include <sys/cdefs.h>
76 1.30 skrll __KERNEL_RCSID(0, "$NetBSD: tsarm_machdep.c,v 1.30 2020/04/18 10:55:46 skrll Exp $");
77 1.1 joff
78 1.25 skrll #include "opt_arm_debug.h"
79 1.26 skrll #include "opt_console.h"
80 1.1 joff #include "opt_ddb.h"
81 1.1 joff #include "opt_kgdb.h"
82 1.1 joff #include "opt_pmap_debug.h"
83 1.1 joff
84 1.1 joff #include <sys/param.h>
85 1.1 joff #include <sys/device.h>
86 1.1 joff #include <sys/systm.h>
87 1.1 joff #include <sys/kernel.h>
88 1.1 joff #include <sys/exec.h>
89 1.1 joff #include <sys/proc.h>
90 1.1 joff #include <sys/msgbuf.h>
91 1.1 joff #include <sys/reboot.h>
92 1.1 joff #include <sys/termios.h>
93 1.1 joff #include <sys/ksyms.h>
94 1.21 matt #include <sys/bus.h>
95 1.21 matt #include <sys/cpu.h>
96 1.1 joff
97 1.1 joff #include <uvm/uvm_extern.h>
98 1.1 joff
99 1.1 joff #include <dev/cons.h>
100 1.1 joff
101 1.1 joff #include <machine/db_machdep.h>
102 1.1 joff #include <ddb/db_sym.h>
103 1.1 joff #include <ddb/db_extern.h>
104 1.1 joff
105 1.1 joff #include <acorn32/include/bootconfig.h>
106 1.21 matt #include <arm/locore.h>
107 1.1 joff #include <arm/undefined.h>
108 1.1 joff
109 1.18 matt /* Define various stack sizes in pages */
110 1.18 matt #define IRQ_STACK_SIZE 8
111 1.18 matt #define ABT_STACK_SIZE 8
112 1.18 matt #define UND_STACK_SIZE 8
113 1.18 matt
114 1.1 joff #include <arm/arm32/machdep.h>
115 1.1 joff
116 1.1 joff #include <arm/ep93xx/ep93xxreg.h>
117 1.1 joff #include <arm/ep93xx/ep93xxvar.h>
118 1.1 joff
119 1.1 joff #include <dev/ic/comreg.h>
120 1.1 joff #include <dev/ic/comvar.h>
121 1.1 joff
122 1.1 joff #include "epcom.h"
123 1.1 joff #if NEPCOM > 0
124 1.1 joff #include <arm/ep93xx/epcomvar.h>
125 1.1 joff #endif
126 1.1 joff
127 1.1 joff #include "isa.h"
128 1.1 joff #if NISA > 0
129 1.1 joff #include <dev/isa/isareg.h>
130 1.1 joff #include <dev/isa/isavar.h>
131 1.1 joff #endif
132 1.1 joff
133 1.1 joff #include <machine/isa_machdep.h>
134 1.1 joff
135 1.1 joff #include <evbarm/tsarm/tsarmreg.h>
136 1.1 joff
137 1.1 joff #include "ksyms.h"
138 1.1 joff
139 1.1 joff /* Kernel text starts 2MB in from the bottom of the kernel address space. */
140 1.1 joff #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
141 1.1 joff #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
142 1.1 joff
143 1.1 joff /*
144 1.1 joff * The range 0xc1000000 - 0xccffffff is available for kernel VM space
145 1.1 joff * Core-logic registers and I/O mappings occupy 0xf0000000 - 0xffffffff
146 1.1 joff */
147 1.1 joff #define KERNEL_VM_SIZE 0x0C000000
148 1.1 joff
149 1.1 joff struct bootconfig bootconfig; /* Boot config storage */
150 1.1 joff char *boot_args = NULL;
151 1.1 joff char *boot_file = NULL;
152 1.1 joff
153 1.23 matt vaddr_t physical_start;
154 1.23 matt vaddr_t physical_freestart;
155 1.23 matt vaddr_t physical_freeend;
156 1.23 matt vaddr_t physical_freeend_low;
157 1.23 matt vaddr_t physical_end;
158 1.1 joff u_int free_pages;
159 1.1 joff
160 1.23 matt paddr_t msgbufphys;
161 1.1 joff
162 1.1 joff static struct arm32_dma_range tsarm_dma_ranges[4];
163 1.1 joff
164 1.1 joff #if NISA > 0
165 1.30 skrll extern void isa_tsarm_init(u_int, u_int);
166 1.1 joff #endif
167 1.1 joff
168 1.1 joff #ifdef PMAP_DEBUG
169 1.1 joff extern int pmap_debug_level;
170 1.1 joff #endif
171 1.1 joff
172 1.1 joff #define KERNEL_PT_SYS 0 /* L2 table for mapping vectors page */
173 1.1 joff
174 1.1 joff #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
175 1.1 joff #define KERNEL_PT_KERNEL_NUM 4
176 1.30 skrll /* L2 tables for mapping kernel VM */
177 1.1 joff #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
178 1.1 joff
179 1.1 joff #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
180 1.1 joff #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
181 1.1 joff
182 1.1 joff pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
183 1.1 joff
184 1.1 joff /* Prototypes */
185 1.1 joff
186 1.1 joff void consinit(void);
187 1.1 joff /*
188 1.1 joff * Define the default console speed for the machine.
189 1.1 joff */
190 1.1 joff #ifndef CONSPEED
191 1.1 joff #define CONSPEED B115200
192 1.1 joff #endif /* ! CONSPEED */
193 1.1 joff
194 1.1 joff #ifndef CONMODE
195 1.1 joff #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
196 1.1 joff #endif
197 1.1 joff
198 1.1 joff int comcnspeed = CONSPEED;
199 1.1 joff int comcnmode = CONMODE;
200 1.1 joff
201 1.1 joff #if KGDB
202 1.1 joff #ifndef KGDB_DEVNAME
203 1.1 joff #error Must define KGDB_DEVNAME
204 1.1 joff #endif
205 1.1 joff const char kgdb_devname[] = KGDB_DEVNAME;
206 1.1 joff
207 1.1 joff #ifndef KGDB_DEVADDR
208 1.1 joff #error Must define KGDB_DEVADDR
209 1.1 joff #endif
210 1.1 joff unsigned long kgdb_devaddr = KGDB_DEVADDR;
211 1.1 joff
212 1.1 joff #ifndef KGDB_DEVRATE
213 1.1 joff #define KGDB_DEVRATE CONSPEED
214 1.1 joff #endif
215 1.1 joff int kgdb_devrate = KGDB_DEVRATE;
216 1.1 joff
217 1.1 joff #ifndef KGDB_DEVMODE
218 1.1 joff #define KGDB_DEVMODE CONMODE
219 1.1 joff #endif
220 1.1 joff int kgdb_devmode = KGDB_DEVMODE;
221 1.1 joff #endif /* KGDB */
222 1.1 joff
223 1.1 joff /*
224 1.1 joff * void cpu_reboot(int howto, char *bootstr)
225 1.1 joff *
226 1.1 joff * Reboots the system
227 1.1 joff *
228 1.1 joff * Deal with any syncing, unmounting, dumping and shutdown hooks,
229 1.1 joff * then reset the CPU.
230 1.1 joff */
231 1.1 joff void
232 1.1 joff cpu_reboot(int howto, char *bootstr)
233 1.1 joff {
234 1.1 joff
235 1.1 joff /*
236 1.1 joff * If we are still cold then hit the air brakes
237 1.1 joff * and crash to earth fast
238 1.1 joff */
239 1.1 joff if (cold) {
240 1.1 joff doshutdownhooks();
241 1.8 dyoung pmf_system_shutdown(boothowto);
242 1.1 joff printf("\r\n");
243 1.1 joff printf("The operating system has halted.\r\n");
244 1.1 joff printf("Please press any key to reboot.\r\n");
245 1.1 joff cngetc();
246 1.1 joff printf("\r\nrebooting...\r\n");
247 1.1 joff goto reset;
248 1.1 joff }
249 1.1 joff
250 1.1 joff /* Disable console buffering */
251 1.1 joff
252 1.1 joff /*
253 1.1 joff * If RB_NOSYNC was not specified sync the discs.
254 1.1 joff * Note: Unless cold is set to 1 here, syslogd will die during the
255 1.1 joff * unmount. It looks like syslogd is getting woken up only to find
256 1.1 joff * that it cannot page part of the binary in as the filesystem has
257 1.1 joff * been unmounted.
258 1.1 joff */
259 1.1 joff if (!(howto & RB_NOSYNC))
260 1.1 joff bootsync();
261 1.1 joff
262 1.1 joff /* Say NO to interrupts */
263 1.1 joff splhigh();
264 1.1 joff
265 1.1 joff /* Do a dump if requested. */
266 1.1 joff if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
267 1.1 joff dumpsys();
268 1.30 skrll
269 1.1 joff /* Run any shutdown hooks */
270 1.1 joff doshutdownhooks();
271 1.1 joff
272 1.8 dyoung pmf_system_shutdown(boothowto);
273 1.8 dyoung
274 1.1 joff /* Make sure IRQ's are disabled */
275 1.1 joff IRQdisable;
276 1.1 joff
277 1.1 joff if (howto & RB_HALT) {
278 1.1 joff printf("\r\n");
279 1.1 joff printf("The operating system has halted.\r\n");
280 1.1 joff printf("Please press any key to reboot.\r\n");
281 1.1 joff cngetc();
282 1.1 joff }
283 1.1 joff
284 1.1 joff printf("\r\nrebooting...\r\n");
285 1.1 joff reset:
286 1.1 joff /*
287 1.1 joff * Make really really sure that all interrupts are disabled,
288 1.1 joff * and poke the Internal Bus and Peripheral Bus reset lines.
289 1.1 joff */
290 1.1 joff (void) disable_interrupts(I32_bit|F32_bit);
291 1.1 joff
292 1.1 joff {
293 1.20 skrll uint32_t feed, ctrl;
294 1.1 joff
295 1.1 joff feed = TS7XXX_IO16_VBASE + TS7XXX_WDOGFEED;
296 1.1 joff ctrl = TS7XXX_IO16_VBASE + TS7XXX_WDOGCTRL;
297 1.1 joff
298 1.3 perry __asm volatile (
299 1.1 joff "mov r0, #0x5\n"
300 1.1 joff "mov r1, #0x1\n"
301 1.1 joff "strh r0, [%0]\n"
302 1.1 joff "strh r1, [%1]\n"
303 1.30 skrll :
304 1.1 joff : "r" (feed), "r" (ctrl)
305 1.1 joff : "r0", "r1"
306 1.1 joff );
307 1.1 joff }
308 1.1 joff
309 1.1 joff for (;;);
310 1.1 joff }
311 1.1 joff
312 1.1 joff /* Static device mappings. */
313 1.1 joff static const struct pmap_devmap tsarm_devmap[] = {
314 1.1 joff {
315 1.1 joff EP93XX_AHB_VBASE,
316 1.1 joff EP93XX_AHB_HWBASE,
317 1.1 joff EP93XX_AHB_SIZE,
318 1.1 joff VM_PROT_READ|VM_PROT_WRITE,
319 1.1 joff PTE_NOCACHE,
320 1.1 joff },
321 1.1 joff
322 1.1 joff {
323 1.1 joff EP93XX_APB_VBASE,
324 1.1 joff EP93XX_APB_HWBASE,
325 1.1 joff EP93XX_APB_SIZE,
326 1.1 joff VM_PROT_READ|VM_PROT_WRITE,
327 1.1 joff PTE_NOCACHE,
328 1.1 joff },
329 1.1 joff
330 1.1 joff /*
331 1.1 joff * IO8 and IO16 space *must* be mapped contiguously with
332 1.1 joff * IO8_VA == IO16_VA - 64 Mbytes. ISA busmap driver depends
333 1.1 joff * on that!
334 1.1 joff */
335 1.1 joff {
336 1.1 joff TS7XXX_IO8_VBASE,
337 1.1 joff TS7XXX_IO8_HWBASE,
338 1.1 joff TS7XXX_IO8_SIZE,
339 1.1 joff VM_PROT_READ|VM_PROT_WRITE,
340 1.1 joff PTE_NOCACHE,
341 1.1 joff },
342 1.1 joff
343 1.1 joff {
344 1.1 joff TS7XXX_IO16_VBASE,
345 1.1 joff TS7XXX_IO16_HWBASE,
346 1.1 joff TS7XXX_IO16_SIZE,
347 1.1 joff VM_PROT_READ|VM_PROT_WRITE,
348 1.1 joff PTE_NOCACHE,
349 1.1 joff },
350 1.1 joff
351 1.1 joff {
352 1.1 joff 0,
353 1.1 joff 0,
354 1.1 joff 0,
355 1.1 joff 0,
356 1.1 joff 0,
357 1.1 joff }
358 1.1 joff };
359 1.1 joff
360 1.1 joff /*
361 1.29 skrll * vaddr_t initarm(...)
362 1.1 joff *
363 1.1 joff * Initial entry point on startup. This gets called before main() is
364 1.1 joff * entered.
365 1.1 joff * It should be responsible for setting up everything that must be
366 1.1 joff * in place when main is called.
367 1.1 joff * This includes
368 1.1 joff * Taking a copy of the boot configuration structure.
369 1.1 joff * Initialising the physical console so characters can be printed.
370 1.1 joff * Setting up page tables for the kernel
371 1.1 joff * Initialising interrupt controllers to a sane default state
372 1.1 joff */
373 1.29 skrll vaddr_t
374 1.1 joff initarm(void *arg)
375 1.1 joff {
376 1.1 joff #ifdef FIXME
377 1.1 joff struct bootconfig *passed_bootconfig = arg;
378 1.1 joff extern char _end[];
379 1.1 joff #endif
380 1.1 joff int loop;
381 1.1 joff int loop1;
382 1.1 joff u_int l1pagetable;
383 1.22 skrll
384 1.22 skrll #ifdef FIXME
385 1.1 joff paddr_t memstart;
386 1.1 joff psize_t memsize;
387 1.1 joff
388 1.1 joff /* Calibrate the delay loop. */
389 1.1 joff i80321_calibrate_delay();
390 1.1 joff #endif
391 1.1 joff
392 1.1 joff /*
393 1.1 joff * Since we map the on-board devices VA==PA, and the kernel
394 1.1 joff * is running VA==PA, it's possible for us to initialize
395 1.1 joff * the console now.
396 1.1 joff */
397 1.1 joff consinit();
398 1.1 joff
399 1.1 joff #ifdef VERBOSE_INIT_ARM
400 1.1 joff /* Talk to the user */
401 1.1 joff printf("\nNetBSD/tsarm booting ...\n");
402 1.1 joff #endif
403 1.1 joff
404 1.1 joff /*
405 1.1 joff * Heads up ... Setup the CPU / MMU / TLB functions
406 1.1 joff */
407 1.1 joff if (set_cpufuncs())
408 1.1 joff panic("cpu not recognized!");
409 1.1 joff
410 1.1 joff /*
411 1.1 joff * We are currently running with the MMU enabled
412 1.1 joff */
413 1.1 joff
414 1.30 skrll #ifdef FIXME
415 1.1 joff /*
416 1.1 joff * Fetch the SDRAM start/size from the i80321 SDRAM configuration
417 1.1 joff * registers.
418 1.1 joff */
419 1.1 joff i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE,
420 1.1 joff &memstart, &memsize);
421 1.22 skrll
422 1.1 joff memstart = 0x0;
423 1.1 joff memsize = 0x2000000;
424 1.1 joff #endif
425 1.1 joff
426 1.1 joff #ifdef VERBOSE_INIT_ARM
427 1.1 joff printf("initarm: Configuring system ...\n");
428 1.1 joff #endif
429 1.1 joff
430 1.1 joff /* Fake bootconfig structure for the benefit of pmap.c */
431 1.5 wiz /* XXX must make the memory description h/w independent */
432 1.1 joff bootconfig.dramblocks = 4;
433 1.1 joff bootconfig.dram[0].address = 0x0UL;
434 1.1 joff bootconfig.dram[0].pages = 0x800000UL / PAGE_SIZE;
435 1.1 joff bootconfig.dram[1].address = 0x1000000UL;
436 1.1 joff bootconfig.dram[1].pages = 0x800000UL / PAGE_SIZE;
437 1.1 joff bootconfig.dram[2].address = 0x4000000UL;
438 1.1 joff bootconfig.dram[2].pages = 0x800000UL / PAGE_SIZE;
439 1.1 joff bootconfig.dram[3].address = 0x5000000UL;
440 1.1 joff bootconfig.dram[3].pages = 0x800000UL / PAGE_SIZE;
441 1.1 joff
442 1.1 joff /*
443 1.1 joff * Set up the variables that define the availablilty of
444 1.1 joff * physical memory. For now, we're going to set
445 1.1 joff * physical_freestart to 0x00200000 (where the kernel
446 1.1 joff * was loaded), and allocate the memory we need downwards.
447 1.1 joff * If we get too close to the L1 table that we set up, we
448 1.1 joff * will panic. We will update physical_freestart and
449 1.1 joff * physical_freeend later to reflect what pmap_bootstrap()
450 1.1 joff * wants to see.
451 1.1 joff *
452 1.1 joff * XXX pmap_bootstrap() needs an enema.
453 1.1 joff */
454 1.1 joff physical_start = bootconfig.dram[0].address;
455 1.30 skrll physical_end = bootconfig.dram[0].address +
456 1.1 joff (bootconfig.dram[0].pages * PAGE_SIZE);
457 1.1 joff
458 1.1 joff physical_freestart = 0x00009000UL;
459 1.1 joff physical_freeend = 0x00200000UL;
460 1.1 joff
461 1.1 joff physmem = (physical_end - physical_start) / PAGE_SIZE;
462 1.1 joff
463 1.1 joff #ifdef VERBOSE_INIT_ARM
464 1.1 joff /* Tell the user about the memory */
465 1.1 joff printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
466 1.1 joff physical_start, physical_end - 1);
467 1.1 joff #endif
468 1.1 joff
469 1.1 joff /*
470 1.1 joff * Okay, the kernel starts 2MB in from the bottom of physical
471 1.1 joff * memory. We are going to allocate our bootstrap pages downwards
472 1.1 joff * from there.
473 1.1 joff *
474 1.1 joff * We need to allocate some fixed page tables to get the kernel
475 1.1 joff * going. We allocate one page directory and a number of page
476 1.1 joff * tables and store the physical addresses in the kernel_pt_table
477 1.1 joff * array.
478 1.1 joff *
479 1.1 joff * The kernel page directory must be on a 16K boundary. The page
480 1.1 joff * tables must be on 4K bounaries. What we do is allocate the
481 1.1 joff * page directory on the first 16K boundary that we encounter, and
482 1.1 joff * the page tables on 4K boundaries otherwise. Since we allocate
483 1.1 joff * at least 3 L2 page tables, we are guaranteed to encounter at
484 1.1 joff * least one 16K aligned region.
485 1.1 joff */
486 1.1 joff
487 1.1 joff #ifdef VERBOSE_INIT_ARM
488 1.1 joff printf("Allocating page tables\n");
489 1.1 joff #endif
490 1.1 joff
491 1.1 joff free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
492 1.1 joff
493 1.1 joff #ifdef VERBOSE_INIT_ARM
494 1.1 joff printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
495 1.1 joff physical_freestart, free_pages, free_pages);
496 1.1 joff #endif
497 1.1 joff
498 1.1 joff /* Define a macro to simplify memory allocation */
499 1.1 joff #define valloc_pages(var, np) \
500 1.1 joff alloc_pages((var).pv_pa, (np)); \
501 1.1 joff (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
502 1.1 joff
503 1.1 joff #define alloc_pages(var, np) \
504 1.1 joff physical_freeend -= ((np) * PAGE_SIZE); \
505 1.1 joff if (physical_freeend < physical_freestart) \
506 1.1 joff panic("initarm: out of memory"); \
507 1.1 joff (var) = physical_freeend; \
508 1.1 joff free_pages -= (np); \
509 1.1 joff memset((char *)(var), 0, ((np) * PAGE_SIZE));
510 1.1 joff
511 1.1 joff loop1 = 0;
512 1.1 joff for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
513 1.1 joff /* Are we 16KB aligned for an L1 ? */
514 1.1 joff if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
515 1.1 joff && kernel_l1pt.pv_pa == 0) {
516 1.1 joff valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
517 1.1 joff } else {
518 1.1 joff valloc_pages(kernel_pt_table[loop1],
519 1.1 joff L2_TABLE_SIZE / PAGE_SIZE);
520 1.1 joff ++loop1;
521 1.1 joff }
522 1.1 joff }
523 1.1 joff
524 1.1 joff /* This should never be able to happen but better confirm that. */
525 1.1 joff if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
526 1.1 joff panic("initarm: Failed to align the kernel page directory");
527 1.1 joff
528 1.1 joff /*
529 1.1 joff * Allocate a page for the system vectors page
530 1.1 joff */
531 1.1 joff alloc_pages(systempage.pv_pa, 1);
532 1.1 joff
533 1.1 joff /* Allocate stacks for all modes */
534 1.1 joff valloc_pages(irqstack, IRQ_STACK_SIZE);
535 1.1 joff valloc_pages(abtstack, ABT_STACK_SIZE);
536 1.1 joff valloc_pages(undstack, UND_STACK_SIZE);
537 1.1 joff valloc_pages(kernelstack, UPAGES);
538 1.1 joff
539 1.1 joff #ifdef VERBOSE_INIT_ARM
540 1.1 joff printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
541 1.30 skrll irqstack.pv_va);
542 1.1 joff printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
543 1.30 skrll abtstack.pv_va);
544 1.1 joff printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
545 1.30 skrll undstack.pv_va);
546 1.1 joff printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
547 1.30 skrll kernelstack.pv_va);
548 1.1 joff #endif
549 1.1 joff
550 1.1 joff alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
551 1.1 joff
552 1.1 joff /*
553 1.1 joff * Ok we have allocated physical pages for the primary kernel
554 1.30 skrll * page tables. Save physical_freeend for when we give whats left
555 1.1 joff * of memory below 2Mbyte to UVM.
556 1.1 joff */
557 1.1 joff
558 1.1 joff physical_freeend_low = physical_freeend;
559 1.1 joff
560 1.1 joff #ifdef VERBOSE_INIT_ARM
561 1.1 joff printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
562 1.1 joff #endif
563 1.1 joff
564 1.1 joff /*
565 1.1 joff * Now we start construction of the L1 page table
566 1.1 joff * We start by mapping the L2 page tables into the L1.
567 1.1 joff * This means that we can replace L1 mappings later on if necessary
568 1.1 joff */
569 1.1 joff l1pagetable = kernel_l1pt.pv_pa;
570 1.1 joff
571 1.1 joff /* Map the L2 pages tables in the L1 page table */
572 1.1 joff pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
573 1.1 joff &kernel_pt_table[KERNEL_PT_SYS]);
574 1.1 joff for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
575 1.1 joff pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
576 1.1 joff &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
577 1.1 joff for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
578 1.1 joff pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
579 1.1 joff &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
580 1.1 joff
581 1.1 joff /* update the top of the kernel VM */
582 1.1 joff pmap_curmaxkvaddr =
583 1.1 joff KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
584 1.1 joff
585 1.1 joff #ifdef VERBOSE_INIT_ARM
586 1.1 joff printf("Mapping kernel\n");
587 1.1 joff #endif
588 1.1 joff
589 1.1 joff /* Now we fill in the L2 pagetable for the kernel static code/data */
590 1.1 joff {
591 1.1 joff extern char etext[], _end[];
592 1.1 joff size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
593 1.1 joff size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
594 1.1 joff u_int logical;
595 1.1 joff
596 1.1 joff textsize = (textsize + PGOFSET) & ~PGOFSET;
597 1.1 joff totalsize = (totalsize + PGOFSET) & ~PGOFSET;
598 1.30 skrll
599 1.1 joff logical = 0x00200000; /* offset of kernel in RAM */
600 1.1 joff logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
601 1.1 joff physical_start + logical, textsize,
602 1.1 joff VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
603 1.1 joff logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
604 1.1 joff physical_start + logical, totalsize - textsize,
605 1.1 joff VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
606 1.1 joff }
607 1.1 joff
608 1.1 joff #ifdef VERBOSE_INIT_ARM
609 1.1 joff printf("Constructing L2 page tables\n");
610 1.1 joff #endif
611 1.1 joff
612 1.1 joff /* Map the stack pages */
613 1.1 joff pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
614 1.1 joff IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
615 1.1 joff pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
616 1.1 joff ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
617 1.1 joff pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
618 1.1 joff UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
619 1.1 joff pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
620 1.1 joff UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
621 1.1 joff
622 1.1 joff pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
623 1.1 joff L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
624 1.1 joff
625 1.1 joff for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
626 1.1 joff pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
627 1.1 joff kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
628 1.1 joff VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
629 1.1 joff }
630 1.1 joff
631 1.1 joff /* Map the vector page. */
632 1.1 joff pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
633 1.1 joff VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
634 1.1 joff
635 1.1 joff /* Map the statically mapped devices. */
636 1.1 joff pmap_devmap_bootstrap(l1pagetable, tsarm_devmap);
637 1.1 joff
638 1.1 joff /*
639 1.1 joff * Update the physical_freestart/physical_freeend/free_pages
640 1.1 joff * variables.
641 1.1 joff */
642 1.1 joff {
643 1.1 joff extern char _end[];
644 1.1 joff
645 1.1 joff physical_freestart = physical_start +
646 1.1 joff (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
647 1.1 joff KERNEL_BASE);
648 1.1 joff physical_freeend = physical_end;
649 1.1 joff free_pages =
650 1.1 joff (physical_freeend - physical_freestart) / PAGE_SIZE;
651 1.1 joff }
652 1.1 joff
653 1.1 joff /*
654 1.1 joff * Now we have the real page tables in place so we can switch to them.
655 1.1 joff * Once this is done we will be running with the REAL kernel page
656 1.1 joff * tables.
657 1.1 joff */
658 1.1 joff
659 1.1 joff /* Switch tables */
660 1.1 joff #ifdef VERBOSE_INIT_ARM
661 1.1 joff printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
662 1.1 joff physical_freestart, free_pages, free_pages);
663 1.1 joff printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
664 1.1 joff #endif
665 1.1 joff cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
666 1.19 matt cpu_setttb(kernel_l1pt.pv_pa, true);
667 1.1 joff cpu_tlb_flushID();
668 1.1 joff cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
669 1.1 joff
670 1.1 joff /*
671 1.1 joff * Moved from cpu_startup() as data_abort_handler() references
672 1.1 joff * this during uvm init
673 1.1 joff */
674 1.13 rmind uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
675 1.1 joff
676 1.1 joff #ifdef VERBOSE_INIT_ARM
677 1.1 joff printf("done!\n");
678 1.1 joff #endif
679 1.1 joff
680 1.1 joff #ifdef VERBOSE_INIT_ARM
681 1.1 joff printf("bootstrap done.\n");
682 1.1 joff #endif
683 1.1 joff
684 1.1 joff arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
685 1.1 joff
686 1.1 joff /*
687 1.1 joff * Pages were allocated during the secondary bootstrap for the
688 1.1 joff * stacks for different CPU modes.
689 1.1 joff * We must now set the r13 registers in the different CPU modes to
690 1.1 joff * point to these stacks.
691 1.1 joff * Since the ARM stacks use STMFD etc. we must set r13 to the top end
692 1.1 joff * of the stack memory.
693 1.1 joff */
694 1.1 joff #ifdef VERBOSE_INIT_ARM
695 1.1 joff printf("init subsystems: stacks ");
696 1.1 joff #endif
697 1.1 joff
698 1.1 joff set_stackptr(PSR_IRQ32_MODE,
699 1.1 joff irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
700 1.1 joff set_stackptr(PSR_ABT32_MODE,
701 1.1 joff abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
702 1.1 joff set_stackptr(PSR_UND32_MODE,
703 1.1 joff undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
704 1.1 joff
705 1.1 joff /*
706 1.1 joff * Well we should set a data abort handler.
707 1.1 joff * Once things get going this will change as we will need a proper
708 1.1 joff * handler.
709 1.1 joff * Until then we will use a handler that just panics but tells us
710 1.1 joff * why.
711 1.1 joff * Initialisation of the vectors will just panic on a data abort.
712 1.1 joff * This just fills in a slightly better one.
713 1.1 joff */
714 1.1 joff #ifdef VERBOSE_INIT_ARM
715 1.1 joff printf("vectors ");
716 1.1 joff #endif
717 1.1 joff data_abort_handler_address = (u_int)data_abort_handler;
718 1.1 joff prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
719 1.1 joff undefined_handler_address = (u_int)undefinedinstruction_bounce;
720 1.1 joff
721 1.1 joff /* Initialise the undefined instruction handlers */
722 1.1 joff #ifdef VERBOSE_INIT_ARM
723 1.1 joff printf("undefined ");
724 1.1 joff #endif
725 1.1 joff undefined_init();
726 1.1 joff
727 1.1 joff /* Load memory into UVM. */
728 1.1 joff #ifdef VERBOSE_INIT_ARM
729 1.1 joff printf("page ");
730 1.1 joff #endif
731 1.24 cherry uvm_md_init();
732 1.1 joff uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
733 1.1 joff atop(physical_freestart), atop(physical_freeend),
734 1.1 joff VM_FREELIST_DEFAULT);
735 1.1 joff uvm_page_physload(0, atop(physical_freeend_low),
736 1.1 joff 0, atop(physical_freeend_low),
737 1.1 joff VM_FREELIST_DEFAULT);
738 1.1 joff /*
739 1.30 skrll * There is 32 Mb of memory on the TS-7200 in 4 8Mb chunks, so far
740 1.30 skrll * we've only been working with the first one mapped at 0x0. Tell
741 1.30 skrll * UVM about the others.
742 1.1 joff */
743 1.1 joff uvm_page_physload(atop(0x1000000), atop(0x1800000),
744 1.1 joff atop(0x1000000), atop(0x1800000),
745 1.1 joff VM_FREELIST_DEFAULT);
746 1.1 joff uvm_page_physload(atop(0x4000000), atop(0x4800000),
747 1.1 joff atop(0x4000000), atop(0x4800000),
748 1.1 joff VM_FREELIST_DEFAULT);
749 1.1 joff uvm_page_physload(atop(0x5000000), atop(0x5800000),
750 1.1 joff atop(0x5000000), atop(0x5800000),
751 1.1 joff VM_FREELIST_DEFAULT);
752 1.1 joff
753 1.1 joff physmem = 0x2000000 / PAGE_SIZE;
754 1.30 skrll
755 1.1 joff
756 1.27 skrll /* Boot strap pmap telling it where managed kernel virtual memory is */
757 1.1 joff #ifdef VERBOSE_INIT_ARM
758 1.1 joff printf("pmap ");
759 1.1 joff #endif
760 1.7 matt pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
761 1.1 joff
762 1.1 joff /* Setup the IRQ system */
763 1.1 joff #ifdef VERBOSE_INIT_ARM
764 1.1 joff printf("irq ");
765 1.1 joff #endif
766 1.1 joff ep93xx_intr_init();
767 1.1 joff #if NISA > 0
768 1.1 joff isa_intr_init();
769 1.1 joff
770 1.1 joff #ifdef VERBOSE_INIT_ARM
771 1.1 joff printf("isa ");
772 1.1 joff #endif
773 1.1 joff isa_tsarm_init(TS7XXX_IO16_VBASE + TS7XXX_ISAIO,
774 1.30 skrll TS7XXX_IO16_VBASE + TS7XXX_ISAMEM);
775 1.1 joff #endif
776 1.1 joff
777 1.1 joff #ifdef VERBOSE_INIT_ARM
778 1.1 joff printf("done.\n");
779 1.1 joff #endif
780 1.1 joff
781 1.1 joff #ifdef BOOTHOWTO
782 1.1 joff boothowto = BOOTHOWTO;
783 1.1 joff #endif
784 1.1 joff
785 1.1 joff #ifdef DDB
786 1.1 joff db_machine_init();
787 1.1 joff if (boothowto & RB_KDB)
788 1.1 joff Debugger();
789 1.1 joff #endif
790 1.1 joff
791 1.1 joff /* We return the new stack pointer address */
792 1.28 skrll return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
793 1.1 joff }
794 1.1 joff
795 1.1 joff void
796 1.1 joff consinit(void)
797 1.1 joff {
798 1.1 joff static int consinit_called;
799 1.1 joff bus_space_handle_t ioh;
800 1.1 joff
801 1.1 joff if (consinit_called != 0)
802 1.1 joff return;
803 1.1 joff
804 1.1 joff consinit_called = 1;
805 1.1 joff
806 1.1 joff /*
807 1.1 joff * Console devices are already mapped in VA. Our devmap reflects
808 1.1 joff * this, so register it now so drivers can map the console
809 1.1 joff * device.
810 1.1 joff */
811 1.1 joff pmap_devmap_register(tsarm_devmap);
812 1.1 joff #if 0
813 1.1 joff isa_tsarm_init(TS7XXX_IO16_VBASE + TS7XXX_ISAIO,
814 1.30 skrll TS7XXX_IO16_VBASE + TS7XXX_ISAMEM);
815 1.1 joff
816 1.1 joff if (comcnattach(&isa_io_bs_tag, 0x3e8, comcnspeed,
817 1.1 joff COM_FREQ, COM_TYPE_NORMAL, comcnmode))
818 1.1 joff {
819 1.1 joff panic("can't init serial console");
820 1.1 joff }
821 1.1 joff #endif
822 1.1 joff
823 1.1 joff #if NEPCOM > 0
824 1.30 skrll bus_space_map(&ep93xx_bs_tag, EP93XX_APB_HWBASE + EP93XX_APB_UART1,
825 1.1 joff EP93XX_APB_UART_SIZE, 0, &ioh);
826 1.30 skrll if (epcomcnattach(&ep93xx_bs_tag, EP93XX_APB_HWBASE + EP93XX_APB_UART1,
827 1.1 joff ioh, comcnspeed, comcnmode))
828 1.1 joff {
829 1.1 joff panic("can't init serial console");
830 1.1 joff }
831 1.1 joff #else
832 1.1 joff panic("serial console not configured");
833 1.1 joff #endif
834 1.1 joff #if KGDB
835 1.1 joff #if NEPCOM > 0
836 1.1 joff if (strcmp(kgdb_devname, "epcom") == 0) {
837 1.1 joff com_kgdb_attach(&ep93xx_bs_tag, kgdb_devaddr, kgdb_devrate,
838 1.1 joff kgdb_devmode);
839 1.1 joff }
840 1.1 joff #endif /* NEPCOM > 0 */
841 1.1 joff #endif /* KGDB */
842 1.1 joff }
843 1.1 joff
844 1.1 joff
845 1.1 joff bus_dma_tag_t
846 1.1 joff ep93xx_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template)
847 1.1 joff {
848 1.1 joff int i;
849 1.1 joff struct arm32_bus_dma_tag *dmat;
850 1.1 joff
851 1.1 joff for (i = 0; i < bootconfig.dramblocks; i++) {
852 1.1 joff tsarm_dma_ranges[i].dr_sysbase = bootconfig.dram[i].address;
853 1.1 joff tsarm_dma_ranges[i].dr_busbase = bootconfig.dram[i].address;
854 1.30 skrll tsarm_dma_ranges[i].dr_len = bootconfig.dram[i].pages *
855 1.1 joff PAGE_SIZE;
856 1.1 joff }
857 1.1 joff
858 1.1 joff dmat = dma_tag_template;
859 1.1 joff
860 1.1 joff dmat->_ranges = tsarm_dma_ranges;
861 1.1 joff dmat->_nranges = bootconfig.dramblocks;
862 1.1 joff
863 1.1 joff return dmat;
864 1.1 joff }
865